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Abstract

This paper presents a new approach for interpretation of residual gravity anomaly profiles, assuming horizontal
cylinders as source. The new method, called Forced Neural Network (FNN), is introduced to determine the un-
derground structure parameters which cause the anomalies. New technologies are improved to detect the borders
of geological bodies in a reliable way. In a first phase one neuron is used to model the system and a back prop-
agation algorithm is applied to find the density difference. In a second phase, density differences are quantified
and a mean square error is computed. This process is iterated until the mean square error is small enough. After
obtaining reliable results in the case of synthetic data, to simulate real data, the real case of the Gulf of Mexico
gravity anomaly map, which has the form of anticline structure, is examined. Gravity anomaly values from a
cross section of this real case, result to be very close to those obtained with the proposed method.
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1. Introduction

A classical problem in gravity and magnetic
exploration is the computation of theoretical
anomalies caused by idealized models of known
shapes. Many workers have published different
methods for carrying out such computation, and
textbooks on potential theory, e.g. Routh (1908),
provided various formulas for these models. Ear-
ly publications like Barton (1929) dealt with the
computation of the gradients of the gravity field.
Hubbert (1948) used line-integral approach for
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the computation of gravitational attraction of
two-dimensional masses. Bhattacharyya (1964),
Nagy (1966), and Plouff (1976) presented closed
form of analytical solutions for prism shaped
bodies. Talwani and Ewing (1960), Talwani
(1965) used numerical integration techniques for
the computation of the fields due to models of ar-
bitrary shape by dividing them into polygonal
prisms or laminas. Parker (1974) tried to find
depth and density values using gravity data.
Green (1975) studied an inverse solution of grav-
ity profiles. Last and Kubik (1983) estimated un-
derground density distribution with recursive in-
verse solution techniques. Lines and Treitel
(1984) applied a Singular Value Decomposition
(SVD) approach for problems in evaluation of
gravity and seismic projections. Mareschal
(1985) used Fourier Transform for inverse solu-
tion of gravity density distributions. Murty et al.
(1990) focused on density differences of 2D and
3D gravity models. Murty and Rao (1993a,b) cal-
culated inverse solution of gravity and magnetic
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anomalies of polygonal structures using Mar-
quart algorithm. Murthy and Rao (1993b) pro-
posed some methods in inverse solution of gravi-
ty anomalies for circular, cylindrical, and vertical
discs. Mosegaard and Tarantola (1995) applied
Monte Carlo method. Tsokas and Hansen (1997)
studied on crustal thickness with gravity anom-
alies in Greece.

Artificial neural networks are part of a much
wider field called artificial intelligence, which
can be defined as the study of mental facilities
through the use of computational models (Char-
niak and McDermott, 1985). They encompass
computer algorithms that solve classification,
parameter estimation, parameter prediction, pat-
tern recognition, completion association, filter-
ing, and optimization problems (Brown and
Poulton, 1996). They have gained popularity in
geophysics during the last decade because these
tools can approximate any continuous function
with an arbitrary precision (Van der Baan and
Jutten, 2000). The location of the buried steel
drums is estimated from magnetic dipole source
using supervised artificial neural network
(Salem et al., 2001). Neural networks are used
to speed up the detection of ferro-metalic ob-
jects (Selam and Ushijima, 2001). Depth and ra-
dius of subsurface cavities are determined from
microgravity data using back propagation neural
networks (Eslam er al., 2001). Neural networks
are studied to solve 1D and 2D resistivity in-
verse problems (El-Qady and Ushijima, 2001).
For 2D modeling CNN (Cellular Neural Net-
works) is applied to the separation of regional/
residual potential sources in geophysics by Alb-
ora et al. (2001a,b).

Artificial neural networks can be divided into
two main categories: unsupervised recurrent and
supervised feed-forward networks. In the unsu-
pervised recurrent type, the networks allow infor-
mation to flow in both directions. These modals
are called unsupervised because there is no
teacher to set the input-output mapping relation
during the learning phase. In the supervised be-
cause through a set of correct input-output pairs,
called the training set, the network learns the re-
lation between the input-output pairs.

In this paper, a new algorithm, denoted
«Forced Neural Network (FNN)» is proposed.
The aim of FNN is to estimate the physical pa-

1202

rameters of buried objects. It is first applied to
synthetic examples and then real data. We have
found satisfactory results for both cases.

2. Forced Neural Network

The artificial neural network is composed of
many simple processing elements, which are
massively interconnected and operate in paral-
lel. The processing elements commonly known
as neurons, receive the input from previous ele-
ments and send the output to other elements
through synaptic connections. These connec-
tions have different weights. In order to find the
effective values of inputs and outputs, these val-
ues are multiplied by these weights. The main
purpose of neural networks is to compute such
weights giving the best output. To obtain the el-
igible values for weights, back propagation
method being the most popular learning algo-
rithm for neural networks, is used in this study.

2.1. Back propagation algorithm

The error signal at the output of neuron j at
iteration n, is defined by
e;(n) = d;(n) - y;(n) 2.1
where neuron j is an output node, di(n) is de-
sired output and y;(n) is actual output of Neural
Networks (NN). The instantaneous value of the
error energy for neuron j can be defined as
1/2e3(n)- Correspondingly, the instantaneous
value E(n) of the total error energy is obtained
by summing 1/2¢3(n) over all neurons in the
output layer; only «visible» neurons are the
ones for which error signals can be calculated
directly. We may thus write,

E(n) =1/2>_¢e3(n)

jec

(2.2)

where, the set C includes all the neurons in the
output layer of the network (Haykin, 1999). Let
N denote the total number of patterns (exam-
ples) contained in the training set. The average
squared error energy is obtained by summing
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E(n) over all n and then normalizing with re-
spect to set size N, as shown by,

E,= 1/NiE(n). (2.3)

n=1

The instantaneous error energy E(n), and there-
fore the average error energy E,, is a function of
all the free parameters (i.e. synaptic weights and
bias levels) of the network. For a given training
set, E,, represents the cost function as a measure
of learning performance. The objective of the
learning process is to adjust the free parameters
of the network to minimize E,,. To do this mini-
mization, we use an approximation similar in ra-
tional to that used for the derivation of the Least
Mean Square (LMS) algorithm. We consider a
simple method of training in which the weights
are updated on a pattern-by-pattern basis until
one epoch, that is, one complete presentation of
the entire training set has been dealt with

Aw;(n) =nd,(n)y:(n) (2.4)
where d(n) is the local gradient and # is learn-
ing speed (Haykin, 1999). Local gradient points
are required changes in synaptic weights and
we obtain Back-Propagation (BP) formula for
the local gradient d,(n) as

8,(n) = ) (v;(M) Db (mMwy(n)  (2.5)

neuron j is hidden.

Figure 1 shows the signal-flow graph repre-
sentation of eq. (2.5), assuming that the output
layer consists of m;, neurons.

The factor ¢;(v;(n)) involved in the compu-
tation of the local gradient d;(n) in eq. (2.5) de-
pends solely on the activation function associat-
ed with hidden neuron j. The remaining factor
involved in this computation, namely the sum-
mation over k, depends on two sets of terms.
The first set of terms, Ox(n), requires knowledge
of the error signals ex(n), for all neurons that lie
in the layer to the immediate right of hidden
neuron j, and that are directly connected to neu-
ron j which is shown in fig. 1. The second set of
terms, wyi(n), consists of the synaptic weights
associated with these connections.

We may redefine the local gradient d,(n) for
hidden neuron j as

9E (n) dy;(n)

0.0 =3y, (m v, ) @6)
—- g ) @)

neuron j is hidden.
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Fig. 1. Signal flow graph of a part of the adjoint system pertaining to Back-Propagation of error signals.
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The local field parameter v;(n) produced at
the input of the activation function associated
with neuron j is therefore

vi(n) = Zm:w,-j(n)y,-(n)

i=0

(2.8)

where m is the total number of inputs (excluding
the bias) applied to neuron j (Haykin, 1999). The
synaptic weight wjy (corresponding to the fixed
input yo=+1) equals the bias b; applied to neuron
J- Hence the function signal yj(n) appearing at the
output of neuron j at iteration »n is

yi(n) =;(v;(n)). (2.9
Next differentiating eq. (2.9) with respect to
vi(n), we get

ay;(n)
av;(n)

=i (v;(n)) (2.10)

where the use of prime (the right-hand side)
signifies differentiation with respect to the ar-
gument Haykin (1999).

2.2. Forced Neural Network for gravity
anomaly

This method could be used in modeling ar-
bitrary subsurface body geometry and density
contrasts. We begin with a horizontal cylindri-
cal structure, whose gravity anomaly function
is shown below,

H X-1

i
A(xer) = ZZAP,\,KW 2.11)

i=1 j=0

Ap is density difference, H and X are the depth
and the total length of the cross section respec-
tively, i and j are the levels of the depth and the
distance of the cylinder from the starting point,
and finally xr is the concerned distance point
where the anomaly value is observed.

We use K [i/(i+(j - Xu)?] as an input of
the neuron, which is shown in fig. 2, and there
should be (HxX) inputs and these inputs are
constant for every A(xrr). In fig. 2, ¢(.) is an ac-
tivation function. We use partially linear activa-
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Fig. 2. Forced Neural Network (FNN) design for
gravity anomaly.

tion function (Haykin, 1999), which gives lin-
ear output values between zero and Ap depend-
ing on its input.

The neuron can be modeled as below:

In the method, weights of the neuron are as-
signed as Ap;; for each pixel and linear function
is assumed as an activation function. After us-
ing the back propagation, Ap;; are updated and
the output of the neuron gives the gravity anom-
aly. Although the density differences are found,
the results of this system are not sufficient be-
cause of non-uniqueness and horizontal loca-
tions that are constrained. Therefore, the value
of Ap is set to zero if its value is very close to
the zero according to the density difference
which is obtained form geological features of
the region. Otherwise, the value of Ap is set to
the density difference of the geological region
after back propagation.

Forced neural network means that after suf-
ficient epoch is applied, fixed values are as-
signed to the output of the neuron according to
the density difference Ap, and this process is
continued until the mean square error of the
output, A(xrr) which is shown in fig. 2, be-
comes sufficiently small.

3. Performance of the algorithm
in synthetic data

Our synthetic data are obtained from a cylin-
drical structure of having a depth of 1 m and a ra-
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Fig. 3. Results of FNN for synthetic horizontal cylinder.
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Fig. 4. Performance of FNN for synthetic 7-type prismatic structure.

dius of 2 m for Ap=1 mGal as shown in fig. 3.
The anomalies of this model are considered as
the input data provided to the FNN. In synthetic
examples, every learning cycle is comprised of
350 epochs, and two-level quantization (Ap or
zero) is applied after every 10 learning cycles,
which is found to be optimum through experi-
ments. The estimated geological structure ob-
tained via FNN application results in an anomaly
profile (dashed line) that is similar to the ob-
served anomaly (solid line), as shown in fig. 3.
For a second synthetic model, we choose 7-
type prismatic structure with Ap=1mGal. We
use the Talwani and Ewing (1960) 2D method.
The estimated geological structure obtained via
FNN application results in an anomaly profile
(dashed line) that is similar to the observed
anomaly (solid line), as shown in fig. 4. In both
examples, satisfactory results are obtained.
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4. Example of application on real data

As an example for application of real data in
FNN, we use the Bouguer anomaly reported by
Nettleton (1943), whose reproduction is shown
in fig. 5. The anomaly was recorded in the Gulf
of Mexico about 241 km away from Galveston
and at a small distance inside the edge of the
continental shelf. The importance of basement
architecture to the hydrocarbon exploration in
the Gulf of Mexico Basin has been debated on
for years. Alexander (1999) studied on tectonic
and stratigraphic in Gulf Basin.

The origin of the topographic feature was
not established until the gravity survey indicat-
ed a large closed minimum coincident with the
contours of the elevated mound that could be
accounted for only by the assumption of a salt
dome. The survey was not extensive enough to
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define the gravity anomaly, but judicious ex-
trapolation indicated the maximum negative
anomaly to be about 9 mGal. The gravity anom-
aly map given in fig. 5 is obtained from Dobrin
and Savit (1988). Figure 6 is composed from
the AB cross section of this map and demon-
strates Nettleton’s interpretation of the salt
structure giving rise to the anomaly. The solid
line shows the observed anomaly and dotted
line shows the anomaly, which is derived from
FNN. The results of the proposed method are
very close to the observed one.

5. Conclusions

The Forced Neural Networks (FNN) pre-
sented in this paper shows that the gravity field
at any point due to a solid body with uniform
volume density can be computed as the field due
to a fictitious distribution of surface mass-densi-
ty on the same body. First of all, we applied the
FNN technique to two synthetic data. These
tests provide successful results in fitting the cal-
culated to observed data. As a real data applica-
tion, a salt dome gravity anomaly map taken
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Fig. 5. Gravity map observed over inferred salt dome causing anomaly in water-bottom tomography in Gulf of
Mexico (contour interval is 5 mGal) (modified form Dobrin and Savit, 1988).
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Fig. 6. Inferred structure of salt dome believed to
be causing offshore gravity anomaly of fig. 5. Agree-
ment between observed and calculated gravity pro-
files supports choice of model for structure (for AB
cross-section; -s- observed anomaly; + FNN output;
+Nettleton output).

from the NW part of the Gulf of Mexico is con-
sidered. This anomaly shows a negative closure
from 1060 mGal to 990 mGal. The reason for
this negative closure is mostly because of the
geological properties of the salt dome. The den-
sity contrast in salt dome of the Gulf is lower
than those in the surrounding rock formations.
The anomaly of AB cross-section is modeled us-
ing FNN and the anomaly of this model is very
close to the observed one. To make a compari-
son between the methods of Nettleton and FNN,
we can see that by using FNN the model better

fits the observed anomaly. The determination of
the depth of a buried body from the gravity
anomaly has been solved using Forced Neural
Network. Our model has approximately the up-
per surface at about 1 km depth, while the low-
er one is at 9 km, and its approximate width is
15 km. The advantage of the proposed algo-
rithm, FNN over the classical inversion tech-
niques is that there is no need for initial informa-
tion on the parameters of the buried structure
such as depth and width.
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