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1. Introduction

Airborne imaging spectrometers exhibit
characteristics somewhat different from those of
conventional multi-spectral scanners (Landsat
TM, SPOT, etc.). In particular, noise processes
may be non-Gaussian, due to non-linearity of
sensors and to pre-processing of raw data, and

correlated, both spatially and spectrally, because
of the mechanism of opto-electronic scanning.
Hence, most analysis methods, conceived to ef-
fectively operate in the presence of Additive
White Gaussian Noise (AWGN), may become
inadequate to the present case. By exploiting a
Probability Density Function (PDF) capable of
representing also non-Gaussian distributions, au-
to-correlated non-Gaussian noise models may be
described as a generalisation of auto-regressive
models. The noise parameters, specifically vari-
ance, Correlation Coefficients (CCs), and shape
factor of the Generalised Gaussian (GG) PDF
are straightforwardly estimated from the ob-
served data by means of robust statistical proce-
dures based on multivariate regressions. 

Concerning exploitation of noise analysis
methods in application fields, the knowledge of
the parametric noise model may be used to de-
velop data-dependent spectral decompositions,

Mailing address: Dr. Stefano Baronti, Istituto di Fisica
Applicata «Nello Carrara» IFAC, CNR, Via Panciatichi 64,
50127 Firenze, Italy; e-mail: s.baronti@ifac.cnr.it

Noise modelling and estimation 
of hyperspectral data from airborne

imaging spectrometers

Bruno Aiazzi (1), Luciano Alparone (2), Alessandro Barducci (1), Stefano Baronti (1), Paolo Marcoionni (1),
Ivan Pippi (1) and Massimo Selva (1)

(1)  Istituto di Fisica Applicata «Nello Carrara» (IFAC), CNR, Firenze, Italy 
(2) Dipartimento di Elettronica e Telecomunicazioni, Università degli Studi di Firenze, Italy

Abstract
The definition of noise models suitable for hyperspectral data is slightly different depending on whether whisk-
broom or push-broom are dealt with. Focussing on the latter type (e.g., VIRS-200) the noise is intrinsically non-sta-
tionary in the raw digital counts. After calibration, i.e. removing the variability effects due to different gains and off-
sets of detectors, the noise will exhibit stationary statistics, at least spatially. Hence, separable 3D processes correlat-
ed across track (x), along track (y) and in the wavelength (λ), modelled as auto-regressive with GG statistics have
been found to be adequate. Estimation of model parameters from the true data is accomplished through robust tech-
niques relying on linear regressions calculated on scatter-plots of local statistics. An original procedure was devised
to detect areas within the scatter-plot corresponding to statistically homogeneous pixels. Results on VIRS-200 data
show that the noise is heavy-tailed (tails longer than those of a Gaussian PDF) and somewhat correlated along and
across track by slightly different extents. Spectral correlation has been investigated as well and found to depend both
on the sparseness (spectral sampling) and on the wavelength values of the bands that have been selected. 
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either orthogonal (Principal Components Analy-
sis-PCA), or non-orthogonal, like Projection
Pursuit (PP) (Jimenez and Landgrebe, 1999)
matched to the noise. Given the analytical, as
well as statistical, intractability of highly dimen-
sional data (Jimenez and Landgrebe, 1998), a re-
duction in dimension of the data space may be
achieved by projecting hyperspectral pixel vec-
tors onto a sub-space orthogonal to that of the
noise, like in the Noise-Adjusted PCA (NAPCA)
(Lee et al., 1990).

Spectral decompositions often represent a
necessary pre-processing step in object detection
applications. In fact, they may be used to remove
the spatially variant signal due to the scene back-
ground (background removal). Such a step sim-
plifies the derivation of the detection algorithm in
that it can be designed to operate over the resid-
ual clutter that can be considered (almost) spatial-
ly stationary. Noise reduces the effectiveness of
these techniques in a manner that depends both
on the statistical distribution of its intensity and
on its correlation properties. In this context, noise
models whose parameters are adaptively tuned to
the image sequences represent a valuable tool to
analyze the effects of noise on the performance
expected from background removal algorithms. 

The parametric noise model is also useful to
estimate the theoretical entropy bounds of re-
versible hyperspectral data compression meth-
ods, as well as to measure the spectral informa-
tion content (Aiazzi et al., 2001), i.e. the infor-
mation the sensor would yield in the case of an
ideally noise-free process of sensing and digiti-
sation of spectral radiance. 

Experimental results of noise modelling and
estimation, carried out both on simulated noisy
images and on data acquired by the Visible In-
fraRed Scanner (VIRS-200), are reported and
discussed to corroborate the assumptions under-
lying the proposed model and to validate the cal-
ibration procedure (Barducci and Pippi, 2001)
undergone by the raw data. 

2. Noise modelling

This section will focus on estimation of noise
variance from true images. Unlike coherent or
systematic disturbances, which may occur in

some kind of sensed data, the noise is assumed to
be due to a fully stochastic process. Solutions
will be devised for estimating the noise typically
introduced by multispectral scanners and espe-
cially by hyperspectral imaging spectrometers.
Let us assume for the noise an additive signal-in-
dependent model

g (i, j, k)= f (i, j, k)+n (i, j, k) (2.1) 

in which g (i, j, k) is the recorded intensity at
pixel position (i, j) of the kth spectral band and
f (i, j, k)  the kth component of the spectral
reflectance at (i, j) . Both g (i, j, k) and f (i, j, k)
are regarded as non-stationary non-Gaussian
(auto)correlated stochastic processes. The term
n (i, j, k)  is a zero-mean Gaussian process inde-
pendent of f, stationary along (i, j) but not along
k and correlated, both spatially and spectrally.
The variance is σ 2

n(k), and the CC’s are ρx and
ρy, across and along the track, respectively, and
ρλ in the spectral direction. The CCs are as-
sumed to be constant throughout. 

The variance of (2.1) can be easily calculat-
ed as 

σ 2
g(i, j, k) = σ 2

f (i, j, k)+σ 2
n(k) (2.2)

thanks to the independence between radiance
and noise components and to the spatial station-
arity of the latter. From (2.2) it appears that
σ 2

n(k) can be estimated by averaging σ 2
g(i, j, k)

in homogeneous areas of the kth band, where
σ 2

f (i, j, k)≡0, by definition. The homogeneity
requirement is crucial because the radiance com-
ponents are generally correlated with one anoth-
er, besides being spatially autocorrelated. Since
an area may be homogeneous in one band, but
not in another, in the following the analysis will
be carried out on separate bands, notwithstanding
they may exhibit noise components that are de-
pendent on one another. For sake of clarity the in-
dex k will be omitted to indicate a generic band.

3. Estimation of noise variance 
and correlation

The standard deviation of the noisy ob-
served band g (i, j) may be stated in homoge-
neous areas as 
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σ g(i, j)=σ n . (3.1) 

Therefore, (3.1) yields an estimate of σ n , name-
ly σt n , as the y-intercept of the horizontal regres-
sion line drawn on the scatter-plot of σt g  versus
µt g , in which the symbol ˆ denotes estimated val-
ues, and calculated only on pixels belonging to
homogeneous areas. Although methods based on
scatter-plots were devised more than one decade
ago for speckle noise assessment (Lee and Hop-
pel, 1989), the crucial point is how to reliably
identify homogeneous areas. To overcome the
drawback of a usersupervised method, an auto-
matic procedure was developed (Aiazzi et al.,
1999a), based on the fact that each homogeneous
area originates a cluster of scatter-points. All these
clusters are aligned along a horizontal straight line
having y-intercept equal to σn. Instead, the pres-
ence of signal edges and textures originates scat-
ter-points spread throughout the plot. 

The scatter-plot relative to the whole band
may be regarded as the joint Probability Densi-
ty Function (PDF) of estimated local standard
deviation to estimated local mean. In the ab-
sence of any signal textures, e.g., the image is
made up of uniform noisy patches, by assuming
that the noise is stationary, the PDF will be giv-
en by the superposition of as many unimodal
distributions as there are patches. Since the
noise is independent of the signal, the measured
variance does not depend on the underlying
mean. Thus, all the above expectations will be
aligned along a horizontal line. 

The presence of textured areas will modify
the «flaps» of the PDF, which will still exhibit
aligned modes, or possibly a watershed. The
idea is thresholding the PDF to identify a num-
ber of points belonging to the most homoge-
neous image areas, large enough to yield a sta-
tistically consistent estimate, and small enough
to avoid comprising signal textures that, even if
weak, might introduce a bias by excess. 

Now let us calculate the space-varying (au-
to) covariance of unity lag along either of the
coordinate directions, say i,

Cg(i, j; 1, 0)_E{[g(i, j)−E(g(i, j))]⋅[g (i+1, j)+ 
−E(g(i+1, j))]}=Cf(i, j; 1, 0)+ρx⋅σ 2

n . (3.2)

The term Cf (i, j; 1, 0) on right-hand of (3.2), is

identically zero in homogeneous areas, in
which σ g(i, j)  becomes equal to σ n. Thus, (3.2)
becomes 

Cg(i, j; 1, 0)=ρx⋅σ 2
n=ρx⋅σ g(i, j) ⋅σ g(i+1, j). (3.3)

Hence, ρx, and analogously ρy, may be estimat-
ed from those points, lying on the covariance-
to-variance scatter-plots, corresponding to ho-
mogeneous areas. 

To avoid calculating the PDF, the following
procedure was devised:

1. Within a (2m+1)×(2m+1) window slid-
ing over the image calculate the local statistics
of the noisy image to estimate its space-varying
ensemble statistics:

– Average gr (i, j)≡µt g(i, j)

(3.4)

– RMS deviation from the average, σt g(i, j),
with 

(3.5)

– Cross-deviation from the average Ctg(i, j;1,0),
given by 

(3.6)

2. Draw the scatter-plots either of σt g(i, j)
versus µt g(i, j), to estimate σ n , or of Ctg(i, j; 1, 0)
versus σt 2

g(i, j)⋅σt 2
g(i+1, j), to estimate ρx. 

3. Partition the scatter-plot planes into an
L×L array of rectangular blocks. 

4. Sort and label such blocks by decreasing
population, i.e. number of scatter-points: if C(⋅)
denotes the cardinality of a set, then C(B(k))≥
≥C(B(k+1)), k=1, ..., L2. 

5. For each scatter-plot, calculate a succession
of horizontal regression lines, that is {σt n(k)},
from the set of scatter points .B( )lk
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The succession attains a steady value of the
parameter after a number of terms that depends
on the actual percentage of homogeneous points.
The size of the partition and the stop criterion are
non-crucial: a 100×100 array of blocks and stop
after processing 2÷10% of points, depending on
the degree of inhomogeneity of the scene. The
size of the processing window, i.e. (2m+1)× 
×(2m+1), is non-crucial if the noise is white.
Otherwise a size 7×7 to 11×11 is recommend-
ed, since too small a size will underestimate the
covariance (Aiazzi et al., 1999b). 

It is noteworthy that, unlike most methods
which rely on the assumption of white noise, the
scatter-plot methods, besides being easily ad-
justable to deal with signal-dependent noise, can
accurately measure also correlated noise, and
thus have been preferred in this context. 

4. Estimation of noise distribution

4.1. White noise

Once the most homogeneous image pixels
have been made available by the scatter-plot
procedure, the PDF of the noise may be esti-
mated (Aiazzi et al., 2002) by calculating the
histogram of the following amount:

(4.1)

only on those pixels recognized to be homoge-
neous. The correcting factor under square root
in (4.1) is easily calculated by imposing that the
PDF has variance σ 2

n , since g−gt yields an esti-
mate biased by defect of the noise variance, due
to the statistical dependence of the noise com-
ponents affecting g(i, j) and gr(i, j). 

4.2. Correlated noise

When the noise is spatially correlated (4.1)
no longer holds, because of the statistical de-
pendence of n (i) from the previous noise sam-
ples. Let us assume for the stationary zero-
mean Gaussian noise a separable first-order
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in which εn(i) is a white Gaussian random
process having variance .
From (4.2) it stems that the noise covariance of
lag m is

. (4.3) 

If (4.2) and (4.3) are utilized to calculate the
correlation of the noise affecting g and gr on a
homogeneous window, the estimated noise at
pixel (i, j) can be written as

(4.4)

in which 2m+1 is the length of the sliding win-
dow. Notice that (4.4) reduces to (4.1) when the
CCs are both zero. 

4.3. Generalised Gaussian PDF

A model suitable for describing non-Gauss-
ian noise may be achieved by varying the param-
eters ν (shape factor) and σ (standard deviation)
of the Generalised Gaussian Density (GGD),
which is defined as 

(4.5)

in which (4.6)
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es a uniform distribution having variance σ 2 as
well. The shape parameter ν rules the exponen-
tial rate of decay: the larger the ν the flatter the
PDF; the smaller the ν, the more peaked the
PDF. Figure 1a shows the trend of the GG func-
tion for different values of ν. 

The matching between a GGD and the empir-
ical data can be obtained either through an origi-
nal method, recently developed by the authors
(Aiazzi et al., 1999c), based on fitting the entropy
of the modelled source to that of the empirical da-
ta, or by the simple method introduced by Mallat
in 1989 and reinvented six years later (Sharifi and
Leon-Garcia, 1995). This method substantially
falls into the category of moment methods, being
based on matching the moments of the data set

with those of the assumed distribution, in order to
find out its variance and shape factor. For a GGD,
the ratio of mean absolute value to standard devi-
ation is a steadily increasing function of the ν

F (4.7) 

Given a collection of N i.i.d. zero-mean random
variables, {x1, x2, ..., xN}, following a GGD p(x),
let be the estimate of the
mean absolute value and the
sample variance. The parameter ν is estimated
by inverting (4.7), that is by solving 

ot=F (4.8)

The entropy method (Aiazzi et al., 1999c) can-
not be utilized around ν=2 because the entropy
function takes its maximum in the Gaussian
case. Figure 1b shows the entropy function and
Mallat’s function plotted versus the shape fac-
tor ν . As it appears, inversion of the former is
not possible around ν=2; instead its slope is
greater than that of Mallat’s function for ν<1.
Hence, the entropy method is more accurate
than Mallat’s method for ν<1. 

5. Experimental results

5.1. Simulated data

The procedures for information assessment
described in Aiazzi et al. (2001) will be firstly
validated on true image data corrupted with
simulated additive zero-mean Gaussian noise,
both white and spatially correlated. Zero-mean
Gaussian noise with σ 2

n= 400, either with ρx=
= ρy= 0, or with ρx= ρy= 0.65, was superim-
posed to a grey-scale 8-bit image, referred to as
Peppers. The test image and its noisy versions
are portrayed in fig. 2a-i. Table I summarizes the
results obtained.

5.2. VIRS-200 data

The data set comprises a hyperspectral im-
age collected by the Visible InfraRed Scanner

.
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Fig. 1a,b. a) unity-variance GG function plotted for
several ν ’s; b) entropy function and Mallat’s func-
tion of a unity-variance GG PDF as a function of the
shape factor ν . 

a

b
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Fig. 2a-i. a) Test image Peppers and its noisy versions; b) additive white zero-mean Gaussian noise with vari-
ance σ 2

n= 400; c) additive correlated Gaussian noise with σ 2
n= 400 and ρx= ρy= 0.65. Scatter-plots of σtg versus

µtg (with regression lines superimposed) for d) original Peppers, e) Peppers with white zero-mean Gaussian noise
(σ 2

n= 400), and f) Peppers with correlated zero-mean Gaussian noise (σ 2
n= 400 and ρx= ρy= 0.65). Scatter-plots

of Ctg versus σt 2
g(with regression lines superimposed) for g) original Peppers, h) additive white zero-mean Gauss-

ian noise with σ 2
n= 400; i) additive correlated zero-mean Gaussian noise with  σ 2

n= 400 and ρx= ρy= 0.65. All re-
gression lines are calculated on subsets of scatter-points recognized as belonging to homogeneous areas. 

a

d e f

g h i

Table I. True and estimated noise parameters for original and simulated noisy versions, white and correlated,
of the test image Peppers. 

σu σt u ρx ρt x ρy ρt y ν νt

Original N/A 2.5 N/A 0.27 N/A 0.11 N/A 1.81
White noise 20.1 20.0 0 0.02 0 0.02 2 2.07

Correlated noise 20.1 20.3 0.65 0.62 0.65 0.63 2 2.12

b c
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each wavelength. A couple of bands, one in the
visible (VIS), another in the near-infrared
(NIR) wavelengths are shown in fig. 3a,b. 

The CCs of the noise were estimated by
means of scatter-plots of local statistics calcu-
lated on 11×11 windows. This relatively large
window size is dictated by the requirement of
ergodicity, which allows unbiased statistics to
be estimated from a single realisation of the
random process. CCs are underestimated if the
window is too small, because a large correlation
may not be captured by a small window. On the

Fig. 3a-d. 512×512 details taken from two bands of the VIRS-200 image of the city of Viareggio: a) VIS wave-
lengths (554 nm); b) NIR wavelengths (889 nm); c) homogeneous pixels of band 8 (2% of total); d) homoge-
neous pixels of band 18 (0.6% of total). 

a

c

b

d

(VIRS-200), along the coast of Tuscany, in
Central Italy. The image is constituted by 20
narrow bands (2.5 nm) out of 240 recorded at
different wavelengths, programmable in the
range 400÷1000 nm. The size of each image is
512 pixels across track. The raw data were orig-
inally 12 bit. All the data have been radiometri-
cally calibrated, and thus expressed as radiance
values, and packed in a 16-bit word. De-striping
is particularly crucial (Barducci and Pippi,
2001), since the sensors in the array moved
along track exhibit different offsets and gains at
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other side, the window size should not be too
large, to prevent textured pixels from being
considered in the analysis. 

A 2% of points was utilized in the VIS
bands; 0.6% for the NIR bands, since a larger
amount of pixels would inject textures (inho-
mogeneities) into the calculation of the PDFs.
The binary mask of selected points is shown in
fig. 3c,d, for the VIS and NIR band, respective-
ly. The CCs measured are ρtx=0.50 and ρty=0.70
for the VIS band; ρtx=0.55 and ρty=0.65 for the
NIR band. Similar values were found for the re-
maining 18 bands. Spectral correlation has been
investigated as well and found to depend both
on the sparseness (spectral sampling) and on

the wavelength values of the bands that have
been selected. Results are not reported here
both for sake of conciseness, and as irrelevant
for intra-band noise analysis. 

The noise PDFs were calculated for the two
sample bands and plotted in fig. 4a,b together
with generalised Gaussian PDFs having same
variance and shape factor as the distribution of
the noise samples estimated by means of (4.4).
As it appears, the degree of matching of the the-
oretical and empirical distributions is impres-
sive. The VIS band exhibits a hyper-Gaussian
PDF (ν=1.57), while the NIR band is approxi-
mately Laplacian (ν=1.18). In both cases tails
are heavier than those of a Gaussian PDF (ν=2).

Fig. 4a,b. Normalised noise histograms and fitting GG PDFs: a) 554 nm, σ=158, ν=1.57; b) 889 nm, σ=205,
ν=1.18. 

Fig. 5a,b. Estimated parameters of noise PDF of the VIRS-200 image versus wavelength: a) standard deviation
σtn; b) shape factor νt .

a b

a b



9

Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers

The noise variance is slightly higher in the NIR
wavelengths than in the VIS wave-lengths, as
expected from theory. 

After calibration, also aimed at removing
the variability effects due to different gains and
offsets of detectors, the noise exhibits statistics
stationary in space, but not spectrally. There-
fore, an analysis varying with wavelength of
noise variance and shape factor was carried out.
Figure 5a,b highlights how the two parameters,
standard deviation and shape factor, change
with the wavelength. The fact that noise tails
becomes heavier as the wavelength increases is
peculiar of push-broom scanners and mainly
depends on the de-striping procedure. Ideally,
Gaussian PDFs should be obtained, same as it
happens for single-detector whisk-broom spec-
trometers, like AVIRIS (Aiazzi et al., 2001).
The non-ideal equalisation of detectors’ gains
makes the noise to be slightly non-stationary.
Hence, the superposition of many Gaussian
PDFs having variances different from one an-
other, originates a global PDF having tails
longer than those of a Gaussian density. 

6. Conclusions and developments

A robust procedure for noise estimation in a
sequence of hyperspectral bands has been de-
scribed and assessed. Noise PDFs and CCs in
each spectral band are automatically calculated
from the data. Knowledge of the noise PDF, es-
pecially if not heavy-tailed, may help exactly
circumscribe the range of noise values, with the
benefit that the loss of performance expected on
application tasks and due to the noise can be ac-
curately modelled and hence predicted to a
large extent. 

The procedure described in this paper could
be profitably utilized to assess the calibration
accuracy of the data, especially for de-striping,
whose performance can be measured as Gaus-
sianity of the noise in each spectral band. Even-
tually, spectral correlation of the noise, which is
low for sparse bands, but can significantly grow
when hundredths of bands are delivered by the
on-board instrument, can be measured by de-
vising a further bivariate regression between

homogeneous pixels in a couple of consecutive
bands. 
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