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1.  Introduction

The Gutenberg-Richter Law (from now on
GR Law) (Gutenberg and Richter, 1954) is cer-
tainly one of the most remarkable and ubiqui-
tous features of worldwide seismicity. In the
most common form it reads 

N M a bMLog = -^ h8 B (1.1)

where N is the number of events with magni-
tude M, and a and b are two constant coeffi-
cients. 

The scientific importance of the GR Law is
linked to its apparent ubiquity. It emerges in a
variety of tectonic settings and depth ranges, in
seismic catalogs ranging from a few months to
centuries, and in natural as well as induced seis-
micity. This ubiquity makes the GR law very
useful in seismic hazard studies, and very at-
tractive from a theoretical point of view. In past
years, many efforts were devoted to under-
standing the physical meaning of such a power
law, but the conclusions are diverging. Some
authors (e.g., Bak and Tang, 1989; Ito and Mat-
suzaki, 1990), by assuming a presumed univer-
sality of the parameter b and the implicit scale
independence in eq. (1.1), propose a model of
Self-Organized Criticality (SOC) to explain
earthquake occurrence. 
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In this frame, the fractal geometry distribu-
tion and the earthquake dynamics are the spatial
and temporal signatures of the same phenome-
non. On the other hand, several lines of empiri-
cal evidence dispute the universality of the GR
Law. In fact, in spite of a «first order» validity
of the GR Law with a constant b-value ≈ 1, sig-
nificant spatial and temporal variations in the b-
value seem to take place (Miyamura, 1962;
Healy et al., 1968; Pacheco and Sykes, 1992;
Kagan, 1997; Wiemer and McNutt, 1997;
Wiemer and Wyss, 1997; Wiemer et al., 1998;
Wiemer and Katsumata, 1999). These varia-
tions are usually attributed to many processes,
such as fault heterogeneity (Mogi, 1962), the
stress level imposed on rocks (Scholz, 1968),
and pore pressure variations. Another important
discrepancy of the hypothesis of the universali-
ty of the GR Law is that the latter seems to hold
only for a finite range of magnitudes (e.g.,
Pacheco and Sykes, 1992; Pacheco et al., 1992;
Scholz, 1997; Triep and Sykes, 1997; Knopoff,
2000). For example, Kagan (1993, 1994) found
that a gamma distribution better matches the re-
quirement of a maximum seismic energy re-
leased by an earthquake (cf. Wyss, 1973). In all
the cases reported above the b-value should not
be a constant in the earthquake catalog. 

The empirical validation of the «universal-
ity» hypothesis, as well as the identification
of spatial and temporal changes, passes
through the estimation of the b-value and its
uncertainty. Different formulas were pro-
posed in the past (e.g., Aki, 1965; Utsu, 1965,
1966; Shi and Bolt, 1982; Bender, 1983; Tin-
ti and Mulargia, 1987) which take into ac-
count the unavoidable binning of the magni-
tudes in different ways. As a matter of fact,
Aki’s formulas, which consider magnitude a
continuous random variable, are still the most
used. Implicitly, this means that, at least for
instrumental measurements, the effect of the
binning is considered negligible, and that all
the formulas mentioned above give almost
comparable estimations. In this paper, we re-
view the most diffuse formulas so far pro-
posed and investigate analytically and numer-
ically on the main properties of such estima-
tions. In particular, we estimate the reliability
and the possible bias of the formulas as a

function of the number of data and of the
measurement errors in the magnitude. 

Here, we do not consider the estimations
provided through the least squares technique. In
fact, even though this approach was still em-
ployed in many recent scientific papers (Pache-
co and Sykes, 1992; Pacheco et al., 1992;
Karnik and Klima, 1993; Okal and Kirby, 1995;
Scholz, 1997; Triep and Sykes, 1997; Main,
2000), the use of the least squares technique
does not have any statistical foundation (e.g.,
Page, 1968; Bender, 1983). 

2. Estimation of b and bv t through the
Maximum Likelihood technique

In the first papers that described the Maximum
Likelihood (ML) estimation (Aki, 1965; Utsu,
1965), the magnitude M was considered a contin-
uous Random Variable (RV). If eq. (1.1) holds, the
probability density function (pdf) of M is 

lnf M b 10
10 10

10
bM bM

bM

min max
=

-- -

-

^ ^h h (2.1)

where Mmin and Mmax are, respectively, the min-
imum and the maximum magnitude allowed. If
Mmax >> Mmin, eq. (2.1) becomes 

M 10 b M M min- - .lnf b 10=^ ^ ]h h g (2.2)

Note that the passage from eq. (2.1) to eq. (2.2)
requires that, in practice, the GR Law holds for
a range of magnitudes Mmax – Mmin ≥ 3. This as-
sumption might be questionable in studying
variations of the b-value in smaller ranges (e.g.,
Knopoff, 2000). 

The ML estimation of eq. (2.2) consists of
choosing the b-value which maximizes the like-
lihood function (Fisher, 1950), that is 

ln
b

M10

1

thresh

)=
-n

t
t^ `h j

(2.3)

where nt is the sampling average of the magni-
tudes, and Mthresh is the threshold magnitude
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which usually corresponds to the minimum
magnitude for the completeness of the seismic
catalog. Hereinafter, the symbol ^ distinguishes
the estimation by the true value of the parame-
ter. We have also attached an asterisk to b* in or-
der to distinguish it from another estimation
which we shall introduce later. The uncertainty
is estimated by (Aki, 1965) 

N

b
b =v

)
)t
t

t (2.4)

where N is the number of earthquakes. 
A major contribution was provided later on

by Shi and Bolt (1982) who provided a new for-
mula to estimate the error of the b-value 
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where N is the number of earthquakes. Com-
pared to eq. (2.4), eq. (2.5) provides a reliable
estimation also in the presence of possible (time
and/or spatial) variations of the b-value (Shi
and Bolt, 1982). 

As a matter of fact, the magnitude is not a
continuous variable and it is not devoid of meas-
urement errors. In practical cases, the uncertain-
ties on the measured magnitudes lead to the use
of «binned» magnitudes, i.e. the magnitudes are
grouped by using a selected interval ∆M. For in-
stance, for instrumental measurements, the
magnitude interval used for the grouping is ∆M
= 0.1; for magnitude estimation of historical
events, the grouping can even be ∆M ≥ 0.5. 

In spite of such unavoidable binning, the
«continuous» Aki’s (1965) formulas (eqs.
(2.3) and (2.4)) are probably the most em-
ployed in practical applications to estimate
the b-value and its uncertainty (e.g., Jin and
Aki, 1989; Henderson et al., 1994; Öncel et
al., 1996; Mori and Abercrombie, 1997; Utsu,
1999; Hiramatsu et al., 2000; Gerstenberger
et al., 2001; Klein et al., 2001; Vinciguerra et
al., 2001). In such cases, an implicit assump-
tion is that the binned magnitudes can be con-
sidered a continuous RV. While this approxi-

mation can be strictly justifed only for ∆M →
→ 0, in practice it is usually assumed also for
∆M = 0.1 (instrumental magnitudes). 

In the following sections, we consider sep-
arately the effects due to the binning of the
magnitudes and the measurement errors on
the estimations of the b-value and its uncer-
tainty. We remark that a wrong choice of the
completeness threshold magnitude Mthresh can
also cause a significant bias, as shown by
Wiemer and Wyss (2000). Here, we do not
deal with this issue, but it should be kept in
mind in any practical analysis. 

3. Influence of the binned magnitudes 

In this section, we first study the biases in-
troduced by the binning of the magnitudes in
the estimation of the b-value and its uncertain-
ty made through eqs. (2.3) and (2.4). Then, we
check through numerical simulations the relia-
bility of some formulas reported in scientific
literature which either assume the magnitudes
as a continuous RV or take properly into ac-
count the binning of the magnitudes. 

3.1. Effects of the binned magnitudes on Aki’s
(continuous) formulas

The use of eq. (2.3) produces a biased es-
timation of the real b-value, because of two
factors: i) the average µ of a continuous RV
with a power law distribution is different from
the average of the same «binned» RV; ii)
Mthresh ≠ Mmin. Hereinafter we will call these
biases θ1, and θ2, respectively. 

The influence of θ1 was estimated by Ben-
der (1983). She found that the sample average
nt computed from binned data is systematically
higher than the true value µ. This is due to the
fact that the real (continuous) magnitudes in the
interval Mi − ∆Μ/2 ≤ M < Mi + ∆Μ/2 are not
symmetrically distributed around the central
value Mi. Moreover, she showed that the bias θ1

is negligible for ∆M = 0.1, while it is very im-
portant for larger ∆M (for example, ∆M = 0.6),
that might be necessary to evaluate the b-value
for historical catalogs. 
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The bias θ 2 was considered by the first pa-
per which addressed the use of the binned
magnitudes (Utsu, 1966), suggesting a slight
modification of eq. (2.3). Since the lowest
binned magnitude, i.e. the threshold magni-
tude, contains all the magnitudes in the range
Mthresh − ∆Μ/2 ≤ M < Mthresh + ∆Μ/2, then Mmin =
= Mthresh − ∆Μ/2 < Mthresh (e.g., Bender, 1983).
Then, eq. (2.3) becomes 

.
ln

b
M M10 2

1

thresh

=
- -n ∆

t
t^ `h j: D

(3.1)

Remarkably, this «corrected» formula was not
largely employed. Utsu himself, in a recent paper
(Utsu, 1999), reported eq. (2.3) to estimate the b-
value. A major exception is the works making use
of ZMAP (e.g., Wiemer and Benoit, 1996; Wie-
mer and McNutt, 1997; Wiemer and Wyss, 1997,
2000) and ASPAR (Reasenberg, 1994) codes,
which estimate the b-value through eq. (3.1). Yet
surprisingly the correction reported in eq. (3.1) is
rarely explicitly mentioned in the scientific liter-
ature (e.g., Guo and Ogata, 1997). As a matter of
fact, we suspect that, in some cases, the correc-
tion reported in eq. (3.1) is used in the analysis
without explicitly mention of it in the manuscript.
For instance, Gerstenberger et al. (2001) quoted
Aki’s (1965) formulas (eq. (2.3)) in the manu-
script, but the code ZMAP written by one of the
authors (see above) contains the «corrected» for-
mula given by eq. (3.1). 

In any case, we argue that this correction
could have not been largely employed also be-
cause the influence of the bias θ 2 is erroneously
considered negligible. Indeed, the difference be-
tween b)t and bt , respectively the «non-corrected»
and «corrected» estimation, is certainly consider-
able because in a power law distribution the aver-
age µ is very close to the minimum value of the
distribution 
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For ∆M = 0.1 (as for instrumental magnitudes),
and .M 0 38thresh.-nt (obtained by eq. (3.2)
with b = 1) we obtain θ2 ≈ 0.13. 

Another crucial aspect, until now completely
neglected, concerns the effect of the bias θ 2 on
the estimation of the uncertainty given by eq.
(2.4) and the «corrected» form which reads 

.
N

b
b=vt
t

t (3.4)

The positive bias θ2 has two competitive effects.
It leads to an increase in the estimated uncertain-
ty; in fact, comparing eqs. (3.4) and (2.4) we ob-
tain 

b
1b b
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t
tt td n (3.5)

therefore, > .bbv v)t tt t On the other hand, the bias
θ 2 leads to an increase of the dispersion of the
RV b)t around its expected value. By neglecting
the bias θ1, the true variance of b)t is 
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where var (nt ) is the variance of the RV nt . In
the same way, we have 
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The validity of eqs. (3.6) and (3.7) deserves fur-
ther explanations. In particular, these equations
assume that E (b)t ) = b) and E(bt ) = b, respec-
tively. If we take the expected value of Taylor’s
expansion around the true value µ of eqs. (2.3)
and (3.1), we see that these assumptions hold
only for small deviations of nt , i.e. for large
datasets. Numerical investigations have shown
that the biases are negligible for datasets with
50 or more earthquakes.

By comparing eqs. (3.6) and (3.7) we obtain 

b
1b b

2

2

= +v i v)

t
t td n (3.8)

therefore, > .b bv v)t t From eqs. (3.5) and (3.8),
we can conclude that the true dispersion of the
RV b bv)

)t t^ h increases more than the increase in
the estimation of the uncertainty bv )t t . In other
words, eq. (2.4) provides an underestimation of
the true dispersion. 

3.2. Binned formulas 

After the correction suggested by Utsu
(1966), Bender (1983), Tinti and Mulargia
(1987) provided formulas to estimate the b-
value, by properly taking into account the
grouping of the magnitudes. Remarkably, be-
sides very few exceptions (e.g., Frohlich and
Davis, 1983), these formulas were almost ig-
nored in subsequent applications. We argue
that the reasons are mainly of a technical na-
ture. Bender’s (1983) formula, for example,
can be solved only numerically. Moreover, in
her analysis she gave more emphasis to the
bias θ1 introduced by the use of the continu-
ous approximation (eq. (2.3)), concluding that
the latter provides almost unbiased estima-
tions of the b-value if the magnitude interval
for the grouping is ∆M = 0.1. 

A definite improvement to the estimation
of the b-value was provided by Tinti and Mu-
largia (1987). Their formula reads 

1
lnb p

10
=

ln M∆TM
t

^
_

h
i (3.9)

where 

p
M
M

1
thresh

= +
-n
∆

t

J

L

K
K

N

P

O
O (3.10)

and the associated asymptotic error is 
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where N is the number of earthquakes. In this
case, we think the very scarce use of these for-
mulas was probably due to some kind of crypti-
cism of the paper. 

3.3. Numerical check 

In order to check the reliability of the formulas
described above, we simulate 1000 seismic cata-
logs, for different catalog sizes. The magnitudes M
are obtained by binning, with ∆M = 0.1 (as for the
instrumental magnitudes), a continuous RV dis-
tributed with a pdf given by eq. (2.2); in other
words, Mi is the magnitude attached to all the syn-
thetic seismic events with real continuous magni-
tude in the range Mi – 0.05 ≤ M < Mi + 0.05.

In fig. 1a,b we report the medians of b)t , bt and
bTM
t calculated in 1000 synthetic catalogs as a func-
tion of the number of data, for the case b = 1 and
b = 2. To each median is attached the 95% confi-
dence interval, given by the interval between the
2.5 and 97.5 percentile. From fig. 1a,b, we can see
that the estimation bTM

t (Tinti and Mulargia, 1987)
is bias free, also for a small dataset. As regards the
continuous formulas, with and without correction
(respectively eqs. (3.1) and (2.3)), we can see that
the bias θ2 reported in fig. 1a,b is comparable to the
theoretical expectation given by eq. (3.3). The cor-
rected estimation bt is undoubtedly much closer to
the real b-value. The slight underestimation of bt

(much less than 1% of the real b-value) is due to the
bias θ1 previously discussed (Bender, 1983).
Therefore, at least for ∆M = 0.1, θ1 can be neglect-
ed (e.g., Bender, 1983), but θ2 is certainly relevant. 

In order to evaluate the reliability of the
estimations of the uncertainty, it is necessary
to compare each estimation with the true dis-
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Fig. 2a,b. F test values (see eq. (3.12)) for the case of fig. 1a,b (see text). Open and solid squares are, respec-
tively, the F test values relative to the uncertainties given by eqs. (2.4) and (2.5). Open and solid circles are the
F test values relative to the same uncertainties calculated for bt instead of b)t (i.e. eq. (3.4)). Asterisks are the F
test values relative to the uncertainty calculated through eq. (3.11). The dotted line represents the critical value
to reject the null hypothesis at a significance level of 0.05. 

a b

Fig. 1a,b. Medians and 95% confidence bands of b)t (dashed lines),bt (dotted lines) and bTM
t (thicker solid line)

from 1000 synthetic catalogs, as a function of the catalog size, for the cases b = 1 (a) and b = 2 (b). The solid
thin line represents the true b-value. 

a b
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persion of estimation of the b-value around its
central value. In particular, we compare the
dispersion of the b-value estimation around
its average with the average of the estimated
uncertainties, through the Fisher test (e.g.,
Kalb- fleisch, 1979)

= Average of thesquare of the uncertainty
Variance of theestimation of the valueF b -

(3.12)

The null hypothesis is that the two variances are
the same.

The results are reported in fig. 2a,b. The most
interesting result is relative to the systematic re-
jection of the F test for the non-corrected case,
given by eq. (2.4). This means that the use of the
non-corrected estimation b)t (eq. (2.3)) leads to an
underestimation of its real dispersion. This fact is
very important because it might suggest varia-
tions in the b-value whereas they do not exist.
Note that the amplitude of this bias is correctly
estimated by eq. (3.8). On the contrary, all the
other estimations of the uncertainty do not have
significant biases. It is important to note that the
error estimated through eq. (2.5) (Shi and Bolt,
1982) is unbiased if the b-value is estimated
through the corrected (eq. (2.3)) and non-correct-
ed (eq. (3.1)) formulas.

4. Effects of the measurement errors 

In order to take into account the measure-
ment errors, we consider the «real» magni-
tude M

+
as a sum of two independent RVs 

M M= + f
+

(4.1)

where M is the earthquake magnitude devoid
of measurement errors distributed with a pdf
given by eq. (2.1), and ε simulates the meas-
urement errors distributed as a Gaussian
noise. The choice of the normal distribution
has been discussed in detail by Tinti and Mu-
largia (1985), and Rhoades (1996). 

In the case the two RVs, M and ε, are inde-
pendent, the statistical cumulative distribution of
M
+

can be obtained as follows (Ventsel, 1983;
Tinti and Mulargia, 1985; Rhoades, 1996)
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where G( M
+

) is the cumulative distribution of
M
+

, f1(M) is given by eq. (2.1), and f2 (ε) is N
(0, 2vf ) distributed. By differentiating with
respect to the variable M

+
, we obtain the pdf 
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In the case Mmax >> Mmin, eq. (4.3) becomes 
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The ML estimation of eq. (4.4) gives 
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Fig. 3a,b. As for fig. 1a,b, but relative to the case with added measurement error to the magnitudes. The stan-
dard deviations of the measurement errors are σε = 0.1, 0.3, 0.5 (from left to right). 

a

b
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a

b

Fig. 4a,b. As for fig. 2a,b, but relative to the case with added error to the magnitudes. The standard deviations
of the measurement errors are σε = 0.1, 0.3, 0.5 (from left to right). 
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where +n
/

is the sample average of M
+

. The first
three addenda represent the estimation of the b-
value without measurement errors (cf. eq. (2.3)),
while the term inside the braces is the addition-
al part which takes into account the measure-
ment errors.

4.1. Numerical check 

The contribution of the term inside the
bracket in eq. (4.5) to the b-value estimation
for different σε can be studied by adding meas-
urement errors to the synthetic catalogs gener-
ated as described before. 

In fig. 3a,b we report the results for differ-
ent σε. Compared to the case without measure-
ment errors (fig. 1a,b), the only observable dif-
ference is a global negative bias present in all
the estimations for b = 2 and σε = 0.5. This can
be due to the improper binning of ∆M = 0.1 in
the presence of larger measurement errors (σε
= 0.5). 

As regards the estimation of the uncertain-
ties bvt t and bv )t t , we operate as in the previous
case, by plotting the results of the F test (fig.
4a,b). The results are almost the same as those
obtained for the case without measurement er-
rors (fig. 2a,b). Note that also in this case the
use of eq. (2.4) leads to a significant underesti-
mation of the uncertainty. 

5. Final remarks 

The purpose of this paper was to review the
main concepts of the estimation of the b-value
and its uncertainty, and to provide new insights
on the reliability of different formulas reported
in scientific literature. The detection and quan-
tification of possible significant biases in such
estimations is a crucial issue in many scientific
applications, such as hazard studies and any at-
tempt to test the constancy or the universality
of the b-value. Here we studied analytically
and numerically the possible biases introduced
by the use of the binned magnitudes and meas-
urement errors on different formulas. 

We found that, in general, the influence of
the measurement errors appears negligible com-

pared to the effects of the binned magnitudes if
improperly dealt with. In particular, we found
that the most commonly used formulas (Aki,
1965; see eqs. (2.3) and (2.4)), which assume
the magnitude as a continuous random vari-
able, produce a strong bias in the estimation of
the b-value, and a significant underestimation
of its uncertainty. This means that any spatial
or temporal variation of the b-value obtained
by eqs. (2.3) and (2.4) has to be regarded with
a strong skepticism. On the contrary, we show
how the same continuous formula with a small
correction to take into account the binned mag-
nitudes (eqs. (3.1) and (3.4)) drastically re-
duces the biases of the b-value and of its un-
certainty. We also verified that other very sim-
ple formulas provided in the past (e.g., Tinti
and Mulargia, 1987) do not have significant bi-
ases and they work very well also with a small
dataset contaminated by realistic measurement
errors.
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