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ABSTRACT

Current research in seismic exploration or seismological engineering has
been focused in shallow subsurface, which usually consists of unconsoli-
dated sediments or weathered bedrock, or other types of anomalous
medium properties characterized by high Poisson’s ratios. In such cases
leaky waves may occur either as noise needed to be suppressed or as use-
ful information to reveal the underlying seismic structure. Analysis may
be undertaken in terms of leaky modes, which have been conventionally
computed based on Haskell matrix method that suffers inherent short-
coming of loss of precision at high frequencies, or have been calculated in
the real-number domain but with crude accuracy. An alternative method
is proposed herein based on the generalized reflection/transmission coef-
ficients, which searches the roots in the complex wavenumber domain and
calculates the leaky modes naturally. This method is then tested for sev-
eral typical anomalous layered models, and has been proved to be accurate
and stable, and thus superior over the traditional methods. A powerful
and efficient analyzing tool is thus offered and may be promisingly applied
in seismic prospecting, geotechnical engineering, structural dynamics and

other relevant areas.

1. Introduction

Earth'’s surface is often covered by unconsolidated
sediments characterized by high Poisson’s ratios [Stiim-
pel et al. 1984, Roth et al. 1998, Gao et al. 2014], and
thus the layer boundaries are commonly associated
with a strong velocity contrast. Leaky waves, which can
be regarded as the superposition of leaky modes [Had-
don 1984], are therefore evident in the early arrivals
[Roth et al. 1998, Gao et al. 2014]; in certain cases,
slowly-attenuating leaky waves of phase velocities
faster than S waves in the half-space may exist, which
correspond to real frequency and real wavenumber
pairs [Garcia-Jerez and Sanchez-Sesma 20157.

The presence of leaky waves may either cause dif-
ficulty in correctly identifying dispersion curves of nor-

mal modes so that the final inverted S-wave velocity
model could deviate from the true model [Gao et al.
2014], or constructively afford useful information for
characterizing P-wave velocity structure [Su and Dor-
man 1965] or for performing full-waveform inversions
[Roth et al. 1998], and also help fill in the gaps of
Rayleigh dispersion curves of normal modes for mod-
els with the half-space being a low-velocity layer [Yang
and Yi 2005].

Investigations on leaky waves by computing dis-
persion of leaky modes has been performed by many
researchers [Gilbert 1964, Su and Dorman 1965, Wat-
son 1972, Dainty 1971, Kennett 1983], who largely
adopted Haskell's method [Haskell 1953, 1962] or its
variants. However, this method suffers the well-known
inherent numerical instability, as has been explained by
Wu and Chen [2016]. Failure to accurately find leaky
modes cannot guarantee an effective dispersion analy-
sis [Roth et al. 1998]. On the contrary, accurate and
complete computation of dispersion curves of leaky
modes may bring better agreement between the for-
ward calculation and the inverted dispersion image. In
this paper, we shall show how to accurately calculate
leaky modes for anomalous layered models, which are
commonly encountered in exploration geophysics or
geotechnical engineering.

2. Method

The highly efficient as well as stable and accurate
method by Wu and Chen [2016], which is based on the
generalized reflection/transmission [Luco and Apsel
1983, Chen 1993], is slightly modified and utilized here
to be able to find the complex roots of a secular func-
tion constructed according to the boundary conditions.
As leaky modes are usually complex roots of a secular
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function, the only modification that we made here is
allowing the wavenumber k to be complex, assuming
the frequency o is real. The phase velocity ¢ of a leaky
mode is thus defined as c=w/Re(k). For the multival-
ued functions of vertical wavenumbers corresponding
to P and S waves respectively

},(Ni-l) - 'kZ _(a)/a(NH))Z , V(N+1) - 'kz _(w/ﬁ(NH))Z 1)

where N is the number of the layers above the half-
space for a horizontally stratified model, we are mainly
concerned with the roots defined on the (+,-) Riemann
sheet [De Bremaecker 1967, Watson 1972] with
Re(y)>0 and Re(v)<0 so that the computed phase
velocities are primarily between the S-wave velocity
BNt and the P-wave velocity a¥*Y of the bottom
layer of the model.

Therefore, we are required to find the complex
roots k of the dispersion equation

det{E}, +EL, A, (z,) Ry, } =0 2)

where {l_ii,m;m,n= 1,2} are 2x2 submatrices of the nor-
malized layer matrix E' for the first layer, R, is the
downward generalized reflection coefficient associ-
ated with the lower boundary of the first layer, and
A (z,) containing phase factors of upgoing waves, is
a submatrix of the diagonal matrix Al(zo) for the first
layer (see the detailed derivation and explicit expres-
sions for these quantities in Wu et al. 2016). Note here
the only one dispersion equation (2) is used to find
the leaky modes, while the concept of the family of
secular functions may have to be employed as in Wu
and Chen [2016] to find all the physically existent nor-
mal modes for a model with low-velocity layers.

When a suitable estimated solution is given, the
Newton-Raphson method [Press et al. 1992] is then
used to simultaneously locate the real and the imag-
inary parts of the complex roots k to the given preci-
sion very quickly. Thus, the leaky modes at each
frequency can be found efficiently and accurately.
The priori estimate for the initial solution for the next
frequency can be obtained from the roots found for
the frequency just before. The correctness of our al-
gorithm was verified by comparing our results with
those by Watson [1972], who adopted the matrix
method based on Haskell’s method described by Wat-
son [1970].

3. Models and Results

We then first apply our algorithm to the two-
layer model with high Poisson’s ratios (Table 1),
which was used by Roth et al. [1998], who only

showed possible regions of leaky modes on the dis-
persion diagram because the leaky roots were found
rather crudely. Shown in Figure 1 are the normal
modes (solid lines) and leaky modes (open circles)
computed by our method for the model. The fun-
damental and many higher-order leaky modes are
accurately computed with the root precision up to
1E-8 and clearly displayed on the dispersion diagram.
Next, we conduct the computation of leaky

Thickness

Layer No. () a(m/s) P@m/s) p(g/cm?)
1 5 1100 300 1.6
2 0 1800 400 2.0

Table 1. Parameters of a two-layer model with high Poisson’s ratio.
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Figure 1. Dispersion curves of normal modes (solid lines) and leaky
modes (open circles) for the model shown in Table 1.
modes for the three-layer model by Gao et al. [2014]
which contains a low-velocity half-space. The normal
modes (represented by solid dots in Figure 2) are ab-
sent in the frequency range from ~0.6 Hz to ~22 Hz.
The leaky modes (denoted by open circles in Figure
2) act as an extension of normal modes that they nat-
urally fill the gap of the dispersion curve composed
of normal modes. Besides, many higher-order disper-
sion curves of leaky modes are also calculated. It
should be noted that, the “gap” here lies between the
dispersion curves of normal modes of the same order,
and is different from that between the dispersion
curves of normal modes and those of leaky modes for
Love waves, a phenomenon observed by Malis-
chewsky [1985]. The former arises because the S-wave
velocity of the half-space is smaller than those of the
above layers, and the latter may be filled by the so-
called open modes [Budden 1961, Malischewsky
1985].
Lastly, we have examined the characteristic re-
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Thickness 1300},
Layer No. () a(m/s) B(m/s) p(g/cm?)
1200}
1 5 1000 200 1.96
2 5 1800 300 2.03 € 1100
z
3 © 500 100 2.06 i
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Table 2. Parameters of a three-layer model with the half-space 8
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Figure 2. Dispersion curves of normal modes (solid dots) and leaky
modes (open circles) for the model shown in Table 2.

sponse of a soil foundation model shown in Table 3
with the velocities decreasing with depth, which was
adopted by Yang and Yi [2005]. The presence of a low-
velocity layer sandwiched in a model or the case that
the medium under the ground becomes softer with
depth is usually encountered in Rayleigh-wave explo-
ration in geotechnical engineering. The gap of the dis-
persion curves of normal modes may make it difficult
to appropriately determine the exploration depth of
Rayleigh waves [Zhang and Lu 2003]. Figure 3 shows
only the first dispersion curve consisting of funda-
mental normal modes (solid dots) and leaky modes
(open circles), with which engineers are mainly con-
cerned, because the excitation energy of these modes
would be dominant for a surface source. For such an
anomalous model that the velocities decrease with
depth, the computed dispersion curve behaves as a
monotonically nondecreasing function with fre-

quency.

Layer No. Th’(cllnq;ess a(m/s) P(m/s) p(g/cm?)
1 6 2900 1400 2.0

2 3 2400 900 1.8

3 © 2154 800 1.8

Table 3. Parameters of a soil foundation model with the velocities
decreasing with depth.

waves may show significant energy on the seismogram
recorded at proper distances [Roth et al. 1998, Gao et al.
2014]. Dispersion analysis in terms of mode theory
would then afford complementary information for seis-
mic surveying, especially for inverting the P-wave ve-
locity structure [Oliver 1964, Su and Dorman 1965,
Znak and Kashtan 2015] due to it being better sensed by
leaky modes than by shear normal modes. Therefore,
accurate computation of leaky modes is necessary, as
done here, for it may also have great implications for
high-resolution seismic surveying and full waveform in-
versions [Roth et al. 1998].

In exploration geophysics and geotechnical en-
gineering, anomalous models having low-velocity lay-
ers as well as high Poisson’s ratios are frequently
encountered. Gao et al. [2014] used the model shown
in Table 2 to illustrate that leaky waves would appear
with their phase velocities being larger than the max-
imum S-wave velocity of the model. They searched
the leaky modes for the model in the real-number do-
main and their results may not be expected to be ac-
curate (cf. Figure 7e in their paper). In addition, the
search for the leaky modes was not complete, and
only the fundamental and some of the first higher-
order modes of the dispersion curves were com-
puted. When our algorithm has been applied to the
model, multiple dispersion curves (Figure 2) are gen-
erated and the computation of these modes is also
more accurate.

To fill the gap of the dispersion curves due to the
presence of a low-velocity half-space in a model, Yang
and Yi [2005] eschewed direct computation of the
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complex roots associated with leaky modes by ap-
pending beneath the half-space of the original model
a layer of the same medium properties as those of the
layer whose shear wave velocity is the greatest in all
the layers to ensure that the (N+1)th layer is suffi-
ciently thick. The effect is that the computation of the
complex leaky-mode solutions is converted into that
of the real normal-mode roots of the secular equation
for the new model. Because of adding a layer to the
original model and thickening the (N+1)th layer, the
resultant modes are greatly increased and the time
consumption accordingly larger. In our method the
computation of leaky modes is directly performed in
complex wavenumber domain, which agrees with the
physical characteristics of the problem. The gap for
the first dispersion curve of the fundamental normal
modes is naturally bridged by the computed leaky
modes, which then meet the normal modes at higher
frequencies (see Figures 2 and 3).

5. Conclusions

We have extended the highly efficient algorithm
based on the generalized reflection/transmission co-
efficients for computing normal modes to the com-
putation of the leaky modes in complex wavenumber
domain. Numerical stability and accuracy as well as
computing efficiency are guaranteed. For the anoma-
lous layered models with high Poisson’s ratios or low-
velocity layers underlain by high-velocity surficial
layers considered in this paper, leaky modes lying on
many dispersion branches are computed with higher
accuracy compared with previously published results.
With this effective and efficient tool provided, vari-
ous potential applications in geophysics, geotechnical
engineering and structural dynamics would then be
made feasible and soar in the near future.
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