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Abstract

Tsunamis induced by landslides are a topic on which growing attention is being paid especially under the pressure
of recent events in which movement of underwater masses have been recognised to be the certain or likely cause
of the observed tsunami. Here analytical methods and idealised cases are used to investigate tsunami generation
by submarine slides that undergo negligible deformation during their motion, such as slumps. The general solution
of the 1D Cauchy linear problem for long water waves is specialised to deal with rigid bodies and is used
systematically to explore the main characteristics of the generated waves. Relationships between body motion,
that is prescribed in terms of the slide Froude number, and wave pattern, wave amplitude and wave energy are
studied in dimensionless space. Wave generation in various flow conditions (from suberitical to supercritical) is
handled, though most attention is given to analysing tsunamis induced by submarine slides at subcritical speed
which are by far the most common cases. From numerical experiments it is found that good estimates of the
tsunami wave amplitude can be calculated by means of simple expressions based on the maximum value and on
the average value of the Froude number during the main generation phase.
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strophic, and 2) tsunamis engendered by land-
slides are more difficult to identify and more

o ; ” : complex to study. Examples of investigations
1993; Tinti and Maramai, 1996; Soloviev et al., B o p et
based on numerical models can be found espe-

1997) and by recent examples. The last devastat- o g : ;
; : : . . cially in recent papers (Johnsgard and Pedersen,
ing tsunami that killed more than 2200 people in . e ) st
Papna New Guinga in Talv 1098 was Sosabl 1996; Assier Rzadkiewicz, 1997; Watts, 1998;
apu € Ay e Wik ) Y Heinrich ef al., 1999; Fine, 1999: Tinti et al..
caused by a submarine slump triggered by an 4 S ; 75 }
e i : - _ 1999a.b) dealing with simulations of real natural
offshore earthquake (Davies, 1999; Kawata er al., ) g i " .
events, or of artificial events produced in hy-
draulic tanks, or with envisaged scenarios of pos-
sible future events. Analytical studies normally
Fisica, Settore di Geolisica, Universith di Bologna, Viale address O[l]y l_dea,hscd CZ‘SE&,‘ sinee .tlley cannot
Carlo Berti Pichat 8, 40127 Bologna, ltaly; e-mail: handle complications associated with the geo=
steve @ibogfs.df.unibo.it metrical complexity of the ocean basin and of

1. Introduction

Tsunamis generated by slumps and landslides
can be very severe and even disastrous, as dem-
onstrated by tsunami catalogues (Lander er al.,

Muailing address: Dr. Stefane Tinti, Dipartimento di



Stefano Tinti and Elisabetta Bortolucei

the landslide, or with complicated details of in-
teraction between sliding body and water. How-
ever, these investigations are widely recognised
to be essential because they help clarify the fun-
damental characteristics of the phenomenon and
improve ourinsight and knowledge of basic phys-
ical processes (Kajiura, 1970; Noda, 1970, 1971;
Iwasaki, 1982; Sabatier, 1983; Pelinovsky, 1996;
Pelinovsky and Poplavsky, 1996; Harbitz and
Elverhgi, 1999:; Tinti and Bortolucci, 2000).
This paper uses analytical methods to inves-
tigate tsunami generation by underwater slides.
Supposedly the sliding body does not deform
during motion and produces waves that can be
treated by the linear shallow-water approxima-
tion. Submarine slumps detaching from steep
slopes at the continental margins are often char-
acterised by little deformation, or at least their
deformation is rather ineffectual on tsunami
production. Different may be the case of tsuna-
mis generated in a volcanic environment, since
debris avalanches from volcanic flanks are
formed by cohesionless material that interact-
ing with water experiences substantial changes
of shape, and can even evolve partially to tur-
hidity currents. Assuming that the slide behaves
like a rigid body is therefore adequate for stud-
ying waves induced by underwater slumps. In
the case of tsunami generation, the linear long
wave theory has been shown (Tinti ef al., 2000)
to be appropriate when slide height is small
with respect to, and slide horizontal scale is
large compared to, the water mean depth. These
assumptions are not unrealistic, since failures of
large sectors of oceanic continental slopes, with
lateral dimensions of tens of kilometres and
thickness in the range of tens to hundreds of
meters moving in 1-4 km deep oceans, have
been identified by marine geologists in several
places in the world (Hampton et al.. 1996).
Noticeable, for instance, is the sequence of large
submarine landslides which occwrred in the
Norwegian Sea and known as Storegga slides,
the last of which caused a tsunami circa 6-7 ka
ago that was proven to hit Norway and Scotland
(Dawson ef al., 1988; Harbitz, 1992; Bondevik
eral.. 1997). A rigid body is characterised by its
shape and its velocity. The ratio of the instant
body speed to the local phase velocity of the
free water waves, depending on the local ocean

o

depth, is known as Froude number and plays a
fundamental role in determining the generation
and evolution of the induced tsunami. In a pre-
vious paper (Tinti e a2l 2000) it was found that
the main characteristics of the tsunami, namely
wave pattern, wave amplitude and energy. are
mostly influenced by the time history of the
Froude number. Practically, tsunamis generated
in oceans of different bathymetry by slides run-
ning with different speeds may be very similar
provided that their associated Froude-number
time-histories are the same. Taking advantage
of this property, we will make the convenient
hypothesis that the sea has constant depth, since
this simplifies the analysis but does not narrow
the range ol applicability of our study. Mathe-
matically, tsunami generation may be viewed as
an initial value problem of ditferential equa-
tions of hyperbolic type. Restricting the atten-
tion to 1D systems, the general solution can be
given by applying the Duhamel theorem (Tinti
et al.. 2000). In this paper the general Duhamel
formula for water elevation is first specialised to
the case of a rigid-body slide, which leads to
expressions that are more convenient since they
are simpler to evaluate and more suitable to
physical interpretation. Then, systematic use of
the new solving expressions will be made 1o
explore the causative dynamical relationship
between the motion of the underwater body and
the features of the tsunami generated.

2. The model

Tsunami generation by landslides may be
studied by means of the shallow water approx-
imation, implying that all involved variables are
independent from the vertical co-ordinate z.
Under the further assumptien that motion is 1D,
namely with all variables supposed to be uni-
form along the transversal co-ordinate axis y,
waler waves in a flat ocean can be shown to be
governed by the following system of equations
(Tinti et al., 2000):

9,5+d (uhy=09h, (2.1)

du+ud u+gd & =0 (2.2)
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where the following notation has been used:
E(x,1) is the elevation of the water free surface
above the mean sea level, u(x,f) is the velocity
of the fluid particle along the axis x, fi(v,7) is the
instantancous water depth, £ (x,f) is the height
of the slide and g is the vertical component of
the gravity acceleration. In eqgs. (2.1) and (2.2}
symbols d_ and d, denote partial differentiation
with respect to space and time respectively. Note
that, due to the passage of the slide h, and the
displacement of the sea surface &(x,7), water
depth changes with pasition and time according
to the following definition:

h(x,r) = H—h () + E(x1) (2.3)

where H is the undisturbed ocean floor, sup-
posed to be constant. Altogether, egs. (2.1) and
(2.2) form a closed system of two nonlinear
differential equations in the unknowns & and u,
that must be completed by the initial conditions
of still water

E(x,0) = u(x,0) = 0. 2.4)
Once the system is solved, ancillary unknowns

such as vertical velocity and pressure can be
also computed by means of explicit expressions

win,z) =-zdu+dE+d () -H+h <z<§
(2.5)

n

-H+h <z<&

(2.6)

p(x,z,1) = pg(€~z)

both showing a linear dependence on depth z.
Here p designates water density. supposed to be
constant throughout the fluid. If the landslide
height and water wave amplitude are small com-
pared to ocean floor depth H, system (2.1)-(2.6)
can be reduced to the linear form

dE+HIn=dh (2.7
dut+gd E=0 (2.8)
Ex ) =ux,0) =0 (2.9

with the additional expressions

wix.o,n=—zdu+d§ -H<z<0 (2.10)

plx,z.0) = —pgz -H<z<(. (2.11)
Note that pressure is perfectly hydrostatic and is
totally unaffected by slide or water motion in
linear theory.

Let us concentrate on the differential prob-
lem (2.7)-(2.9) and introduce typical scales such
as A, 7, for space-time co-ordinates x and ¢ re-
spectively. If we introduce further scales for all
other quantities, such as o for wave amplitude
and slide height, D for water depth and ¢ for
phase velocity, then new dimensionless co-ordi-
nates and variables can be defined

X=X v =vi

£

1" =1t (2.12)

h'=hid H = HD.
(2.13)

Eld o = uDled

Scales 7 and ¢ satisfy the following relation-
ships:

T =Alc c={eH)" (2.14)
As is known, ¢ is the propagation speed of free
long waves in flal oceans. Due to the above
scaling rules, the equivalent propagation speed
in the dimensionless space x” and ¢ is equal to
|. Furthermore, observing that the depth scale D
for a flat ocean of depth A is trivially equal to H,
it follows that the corresponding dimensionless
sea depth is also 1. The vertical velocity w and
the pressurc p can be coherently made dimen-
sionless by means of the transformations

(2.15)

w’ = wiled p’ = plpgD.

On making use of definitions (2.12)-(2.15), sys-
tem (2.7)-(2.9) can be rewritten in non-dimen-
sional variables, and takes the form

0 5+d u=0dh (2.16)
dutd E=0 (2.17)
Exr ) =uxhH=0 (2.18)
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where primes have been dropped for simplicity.
Likewise, egs. (2.10) and (2.11) can be rewrit-
ten in dimensionless form as

wx.z.)=—-zdu+df —-l<z<0 (2.19)

-l<z<0. (2.20)
This is the basic system in terms of which gen-
eration of waves by underwater bodies can be
explored. From a mathematical viewpoint, eqs.
(2.16)-(2.18) are a hyperbolic system of linear
differential equations describing an initial-value,
or Cauchy. problem with forcing, where the
forcing term is d i in eq. (2.16).

The set of egs. (2.16)-(2.18) can be casily
transformed to a single second-order differen-
tial equation for the unknown water elevation &

hE- E=Th (2.21)
where symbols d; and 3. have the obvious mean-
ing of double partial differentiation with respect
to time and space respectively, complemented
by the additional initial conditions

E(x,0)=0 (2.22)

AEW.0) = D (x.0) (2.23)

and water velocity u can be calculated by means
of the explicit expression

4

u= —J d.&(x, q) dg.

0

(2.24)

It can be shown that problem (2.21)-(2.23) ad-
mits a general solution valid for an arbitrary
forcing function Afx,f) and that, by virtue of
Duhamel theorem, this solution can be given
the form (Tinti er al., 2000)

vt

]
== [ 9 h (rbidy+
ECx,0) Z‘L,n(x )dy

(2.25)
r+ii—q)

J dyad;, i (x.q).

veli=q)

1!
+5‘[{ dg

522

To be rigorous, it is worth recalling that applica-
tion of the Duhamel theorem imposes some re-
strictions on /i (x.1) that has to be continuous to-
gether with its derivatives up to the third order.
More precisely, E)i{l;\(x,q) and d_h(v,q) are
required to be continuous functions, but these
limitations are immaterial for the purposes of
this study and do not hamper the relevance
of the solving expression (2.25). This formula is
quite useful because it can be exploited to inves-
tigate tsunami generation by underwater slides
of any shape and moving with arbitrary time-
history. With only few exceptions, the evalua-
tion of the integrals in eq. (2.25) must be com-
puted numerically. Computation time grows
along with the length of the intervals of integra-
tion, that for any given position x grows either
linearly (first integral) or quadratically (second
integral) with time. This paper focuses its atten-
tion on tsunami generation by submarine slides
such as slumps of coherent material, that often
move with little deformation or as rigid bodies.
Under this hypothesis formula (2.25) can be
further manipulated and given a simpler expres-
sion that has the double advantage of being
more suitable for numerical evaluation and hand-
ier for physical interpretation.

3. Water waves by rigid-body slides

If the underwater slide is assumed to move
as arigid body, then its motion can be univocal-
ly described through the instantaneous slide
velocity v(f). Notice that in the dimensionless
spuce, the dimensionless body velocity is the
ratio of the body speed to the free-wave celerity
¢, consistently with scaling rules (2.12)-(2.15),
a ratio that is known as Froude number. There-
fore, v(t) will hereafter be indifferently denoted
by slide velocity or Froude number. For a rigid
body the slide function /2 (x,1) may be written in
the special form

hx,ty=h(o(x,n) gx.)=x-s(t) (3.1}
where s(s) 1s the body displacement at time 1,
and s(0) may be assumed to be equal to zero

with no loss of generality. Coherently, body
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velocity und acceleration may be defined as

v(r) = d s a(t) =dv(n (3.2)
where symbol d, denotes total derivation with
respect to time. In the special case that the slide
moves with constant speed, the argument of /1,
simplifies to ¢ = x—vt. Let us now see how
solution (2.25) can be transformed for a rigid-
body slide with kinematics given by eqs. (3.1)
and (3.2), and let us start tackling the first inte-
gral, whose manipulation is rather straightfor-
ward. Considering that

dh ety = —v(t) d_h (o(x,0) {(3.3)

we obtain

atbr

% [a["“(?f’“)dx =

X+

1
= J.v(())dnlh(xf sODdy = (3.4)

i

L f

=—]5 [+0rd h, (x)do

= !

with the last equality deriving from the fact that
dy = do from (3.1). Since v(0) is constant, the
last integral in (3.4) can be easily calculated

a+i

|
= Jﬁa.hﬁ(x,mdx =
(3.5)

1 ) . .
= 5\-(0)/1\(,&+I)-+—§1'(0)hs(,\ t).

The above expression is suitable for a ready
interpretation. Remembering that the dimension-
less velocity of free waves is 1, formula (3.5)
turns out to be the sum of two constant-ampli-
tude free water waves travelling in opposite di-
rections: the one propagating forward, that is
toward positive x, is positive, while the other is
negative. Manipulation of the double integral in
expression (2.25) is more lengthy. First of all,

(U]

bearing in mind that

9 h{o(x,0) = —a(yd h (o)) +vi(nd._h(o(x1))
(3.6)

we can obtain

-}

1 ¢ 5
;_[dq J dyd B (x—s(q) =
-0

v—li—q)

X+ =g

lf
Z’ﬂd‘l“@ | dxd.ho(ran+ G

=0 x=ir-q)

v i—g)

I 2 > 3
+;quv (q) j dyd,, b (o(x q)).

S r=(t-q)

Then, on remembering that dy = do and after
posing

a(x,f,q) =x—(t—q)—s(q)
(3.8)
ﬁ(—LIvQ) =x+ (f—(])—ﬁ(q}

the right-hand-side member (rh.m) of cquality
{3.7) can be rewritten in the following form:

Bix.i,q)
dod_ h (0)+
i, gl

r.hom.= —lJ. dqa(q)
2 0

(3.9)

! t filxg)
+;J‘dqv'(q) J dod

- AR )

-

h. (o)

ey

where the internal integrals can be easily calcu-
lated

rhom=— %J‘ dga{q) i (S(x, Q)+
(1]
1 4
+ E'[ dgafq) h, (alx.1,q)+
)
l (3.10)

1 ¢ )
+5j dqv® (q)dy b (Blx,6,q) -
Q0

1 : s o
_5_[[ dv- (@ d_ h (alx,t q)).
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Notice that in passing from the original double
integral in formula (2.25) 1o the above expres-
sion (3.10) containing only simple integrals,
a remarkable advantage has already been ob-
tained in terms of numerical computation time.
Let us now concentrate on the third and fourth
integrals of eq. (3.10), that can be further
manipulated. Beginning from the third one,
since

A n(Patq)) = —(1+v(@)dh(flxeg) (G.11)

we can write it in the form

¥ (q)

-H()

d, h (flx.1,q)

third int.= _,J' dg

(3.12)

that can be further transformed by means ol an
integration by parts. After some computations,
it can be combined together with the first inte-
gral of eq. (3.10), and their sum can be written
as

first int. + third int.=

b v’ (3.13)
1 v:(r) 1( )
-2 L I
21500 h (x ())+ O NEE IR

The fourth integral can be processed in an anal-
ogous way. After considering that

d.h (clx,r.q)) = (1=vig)d ji(a(x.1,q) (3.14)

we can first obtain

v (q)

] !
fourth int.=—-—1|d
2-[ 5 1+v(q)

aq I (el ).

3.15)

After carrying out some more calculations, it
can be added to the second integral of eq. (3.10)

resulting in the following expression:

second int. + fourth int.

= l dqlga(q)_zhs(a('n[! q))
(I-v(g)) 3.16)
1 v () 1 vi(0) _
i h(x— = hox—1).
21—»’()1(‘ U))Jrzlw(()) bt

Now the final expression for the rh.m. of eq.
(3.10) can be obtained by summing up the con-
tributions of all four integrals together, which
results in

r.h.m.z—l_[quh (Bl Q)+

2 +v(q))

+ljdq1a¢h (alx, t, )+
(1-v(q)) G.17)
£ 2D g s+

v2(n-1
1 p2(0) 1 v (0)
= h h (x—1).
21+v{0) O+ 21-w(0) k-8

At this point it is straightforward to obtain the
final form of the solving formula (2.25) in case
of a rigid body, since it is sufficient 1o add
expression (3.5) to the above expression (3.17),
which gives

E(x,)= —j dg————— @

h(Blx.t,q)+
[) (1+V( ))

fa fi D gy
24 (1=v(g)”
(3.18)
) A R L L By P
\"(f)‘l 2 14+v()
+l "(()) )’I\(.X.'—x').

2 1—v(0)

This formula is the solving expression of the
problem in case of sliding rigid bodies. Mathe-
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matically, it is perfectly equivalent to eq. (2.25),
but it has some important advantages. It con-
tains only first integrals, that can be calculated
much faster than double integrals on a compu-
ter, and, most importantly, it has a structure that
enables us to gain a deeper physical insight on
the generation process. It tells us that the wave
field generated by the sliding body can be inter-
preted as the sum of five distinct contributions,
corresponding Lo the five terms of the sum. The
last two terms depend on the initial velocity ol
the body v(0), and both are null if the body starts
from rest, as is normally assumed. They are free
waves propagating in opposite directions: the
backward-going wave is always a trough, where-
as the wave travelling forward is a crest or a
trough depending on the sign of the denomina-
tor [ —v(0). If v(0) is smaller than 1 (subcritical
condition), it is positive, otherwise (supercriti-
cal condition) it is negative. The third term is a
wave moving exactly together with the slide,
and may be therefore seen as a forced wave,
with amplitude depending only on the instanta-
neous Froude number. 1t is a crest or a trough
respectively lor supercritical or subceritical flow.
This wave exists only as long as the slide is in
motion, being identically zero when and after
the slide stops. The first and second terms are
integrals that may be viewed as superposition of
free waves generated at different times. For ex-
ample, the first integral represents the superpo-
sition of free waves h(f(x,7,q)) propagating
backward. They are generated by the slide at the
time ¢ atl the corresponding current position
ol the slide x-s(q), with amplitude depending
on the weighing factor in the integral, namely
algy/(1+ V(C])):. Due to the negative sign preced-
ing the integral, these waves are troughs if body
acccleration is positive, and crests if the body
decelerates. Extension of the integral over the
interval [0,f] means that all free waves produced
until time ¢ contribute to form the water eleva-
tion at time f. A similar interpretation can be
provided for the second integral of formula
(3.18). representing the superposition of free
waves travelling forward. Notice that, also in
this case, wave sign depends on body accelera-
tion: crests and troughs correspond respectively
to accelerating and decelerating phases of body
motion.

wh

wn

It is worth observing that expression (3.18)
also holds when the slide moves with constant
speed. In this case, body acceleration is zero and
consequently both integrals of eq. (3.18) vanish
identically, which results in a very simple ex-
pression. The resulting wave can be written as

Sxn=E(on+E(an+E(xD (3.19)
where
E ()= hmvnvElL (320)
v —
§+(x,r)=—lﬁth(x—I) vl (3.21)
2vr—1 '
B (o) e B ey (3.22)

2 v+l

and the total wave &(x,r) is the sum of three
waves, viz. the forced wave & (x.1), the advanc-
ing free wave & (x,7) and the regressing free
wave £ (x,1).

The original linear problem (2.16)-(2.20) is
mathematically well posed and always admits a
solution that is provided by formula (2.25), hav-
ing general validity. However, solution (3.18) as
well as the special solution (3.19)-(3.22) hold
when the Froude number differs from 1. The
amplitude of waves travelling forward (free
waves and forced wave) diverges as body veloc-
ity approaches free wave celerity, which is a
case that is known as the critical regime. Tech-
nically, the differential relationship (3.14} is no
longer valid if v(r) = 1, and consequently the
transformation of the fourth integral (3.15) is
not allowed. To avoid this divergence problem,
we can assume that body speed is always smaller
than I, which is the most common case for real
slides, since water resistance prevents the body
gaining supercritical velocity. We can also as-
sume that the slide always moves with velocity
larger than 1 within the time interval of interest,
but this would restrict the ambit of our study
unacceptably. We must then revert to the prior
derivation of formula (3.18) to provide an ex-
pression of general validity, which can be ob-
tained if transformations (3.14) to (3.16) are not
performed. In this case, alter some calculations,
it is possible to write down the resulting expres-
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sion for water elevation £(x,7), as follows:

j dq

o (+v(g)

alg)

E(x,1)= e = h (Blx Q)+

2

+ éj dga(q) h, (alx,t,q))+
0

1 5
—;j dgv’ (@) d, h (@(x )+ (3.23)

“0

1 vi)
— I/ -3
2 1+v(1) a0+
1 w0 |
— h {(x+0+—v(Oh {(x—1).
2 1+v() o )+2b( My (e=1)

This formula holds for any value of body speed.
Like expression (3.18), it contains only simple in-
tegrals that can be readily computed. Expression
(3.18) is, however, simpler and more convenient o
use. Therefore, itis preferable to use formula(3.18)
whenever permitted, and (3.23) in all other cases.
When the underwater body moves at constant
critical speed, formula (3.23) reduces to the same
expression derived by means of the theory of char-
acteristics by Tinti and Bortolueei (2000)

Ex) = +E () +E(xn (3.24)
with
§F(,1',t)=r]5tdchs(x—t) v=1 (3.25
£ (x0) =%h;(xfr) v=1 (3.20)
E (x1) =—%hs(x+1‘) v=1. (3.27)

Notice that the forced wave (3.25) grows unlim-
ited as time goes by, suggesting that slide forc-
ing at critical speed is able to supply energy to
the water with no limit, like forcing an elastic
mechanical system excited in resonance condi-
tions. Notice further that since forced and free
wave (3.25) and (3.26) advance exactly with the
same unit speed, they never separate, and prac-
tically what can be observed is only their com-
bination at any one time.

4. Energy of the tsunami

Energy of the tsunami excited by a subma-
rine slide satisfies the following dimensionless
equation in a 1D flat ocean in the shallow water
linear approximation (Tinti and Bortolucei,
2000)

oe+d(Eu)=Edh, (4.1)
where ¢ is the density of total tsunami energy
per unit width and unit length of the ocean. The
term on the right-hand-side member of this equa-
tion plays the role of an energy source or sink:
if positive, it injects energy into the water, where-
as when it is negative it subtracts energy from
the water. If the total (sunami energy per unit
ocean width is denoted by E, ie. if

E@) = j}s(.\—, f)dx

4.2)
in the light of (4.1) we can write
dE® = [0k (xndy.  (4.3)

Hence, on making use of relationship (3.3), the
total energy per unit width that the sliding rigid
body transfers to the water since the beginning
of its motion may be wrilten as

E(r) = —j dgq(q) j dr&(v ) d b (x,q). (4.4)
i) con

The above space integral is extended over the
entire x axis, which could create difficulties for
proper numerical computations, but indeed its
integrand differs from zero only in correspond-
ence of the space interval that is instantaneously
occupied by the body, an interval that is finite
since the body has finite extension. This makes
this formula suitable for easy numerical evalua-
tion. It is worth recalling that in the above for-
mula (4.4) the energy per unit width is dimen-
sionless, and that in agreement with scaling
laws (2.12)-(2.15), the corresponding dimen-
stonal quantity can be obtained by multiplying
E by pgid’, which represents therefore the scale
of the energy density for our problem.
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5. Motion of the slide

In cases where shallow water theory can
be applicd, the main near-field characteristics of
tsunamis excited by rigid bodies in oceans with
different bathymetries are similar under the pro-
vision that the bodies have the same Froude
number time histories (Tinti and Bortolucci,
2000). In virtue of this property, the theory de-
veloped in previous sections for a {lat ocean can
also be useful to investigate the generation of
waves in a sea of variable depth. In order to
obtain Froude number curves that are typical of
real cases, let us focus on the motion of the
slide. It can be studied by means of the classi-
cal Newtonian equations governing rigid-body
dynamics. In 1D cases bodies sliding over the
bottom floor can be analysed by only one equa-
tion describing the body centre-of-mass displace-
ment from its initial position. The body moves
under the action of gravity, and its motion is
chiefly influenced by the buoyancy force exert-
ed by the ocean water, by the bottom friction
and by the resistant drag force, that is often
assumed as proportional to the square of the
body speed (Tinti er al., 1999a,b). Over an in-
cline with constant slope 6, slide kinematics can
be expressed by means of a very simple law
(Watts, 1998), that is

A 2 )
S(t)=5, In cosh{-—“;J . 8, = u. (5.1)
U, A,
U =U, tanh(A“,r] (5.2)
U[
(A
A=A, sech” (UUI] (5.3)

Notice that all variables in expressions (5.1)-
(5.3) are dimensional: S, U and A are respec-
tively the body displacement, velocity and ac-
celeration measured along the slope at the di-
mensional time t. The meaning of the constants
UJ and A, can be straightforwardly deduced from
the equations: the body moves with initial ac-

celeration A, running faster and faster until it
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approaches the terminal constant velocity U.
The quantity S, represents a typical distance
covered by the body to approach the asymptotic
constant-speed regime. The Froude number as-
sociated with the motion laws (5.1)-(5.3) versus
dimensionless time / is

U(rt)cos 0

vit) =
\/g(H() +S(rt)sinf)

(5.4)

where H, is the water depth corresponding to
the initial position of the body, and it is clear
that the Froude-number time history (5.4) de-
pends upon the depth parameters H, and € in
addition to the kinematic parameters A, and U.
The time scale T can be conveniently taken to be
equal to A/e according to expression (2.14), with
A being the horizontal slide length and ¢ being
the free-wave phase speed corresponding to a
typical depth of the generation region, namely
H, + 0.5S,sinf. Furthermore it is easy to see
that

A,rcosd

V&H,

=0 dwO)= (5.5)

and that

U ;
= /—'— cos £ forlarger. (5.6)
Yerrsing

Typically the Froude number increases rapidly
until it reaches its maximum value, say v, ., and
then decreases more slowly, going to zero ac-
cording to a " power decay law.

6. Numerical experiments and results

Numerical experiments were performed us-
ing Froude number curves satisfying expression
(5.4) with a broad range of kinematic parame-
ters covering field cases as well as small-scale
laboratory trials with blocks sliding in water
tanks. A set of 11 curves denoted by C1 to C11,
plotted versus dimensionless time, are shown
in fig. 1, and are divided into three subsets. The
corresponding relevant parameters are listed in
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Fig. 1. Froude number curves versuy dimensionless time used in numerical experiments, computed by means of
formula (5.4). The corresponding parameters are listed in table L

table I. Subsets C1-C4 and C5-C8 correspond (o
the value of initial acceleration A, and peak
velocity U, that are typical of real large-scale
underwater slides running on steep slopes (Har-
bitz, 1992; Tinti er al., 1999a.b: Heinrich et al.,

1999) and differ only as regards the ocean depth
in the generation region: in the order of 750 m
for the former group and of 150 m for the latter.
The last subset C9-C11 corresponds to smaller
values of A, and U, that are typical of wavemaker
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Table I. Parameters used to compute Froude number
curves according to formula (5.4). Values of U, and
A, of curves CI1-C8 may be considered typical of
submarine landslides in natural environment, if U,
is viewed as the peak velocity. For curves C9-Cl11
these values are taken from small-scale hydraulic
experiments (Watts, 1998). For all curves the incline
angle ) is equal to 45°.

Umfs) A (mis)  1(s) H,(m)
Cl 5.00 1.00 87.95 750
C2 10.00 1.50 38.80 750
C3 20.00 2.00 91.47 750
C4 30.00 2.50 94.57 750
Cs 5.00 1.00 40.24 150
C6 10.00 1.50 42.06 150
7 20.00 2.00 47.43 150
C8 30.00 2.50 53.16 150
CY 0.37 0.83 1.35 0.12
10 0.65 1.95 1.42 0.12
Cli 0.80 2.41 1.48 0.12

blocks sliding in hydraulic tanks with water
depth in the order of (1.1-1 m (Watts, 1998). All
curves exhibit a similar trend, and it is worth
observing that Froude number is much smaller
than the critical value 1 at any time, which
means that expression (3.18) is adequate to com-
pute water elevation for all the cases proposed
here, and most importantly for natural slides
originating from gravitational instability of un-
derwater masses. Higher Froude numbers, pos-
sibly even in excess of 1, are usually expected
only for subaerial slides generated at some alti-
tude above the mean sea level on very steep
coastal slopes, and entering the sea at very great
speed. The landslide body used for numerical
experiments has the symmetrical bell-shaped
profile given in the Appendix with aspect ratio
0.01. The solution we have computed fulfils the
system of eqgs. (2.16)-(2.20) that is the linear
shallow-water approximation to the system (2. 1)-
(2.6). For all the results presented here, we
checked the validity of the approximation even
a posteriori, that is after we solved system (2.16)-
{2.20) we computed all terms of system (2.1)-
(2.6) that are discarded in the approximated

529

system (2.16)-(2.20). and checked that they are
typically small enough to be neglected, if the
conditions that ¢ is much smaller than D (re-
quired by linearisation) and D 1s much smaller
than A (shallow-water waves) are satisfied. For
example, restricting to eq. (2.16), we first check-
ed that all terms d &, d u and d /i_have the same
order of magnitude, and then that the discarded
non-linear terms @ (/) and o (u€) are negligi-
bly small.

Waves produced by the moving body have
the typical pattern shown in fig. 2 where the
specific case corresponding to curve C8 has
been taken as a useful illustrative example. Wave
profiles are graphed at different times during the
generation phase. [t may be seen that at the very
initial stage a double wave, one crest and one
trough, is formed growing in amplitude and
involving an increasingly larger region. Pro-
aressively, the double wave splits into two dif-
ferent wave systems. One travels along the same
direction as the slide with a leading positive
wave, while the other propagates backward. The
latter system is dominated by the leading trough
moving at the free-wave phase speed, whereas
the advancing perturbation is more complex,
since it is due to the joint contribution of pro-
gressing free waves and a forced wave, travel-
ling at different speeds. The back-going trough
attains the largest amplitude, Z , at a time that
may be conveniently denoted by T | that is slight-
ly smaller than the corresponding time, say T,
at which the wave going forward reaches its
maximum = . Observe that =, is substantially
larger than = . Complete separation of the two
wave systems propagating in opposite direc-
tions occurs at a larger time, say T;: this can be
taken as the scale of the generation time, since
wave formation is the dominant process until
T, while wave propagation prevails for [ater
times. The last panel of fig. 2 displays the Lotal
energy per unit width of the tsunami versus
time, calculated by means of formula (4.4). Tt
grows approximately until T, and afterwards it
decreases slowly, which means that energy flows
back from the wave system to the decelerating
landslide body with the forcing termin eq. (4.1)
being negative. It is interesting to point out that
the maximum value of energy is in the order of
=2, which is not surprising since the energy
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Fig. 2. Landslide profile satisfying the expression given in the Appendix {upper-left-corner panel). It is a
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conveyed by a long water wave scales as the
square of its amplitude.

A better understanding of the evolution of
the wave pattern can be gained by considering
distinctly the values taken by the various terms
in the solving eq. (3.18). Since supposedly v(0)
equals zero for all curves C1-C11 displayed in
fig. 1, only the first three terms of eq. (3.18)
have to be evaluated. They are here designated
by TI-T3 following the order in the formula.
Figure 3 shows snapshots of waves associated
with these terms at different times. The first
integral T1 represents the back-going wave,
while T2 and T3 are associated with the advanc-
ing systen: the integral T2 is mainly responsi-
ble for the leading crest, while the following
trough is importantly influenced also by term
T3 that is always negative. Wave T3 is very
simple to interpret: it is a trough with the same
profile as the landslide, moving at the same
speed as the landslide, and having an amplitude
governed by the factor v/(1 —v"). Focusing on
TI, it can be observed that it is formed by a
trough, followed by a crest, with the trough
largely prevailing in amplitude. The time T, is
the time taken by the backward travelling trough
of T1 to separate from the advancing forced
trough T3. Observe further that the trough
length tends to diminish with time, remaining
smaller than, but close to, the landslide length,
On the other hand the following crest of T1 has
a progressively increasing length, since it cov-
ers the region going from the landslide front,
moving forward, to the rear part of the leading
trough of T1, moving backward. Hence its length
tends to grow unlimitedly. Similar considera-
tions also hold for the wave T2: the leading crest
is largely predominant; its length is approxi-
mately equal to, but smaller than, unit; the fol-
lowing trough has a length linearly growing
with time. It is worth observing that the linear
growth of the length of the secondary waves of
T1 and T2 is not a paradox, since in the long
term it is accompanied by a corresponding am-
plitude decreasc, so that the total wave energy
remains limited. As a matter of [act, it has been
observed from the energy panel in fig. 1 that
wave energy diminishes for large times. It is
important to underline that in correspondence
with the current position of the slides all waves

TI-T3 are present and interfere at any time.
Indeed, the slide position is the one where the
forcing term £d A differs from zero and where a
tsunami is continuously generated, which im-
plies that rigorously, it would be not correct to
distinguish a prior generation phase from a sub-
sequent propagation phase, since both genera-
tion and propagation are processes occurring
continuously. Equally incorrect would be the
statement that waves are separate after a certain
lime, since they interfere in the creation region
at any one time. Practically, however, the slide
progressive deceleration weakens the genera-
tion process and makes the perturbation pro-
duced in the generation region negligibly small
after time T

It is interesting to recall that also in case of
constant Froude number the solution for the
water clevation & can be written as the superpo-
sition of three waves, as expressed by egs. (3.19)-
(3.22), that may be put in correspondence with
the above waves T1-T3. The pulse &, corre-
sponds exactly to T3, and the leading pulses of
T1 and T2 may be associated with the pulses &
and & .. Solution (3.19) does not exhibit the sec-
ondary, continuously lengthening, pulses char-
acterising T1 and T2, and hence full separation
of waves can occur: the time T, defined above is
here the time when & separates from &, and
another time, say T,, can be defined as the one
at which full separation of &, from &, occurs.
Later than T, generation process ceases com-
pletely since the integral energy contribution
(4.3) vanishes.

The leading pulses are quite important since
they produce the first impact of the tsunami and,
as has been seen, are the largest oscillations. It
is therefore quite relevant to find a way to esti-
mate the amplitude of these frontal waves from
the kinematic properties of the motion of the
sliding body. It has already been observed that
amplitudes Z and =, are almost constant after
the respective times T and T, which means that
the movement of the body at later times has very
little effect on leading wave amplitudes that are
practically already governed by free wave prop-
agation. In order to estimate the amplitudes, let
us first consider 4 way to estimate the times T
and T, starting with T . For this purpose, let us
consider the linearly growing distance between
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the front of the back-going wave, travelling at
unitary speed, and the rear of the advancing
wave system that moves at the instantancous
speed v(f). The time T is the time when this
distance equals the distance separating the ini-
tial point of the slide from the position of its
maximum. For the symmetrical slide consid-
ered in this paper, this latter distance is equal to
1/2 in dimensionless units. Mathematically, the
above conditions may be expressed by means of
the following equation for T :

i
1

T_+ |viydr=-—. (6.1)
i = g

With analogous considerations applied to the
crowing distance between the front of the forced
wave and the rear of the advancing leading pulse,
itis casy to derive that the time T, must fulfil the
corresponding equation

.
' I

T, — [vdi=—. (6.2)
Jrndr==-

)

Since amplitudes Z and = are mostly dominat-
ed by the body kinematics, namely by the Froude
number curves, until the respective times T and

T,, we tested two possible hypotheses: ampli-
tudes depend upon a characteristic value of the
wavemaker body speed, that is (1) the maxi-
mum value of the Froude number until the above
times (which practically corresponds to the ab-
solute maximum v, of the Froude number
curve), or (2) the mean value of the Froude
number until these times. In this second hypoth-
esis, after defining

L
v, =— | v(1)ds
7]

and equivalently
T,
v, =— jv(r) dt

o B

it can be easily derived that

po=— -1 } 6.3
L T (6.3)
1 = ]___1_.] 6.4
. 2T, ) Lo

We then computed the estimated amplitudes of

Table II. Characteristic times T and T, and corresponding velocities v and v, are evaluated by means of
eqs. (6.1)-(6.4). The estimate ratios K, corresponding to hypothesis 1 (K (v, ) and K_ (v, )) and to hypothesis 2

(K (v)and K (v)) are computed by using egs. (6.5) and (6.6).

W T V_ T

Cl (.040 0483 0.036 0.519
c2 0.077 0.469 0.068 0.536
C3 0.142 0.447 0.120 0.568
Cc4 0.200 0.430 0.165 0.599
C5 0.083 0.468 0.069 0.537
Cé 0.150 0.446 0.121 0.571
7 0.249 0.420 0.195 0.625
C8 0.325 0.398 0.256 0.680
C9 0.162 0.450 0.112 0.569
Cl10 0.267 0.415 0.207 0.639
Cll 0313 0.402 0246  0.670

3

L%

v, Koy K)o K Ki)
(.036 1.02 0.92 1.2 0.92
(1.068 1.02 0.91 1.03 0.90
0,121 1.03 0.88 1.05 0.88
0.166 1.03 (.88 1.08 0.87
0.070 1.03 (.87 1.03 0.86
0.125 1.02 (.85 1.04 0.84
0.204 1.03 0.84 1.07 0.83
0.2064 1.02 0.85 111 (.83
0.122 1.07 0.77 1.05 0.76
0.218 1.03 (.83 1.07 0.82
0.255 1.03 (r.85 1.10 0.83
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the leading waves by means of the following
formulas:

=5 gl W (6.5)
2v+l
- 1 v
: 'l) | — -
V=21 (6.6)

that derive from the amplitude factors of the
waves of the constant Froude-number case. The
estimates were compared with the correspond-
ing amplitudes, = and =, resulting from the
computation of the water elevation through
the solving formula (3.18), that may be consid-
cred to be the exact solution, apart from small
numerical errors that are immaterial for the
present purposes. Table 11 shows the ratios K (v) =
= Z(vy E and K (v)= EY(v)/E, computed for
the various values of the characteristic slide
velocity, that are v, (hypothesis 1), and v, and
v (hypothesis 2). It may be seen that hypothe-
sis-1 values slightly overestimate the amplitude
(a few percent), whereas evaluations based on
hypothesis 2 provide underestimates in the or-
der of 10-30 percent. Observe that this can be
considered a very good result, since the joint
use of estimates deriving from hypotheses 1 and
2 provides a very expedite tool to bracket the
amplitudes of the leading waves within a rea-
sonable expectation interval.

7. Conclusions

The 1D shallow-water theory for basins of
conslant depth has been used to study tsunami
generation by underwater moving landslides,
that do not deform during their motion. The
instant ratio of the body speed to the free-wave
phase celerity was defined as the Froude number
and was seen to play an essential role in deter-
mining the characteristics of the resulting waves.
In dimensionless unit, the Froude number coin-
cides with the body speed v(z). In the case of
subcritical regime (v < 1), the solution to the
problem has been given a simple form express-
ing the water elevation as the sum of five terms,

5

4

two of which imply the computation of integrals
(see eq. (3.18)). The more general solution also
covering supercritical and critical flows pro-
vides the water elevation as the sum of six terms,
three of which are integrals (see eq. (3.23)).
Numeerical experiments to evaluate the main char-
acteristics of the generated waves in relation to
the property of the wavemaker were carried out
using values of the kinematic parameters of the
landslide that are typical of hydraulic experi-
ments and of real cases. 1t has been emphasized
that usually flow regime is largely subcritical.
Under these circumstances the slide produces
two main systems of waves, both characterised
by leading pulses moving at the free-wave phase
speed. The pulse advancing in the same direc-
tion as the slide is positive, whereas the regress-
ing pulse is negative. These pulses are both
followed by pulses of opposite sign. A third
negative pulse moves exactly together with the
slide at the same speed. It was found that the
amplitude of the leading waves remains approx-
imately constant after the formation of the fron-
tal part of the pulses (after times T and T,), and
that it can be estimated by means of formulas
(6.5) and (6.6) that are essentially based on
wave generation by bodies moving at constant
speed (see egs. (3.19)-(3.22)). It is known that
in largely subcritical tlows constant-speed slides
are poorly elfective in producing tsunamis, since
the ratio of wave amplitude to slide height is
rather low (Tinti and Bortolucci, 2000). The
scarce tsunamigenic efficiency of slow bodies is
cssentially confirmed by the present analysis,
but this does not imply that the produced waves
arc small. Natural submarine slides consisting
of sedimentary bodies as thick as tens to hun-
dreds of meters are likely capable of producing
catastrophic waves even if their velocity is much
smaller than the critical speed for ocean basins.
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Appendix

Slides studied in this paper are supposedly rigid bodies whose motion can be consequently described
unambiguously by means of the displacement of anyone of their points, for example their centre of mass. They
do not change shape during motion, and their kinematics can be uniquely identificd by their initial profile and
their velocity function. In dimensional space, the slide has horizontal length L, and its initial position is between
the horizontal extremes v, and x, = x,+L,. The mathematical expression of the slide profile at the initial time is
given by

h(x)=0 xely,, x| (A1)

f ()= =

{%Kj(,\—)ﬁ‘)z +cos[}<(x—x)}—l} xely,.x, +L /4] (A2)

4ot

ho(x)= AE {—%Kl(.\'—xi)z +COS[K(L—,\’I)]+471’K(.’C—.\:L)+1+4I[2}

4
(A.3)
xelx;, +L /4.x, +3L /4]
h (x)=— {%K‘7 (x—x, T +cos[K(x—x, ) [+ 8Ky —_!ri)—1+325rj }
-
(A4)
xeglx, +3L /4, x, ]
where ’7
K=— {A.3)

and A is the maximum height of the slide. In the experiments carried out in the paper, the slide aspect ratio, that
is the ratio A/L, is taken to be 0.01. Notice that in dimensionless units, in accordance with scaling laws (2.12)-
(2.15) the slide height and length are both equal to 1.
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