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1. Introduction

Potential-Field maps usually contain a num-
ber of structures, which are superposed on each
other. For instance, a magnetic or a gravity anom-
aly may be composed of regional and residual
anomalies. The sum of magnetic and gravity ef-
fects due to the shallow and intermediate struc-
tures is termed a residual anomaly and the effects
due to deep structures is termed as regional anom-

alies. In gravity and magnetic anomaly maps, bor-
der detection of geological bodies is as important
as separation of residual/regional. Blakely and
Simpson (1986) developed the boundary tech-
nique in border detection problem. Fedi and Qua-
ta (1998) applied the wavelet approach in separa-
tion of potential anomalies. Uçan et al. (2001)
showed that the border detection problem can be
solved by wavelet approach by choosing appro-
priate coefficients. Albora et al. (2004) applied
wavelet to archeological sites and found the walls
of Hittite ancient city. Fedi and Florio (2001) de-
fined the Enhanced Horizontal Derivative Method
(EHD) technique as an alternative to boundary so-
lutions. Chua and Yang (1988) introduced an un-
supervised algorithm, which is called Cellular
Neural Network (CNN). CNN is a stochastic, 2D
space invariant image processing technique.
Cimagalli (1993) improved theoretical researches
on CNN. Albora et al. (2001a,b) applied CNN for
separation of regional/residual anomalies.
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Our research area, Konya-Beysehir Region,
is located in SW Turkey where intercontinental
active extension, lithospheric thinning and struc-
tures indicating the initial phase of a rift evolu-
tion are observed. The determination of the
causative sources’ boundaries of the anomaly in
Konya-Beysehir is difficult since there are vari-
ous source interferences, resulting erroneous lo-
cation decisions. The previous studies on this
area were carried out by Kocyigit (1984), Tay-
maz and Prince (1992); Dolmaz et al. (2003).
They showed that block faults are still active.
Several tectonic deformation models have been
proposed by Jackson and McKenzie (1984); Eyi-
dogan and Jackson (1985); Prince (1989); Prince
and Scott (1991); Saunders et al. (1998); and Ay-
demir and Ates (2005). 

In this paper, we first studied on a synthetic
example to evaluate border detection perform-
ance of Cellular Neural Network (CNN) and then
we applied this scheme to gravity anomaly of
Konya-Beysehir (Turkey). 2D and 3D tectonic
modeling of the considered region is also
achieved using classical forward and inversion
methods on profiles on the residual gravity anom-
aly map. We evaluated CNN outputs along with
2D/3D models and presented a new tectonic
model for this region. 

2. Cellular Neural Network (CNN)
approach

Generally, neural networks fall into two main
classes: 1) memoryless neural networks and 2)
dynamical neural networks. Memoryless neural
networks have been used for simple static prob-
lems. Dynamic models such as in Hopfield Net-
works (HN) and Cellular Neural Networks
(CNN) have usually been designed as dynamical
systems where the inputs are set to some constant
values and each trajectory approaches one of the
stable equilibrium points depending upon the ini-
tial state. CNN is a dynamic large-scale non-lin-
ear analog circuit, which processes signals in real
time (Chua and Yang, 1988). Like cellular au-
tomata, it is made of massive aggregate of regular-
ly spaced circuits clones, called cells, which com-
municate with each other directly only through its
nearest neighbors (fig. 1). The adjacent cells can

interact directly with each other. The other cells,
which are not directly connected to each other,
may affect each other indirectly because of the
propagation effects of the continuous-time dy-
namics of cellular neural networks. An example
of a 2D CNN is shown in fig. 2. We call the cell
on the ith row and jth column cell C(i, j) as in fig. 2.
Now let us define, neighborhood of C(i, j).

2.1. Definition: r-neighborhood 

The r-neighborhood of a ith row and jth col-
umn cell C(i, j), in a cellular neural network is
defined by

(2.1)
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Fig. 1. A 2D CNN. The circuit size is 4×4. The link
between cells (squares) indicate interactions between
the linked cells.

Fig. 2. The neighborhood of cell C(i, j) for r=1, r=2
and r=3, respectively.
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which are identically repeated and I scalar thresh-
old value as

(2.4)

The network behavior of CNN depends on the
initial state of the cells activation, namely bias I
and on weights values of A and B matrices which
are associated with the connections inside the
well-defined neighborhood of each cell. CNN’s
are arrays of locally and regularly interconnect-
ed neurons, or, cells, whose global functionality
are defined by a small number of parameters (A,
B, I) that specify the operation of the component
cells as well as the connection weights between
them. CNN can also be considered as a nonlin-
ear convolution with the template. Here, we use
discrete 2D geophysical data, then eq. (2.2) and
eq. (2.3) can be rewritten as

(2.5)

(2.6)

where, step is the integration step size. Since their
introduction in 1988, CNN has attracted a lot of
attention. The reduced numbers of connections
within a local neighborhood, the principle of
cloning template etc., turn out to be advantage of
CNN’s. Not only from a theoretical point of view,
CNN has a number of attractive properties, but al-
so there are many well-known applications such
as image processing, motion detection, pattern
recognition and simulation. Here we also applied
this contemporary approach for the border detec-
tion of synthetic examples then Bouguer anomaly
map of Konya-Beysehir Region. 

2.2. Learning algorithm 

In CNN, we have to train A, B, I templates
using various optimization methods to solve the
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where r is a positive integer number. Figure 2
shows neighborhoods of the C(i, j) cell (located at
the center and shaded ) with r=1, 2 and 3, respec-
tively. Cells are multiple input-single output non-
linear processors all described by one, or one
among several different, parametric functional. A
cell is characterized by a state variable that is gen-
erally not observable as such outside the cell it-
self. It contains linear and non-linear circuit ele-
ments such as linear resistors, capacitors and non-
linear controlled sources. Every cell is connected
to other cells within a neighborhood of itself. In
this scheme, information is only exchanged be-
tween neighboring neurons and this local infor-
mation characteristic does not prevent the capa-
bility of obtaining global processing. The CNN is
a dynamical system operating in continuous or
discrete time. A general form of the cell dynami-
cal equations may be stated as follows:

(2.2)

(2.3)

where x, y, u, I denote cell state, output, input, and
bias as a scalar, respectively. Step is integration
step size, j and k cell are indices. CNN parameter
values are assumed to be spaced-invariant and the
nonlinear faction, which is chosen as piece-wise
linear (fig. 3). A, B are cloning template matrices
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Fig. 3. Piece-wice linear output function of CNN.



606

Ali Muhittin Albora, Osman Nuri Uçan and Davut Aydogan

geophysical problems such as border detection,
separation and enhancement of 2D input image.
Here, weight coefficients of A, B matrices and
bias I are optimized for synthetic examples us-
ing Recurrent Perceptron Learning Algorithm
(RPLA) defined by (Guzelis and Karamahmut
1994). RPLA optimization criterion is as fol-
lows

(2.7)

where ys
i, j(∞) is the steady state of output at sth

input vector, ds
i,j is the desired sequence and

ε[w] is the total error that will be minimized.
The RPLA can be described as the following
set of rules.

i) Increase each feedback template coeffi-
cient, which defines the connection to a mis-
matching cell from its neighbor whose steady

[ ] [ ] ( )w w y d, ,

,

S

S

N

i j
S

i j
S

i jS1

2
3/ε ε = −

=

l ^ h/ //

state output is same with the cell’s desired output.
On the contrary, decrease each feedback template
coefficient, which defines the connection to a
mismatching cell from its neighbor whose steady
state is different from the cell’s desired output.

ii) Change the input template coefficients
according to the rule stated in (i) by only re-
placing the word of neighbor with input. 

iii) Retain the template coefficients un-
changed if the actually outputs match the de-
sired outputs.

3. Synthetic example

As a synthetic example, gravity anomaly
map of two perpendicular prisms as shown in
fig. 4a, are investigated to show the perform-
ance of CNN in border detection problem. To
compare CNN performance, we applied classi-

Fig. 4a-d.  Two perpendicular prism model: a) gravity anomaly map (contour interval is 3 mgal); b) second ver-
tical derivative map (contour interval is 0.008 mgal/m2); c) boundry analysis output (contour interval is 3 mgal);
d) CNN output (contour interval is 0.008 mgal).

a b

c d
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cal approaches such as second vertical deriva-
tive method as in fig. 4b and boundary analysis
as in fig. 4c. We have also optimized CNN tem-
plates A, B, I in eqs. ((2.4)-(2.6)) using RPLA
algorithm (eq. (2.7)) for synthetic example. At
50th iteration, we stopped training when the to-
tal error in eq. (2.7) is 10−5. Then CNN matrix
elements of eq. (2.4) is found as

(3.1)

Using templates in eq. (3.1), CNN output is
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shown as in fig. 4d and it is observed that CNN
results are better than second vertical derivative
method. 

4. Application of CNN to real data: Konya-
Beysehir (Central Turkey)

In fig. 5 our working area, Konya-Beysehir
Region, is drawn in dashed lines. The most im-
portant faults in this region are as follows: Ak-
sehir, Beysehir1, Beysehir2 and Anamas (Ko-
cyigit, 1984). The Quaternary deposits along
the Aksehir Fault are displaced about 200-300
m, where the sense of motion along the 75°-80°

Fig. 5. Location map of the studied area and fault pattern of south-west Turkey (dashed area is modified from
Kocyigit, 1984).
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Fig. 6. Gravity anomaly map of Konya-Beysehir Region (the original map is obtained from MTA. The contour
interval is 5 mgal).

Fig. 7. Shaded Relief form of CNN output (solid lines show faults of tectonic map in fig. 5, dashed lines our
proposed faults).

slope (Atalay, 1975). Aksehir Fault is an active
fault (Ketin, 1968; Kocyigit and Ozacar, 2003).
The Beysehir Lake is located to the SW of Ak-
sehir Fault and the Beysehir1 and Beysehir2

faults bound the Lake. Thermal structure of
crust in the studying area is investigated by
Dolmaz et al. (2005) using Curie Point Depth.
They found that high thermal anomaly over the

Ali Muhittin Albora, Osman Nuri Uçan and Davut Aydogan
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grabens. The region is an active graben area
(Kocyigit and Ozacar, 2003). These faults are
causatives of important horsts and grabens. The
inner side of the sediment area is fulfilled with
the upper Miocene-Pliocene sedimentary rocks
and alluviums (Kocyigit, 1984). To the west of
Beysehir Lake, there is a listric type fault struc-
ture (Kocyigit, 1984). The faults extend NW-
SE, E-W and SW-NE directions. These faults
become younger as passing from a horst to a
graben system. The block faults are still active.
Kocyigit (1984) comes to such a conclusion af-
ter observing the last phase of a faulting process
where he noticed a correlation between alluvi-
um, grabens and the lake. 

In the Bouguer gravity map of MTA (The
General Directorate of Mineral Exploration and
Research Company of Turkey) high anomaly
values in Konya and Cumra regions are present
(fig. 6). It is likely that a dike with high densi-
ties causes this considered anomaly. The horsts
and grabens can be clearly identified on gravity
anomaly map. We applied CNN for this area
and used CNN coefficients obtained by RPLA
algorithm, which was previously applied to
synthetic example. Using these coefficients in

eq. (3.1), we obtained CNN output as shown in
fig. 7. The faults, which are observed in tecton-
ic map (fig. 5), confirmed by our CNN outputs,
and are pointed out with solid lines in fig. 7.
These are (Anamas, Beysehir1, Beysehir2, Ak-
sehir) faults. We have denoted new faults: F1,
F2, …, F7 and Konya1, Konya2 according to
our CNN evaluation and placed their coordi-
nates at our CNN output as shown in dashed
lines. In between Konya1 and Konya2 faults,
there may be a magmatic intrusion. 

Residual Bouguer anomaly map of Konya-
Beysehir Region is prepared from Bouguer
anomaly map (fig. 6) using low-pass filters (fig.
8). In fig. 8, A1-A2, B1-B2, C1-C2 and D1-D2 grav-
ity profiles are shown in solid lines. These grav-
ity profiles are modeled using forward model-
ing as in fig. 9a-d. A1-A2 and B1-B2 profiles are
drawn such that they cover Aksehir, Beysehir1
and Beysehir2 faults shown in fig. 7. In forward
modeling, horsts and grabens are also obtained
as upward and downward blocks as shown in
fig. 9a-d. 

The assessment of the A1-A2 profile, which
extends from SW to NE in 100 km length, has
six different geological structures (S1, S2, ..., S6)

Fig. 8. Residual anomaly map obtained by low-pass filtering (A1-A2, B1-B2, C1-C2 and D1-D2 profiles are used
to construct the residual field; the contour interval is 5 mgal). 
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(fig. 9a). The density contrasts of these geolog-
ical structures are as −0.12, 0.17, −0.38, 0.23,
−0.30, 0.18 gr/cm3, respectively. The maximum
depth of S2 is 3.4 km which closer to Beysehir2
Fault. It forms horst between Anamas and Bey-
sehir2 faults. S3 forms Beysehir graben and lies
in between Beysehir1 and Beysehir2 faults with
a maximum depth of 4.5 km. S4 has maximum
depth of 3.6 km pointing out a horst between

Beysehir1 and Aksehir faults. S5 structure forms
a graben with maximum depth of 4.5 km and is
bounded by Aksehir Fault as shown in fig. 7.
Yet another parallel fault F7, in NE of Aksehir
Fault is shown in dash lines in the same figure.
This fault is parallel to Aksehir Fault and tends
to NW. Although, no evidences for NW contin-
uation of this fault are given in Kocyigit (1984)
our CNN output clearly reveal this continuity.

Fig. 9a-d.  Anomaly profiles and estimated models. a) A1-A2 profile; b) B1-B2 profile; c) C1-C2 profile and d) D1-
D2 profile.

a b

c d
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The length of B1-B2 profile in fig. 9b is 103
km. We estimated seven different geological
structures (S1, S2, …, S7) in this B1-B2 profile. The
density contrasts are calculated as follows: 0.15,
−0.05, −0.33, 0.15, −0.28, −0.01 and 0.10 gr/cm3,
respectively. S1 with maximum depth of 2.8 km
forms a horst located to the NE at Anamas Fault.
F6 Fault lies in between Anamas and Beysehir2
faults. We estimated a similar geological structure
S2 with 1.8 km maximum depth, which is be-
tween Anamas and Beysehir2 faults. S3 structure
is a graben with maximum depth of 4.2 km and
lies in between Beysehir2 and Beysehir1 faults.
S4 is a horst with maximum 5.2 km depth and lies

in between Beysehir1 and Aksehir faults. In B1-B2

profile, there is a S5 geological structure forming
Aksehir graben and has 4 km maximum depth. S6

and S7 are to the east of F7 Fault.
C1-C2 profile length is 66 km located to the

north of Konya Region extending in NW-SE di-
rection as shown in fig. 9c. From this profile, we
estimated five different geological structures (S1,
S2, ..., S5). The density contrasts were calculated
as follows from structure S1 to S5: −0.30, 0.10,
−0.18, 0.24, 0.13 gr/cm3, respectively. At CNN
output, in fig. 7, a horst is also observed and S2

structure is limited by F5 Fault in NW direction.
The maximum depth of S2 structure is found as 4

Fig. 10a,b.  a) 3D estimated model of the studied area; b) 3D image of the model (the contour interval is 2.5 km). 

a

b
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km. In fig. 9c, S3 structure is a graben with maxi-
mum depth 3.8 km that lies between F5 and F3
faults. After modeling, we have found a horst
structure and this geological structure is S4, which
has 2.7 km maximum depth. NW side of S4 is
bounded by F3 fault.

D1-D2 profile in fig. 9d, has 65 km length and
is taken in such a way from south to north pass-
ing all over Konya Region. This profile is being
studied by five different geological structures (S1,
S2, ..., S5). The related density contrasts are as fol-
lows: −0.5, 0.12, 0.5, −0.30, 0.45 gr/cm3, respec-
tively. S1 is under the effect of Aksehir graben.
The maximum depth is 3 km. The fault borders
of Konya1 and Konya2 are well defined by
CNN, which lie to the south and north of Konya,
respectively. S2 numbered geological structure is
in the south of Konya1 fault and has 2.8 km
depth. The geological structure, S3 horst is in be-
tween Konya1 and Konya2 faults at fig. 9d. Ates
and Kearey (2000) have calculated the depth of
this structure using their power spectrum analy-
sis and estimated as 6.76 km. S3 structure lies in
between Konya2 and F3 faults. S4 is in between
Konya2 and F3 faults. It starts with 5.2 km
depth and shallows to 2.5 km as tends to F3
fault. 

We also modeled the residual gravity anom-
aly (fig. 8) in this area, using GRAV3DIN soft-
ware program of Rama Rao et al. (1999). This
method calculates the values of depth and modi-
fies them iteratively until a best fit is achieved be-
tween the observed and calculated values. In 3D
analysis, the residual anomaly map is sampled at
15 equispaced profiles with 8 km interval spac-
ing. The density contrast between anomalous
body and the medium is to the value of 0.5 g/cm3.
The resulting 3D model is shown in fig 10a,b.
The 3D depth map (fig. 10b) has similar results
with CNN outputs as shown in fig. 7. As a result,
we have proposed a new tectonic map and denot-
ed F1, F2, ..., F7 and Konya1, Konya2 faults. 

5. Conclusions 

In this paper, we proposed Cellular Neural
Network (CNN) for solution of an important
problem such as border detection in geophysics.
We applied CNN approach in border detection
of geological structures for synthetic example
and real data. First, we have used synthetic ex-
ample of two perpendicular prisms and borders
are detected by second vertical derivative CNN.

Fig. 11. Proposed tectonic map of the studied area. 
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In synthetic example, CNN outputs have similar
results with boundary techniques as in fig. 4,
thus we can conclude that CNN is a compromis-
ing approach. CNN output of Konya-Beysehir
gravity anomaly map are shown in fig. 7. Ana-
mas, Beysehir1, Beysehir2, Aksehir and our de-
fined faults, which are observed at CNN output,
are confirmed with previous tectonic studies.
We forward modeled the profiles of residual
anomaly map and geological structure of this
region as in fig. 9. We also estimated depth of
these geological bodies. The faults extend from
NW to SE direction as in fig. 10b. We have ob-
tained a new tectonic map after evaluation of
CNN outputs, previous tectonic maps, 2D and
3D forward modeling (fig. 11). We also found
out a horst structure in among Anamas and
Beysehir faults in tectonic map studies. Beyse-
hir graben is observed in between Beysehir2
and Beysehir1 faults. A horst structure on the
NE direction of this graben is detected in be-
tween Beysehir1 and Aksehir faults. Aksehir
graben is seen in between Aksehir fault and our
defined F7 faults. Around Aksehir graben, an-
other horst and graben structures are seen in NE
direction. In the SE part of our tectonic map,
there is a graben in between Aksehir and Konya
faults and there is a horst structure between
Konya1,2 faults. A graben between Konya2 and
our defined F3 fault is observed. Also there is a
horst structure in F3 and F4 fault area. There is
also a graben in between F4 and F5 faults as in
fig. 11. As a result, we applied CNN to border
detection of gravity anomaly map of Konya-
Beysehir Region and after evaluation of CNN,
tectonic studies and forward modeling of pro-
files, we proposed a new tectonic map with new
defined horsts, grabens and faults. We denoted
(F1, F2, …, F7) and (Konya1, Konya2) faults
according to our CNN evaluations. As a conclu-
sion, a new tectonic map of this region is pro-
posed as in fig. 11. 
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