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Long-term trends in f0F2 over
Grahamstown using Neural Networks

Allon W.V. Poole and Martin Poole
Department of Physics and Electronics, Rhodes University, Grahamstown, Republic of South Africa

Abstract
Many authors have claimed to have found long-term trends in ƒ0F2, or the lack thereof, for different stations. Such
investigations usually involve gross assumptions about the variation of ƒ0F2 with solar activity in order to isolate
the long-term trend, and the variation with magnetic activity is often ignored completely. This work describes two
techniques that make use of Neural Networks to isolate long-term variations from variations due to season, local
time, solar and magnetic activity. The techniques are applied to ƒ0F2 data from Grahamstown, South Africa (26 E,
33 S). The maximum long-term change is shown to be extremely linear, and negative for most hours and days.
The maximum percentage change tends to occur in summer in the afternoon, but is noticeably dependent on solar
activity. The effect of magnetic activity on the percentage change is not marked.
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1.  Introduction

The ionospheric quantity ƒ0F2 is well known
to vary with season (day number, DN); diurnally
(hour LT, HR); and with solar activity and
magnetic activity. We need now to consider a fifth
variation, which we can call Long-Term Trend
(LTT). We approached the problem using two
techniques.

2.  The techniques

Technique 1 The methods of training a
Neural Network (NN) have been described

elsewhere (Poole and McKinnell, 2000) and will
not be repeated in detail here. Briefly, the NN
was trained with all usable hourly ƒ0F2 data from
1973-2000 as output or target data, and the four
variables DN, HR, F2 and A16 as concomitant
input data. F2 is a two month running mean of
the solar 10.7 cm flux, used as a measure of solar
activity, and A16 is a two day running mean of
the 3 hourly magnetic index, ak, used to measure
magnetic activity. After training, the NN
produces a value of ƒ0F2 for any combination of
the input variables.

The choice of two months for F2 and two
days for A16 was based on the results of an
independent investigation in which NNs were
trained with input variables of different lengths,
the optimum length being chosen as that length
which produced the minimum rms error
(Williscroft and Poole, 1996). The NN produces
the function F1 such that ƒ0F2 = F1 (DN, HR, F2,
A16). We will call ƒ0F2 evaluated in this way ƒ0F2

(NN). The function F1 thus embodies the variation
of ƒ0F2 for all combinations of the four input
variables, so that the residuals R evaluated
according to R = ƒ0F2(measured)  ƒ0F2 (NN) will
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Fig. 1a,b. The residual R plotted as a function of time for HR = a) 12 h 00 and b) 00 h 00, each with a fitted linear
regression line.
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b
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be independent of DN, HR, F2 and A16.
The residuals are due to short term, seemingly

random and chaotic deviations of measured ƒ0F2

from the model F1. However, the residuals will
contain information about long-term variation, if it
exists, since a variable representing LTT was not
included in the input to the NN. Accordingly, we
computed the residuals R for each datum used in
the training. These R were then grouped by hour
and plotted against time. The results are shown in
figs. 1a,b for 12 h 00 and 00 h 00 respectively. A
trendline has been fitted to both, the slope of which
gives the average rate of change of the residuals
with time in MHz/year. This method of plotting the
residuals versus time  is similar in principle to that
used by  Foppiano et al. (1999), and Upadhyay and
Mahajan (1998). It is also of interest that when the
trendline was fitted to the two groups (1973-1986)
and (1987-2000) separately, almost identical slopes
were obtained, indicating a negligible second
derivative with respect to time.

Technique 2 For this treatment we included
the index (1-245448) which measured the
chronological position of each hourly datum
(1 = 00 h 00, 1 January 1973; 245448 = 23 h 00,
31 December 2000) as an indicator for LTT. We
trained a NN with this extra input to create a
function F2 (DN, HR, F2, A16, LTT) and then
interrogated this network with appropriate synthetic
data to determine long-term trends for a variety of
situations. To show the linearity of the general
decline in ƒ0F2, the NN was interrogated at 5 equally
spaced times during the total period, corresponding
to LTT = 10 000, 60 000, 110 000, 160 000 and
210 000, for the 16 combinations of DN = 81, 172,
265, 356 and HR = 00 h 00, 06 h 00, 12 h 00 and
18 h 00, for low solar activity and low magnetic
index.  These are presented in the 16 graphs in fig.
2. The chosen daynumbers DN = 81, 172, 265 and
356 correspond to autumn equinox, winter solstice,
spring equinox and summer solstice respectively.
In the diagrams of fig. 2 the index LTT along the
x-axis has been converted back to years for clarity.
The values of ƒ0F2 and the error bars are formed by
taking the mean, and standard deviation of the mean,
of 20 Neural Networks all trained with the same
data but with unique, arbitrary and random starting
conditions. Because NNs proceed to their final

value by an iterative process involving least
squares, they do not provide unique solutions,
and need to be averaged to minimize this
statistical variation. The calculated uncertainty
in the evaluation of ƒ0F2 from the NNs varies
slightly with the input parameters, but is of the
order of 0.03 MHz, well below the long-term
changes made evident by this investigation. In
this context, «low» is the lower quartile value of
all the F2 or A16 data in the period 1973-2000.
We have diagrams similar to fig. 2 for the three
other combinations of (F2, A16) = (low, high),
where «high» is similarly the value of the upper
quartile. These diagrams are similar to fig. 2 but
differ in the magnitudes of the slopes, and are
not presented here. Figure 2 is presented to
illustrate the extreme linearity of the decreases,
where present. Because of this linearity, it is
meaningful to express the change as a simple
difference between the values given by F2 for
LTT = 10 000 and LTT = 210 000, a separation
in time corresponding to 22.83 years. We
calculated the quantity

ƒ0F2 (DN, HR) =

F2(DN, HR, L, L, 210 000) 

 F2 (DN, HR, L, L, 10 000)

and plotted it in two dimensions against DN
(converted to months) and HR in fig. 3a-d.

The fig. 3a shows a general negative change
in ƒ0F2 with time, with peaks occurring as shown
in table I.

There is a small positive change of + 0.07
MHz which peaks at (DN, HR) = (196, 18 h 00).

The values of the other input parameters F2
and A16 for each of the figs. 3a to 3d are given
in table II.

In table II, the symbols L and H refer to the
lower and upper quartile values of F2 and A16,
evaluated over the period 1973-2000, and so
represent «low» and «high» values of solar and
magnetic activity. Figure 3a is thus the response
for low solar and low magnetic activity. Figures
4a to 4d show the same differences, but presented
as a percentage change according to ƒ0F2% =
[ƒ0F2 (NN, LTT = 210 000)  ƒ0F2(NN, LTT =
10 000)] × 100 / ƒ0F2 (NN, LTT = 10 000).
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Fig.  3a-d.  Contour maps of the function ƒ0F2 versus DN and HR for F2, A16 = a) LL; b) HL; c) LH, and d) HH.

a b

c d

3.  Discussion and conclusions

The slope of the regression line through the
12 h 00 residuals shown in fig. 1a was found to
be 0.01479 ± .00012 MHz/year, calculated
using standard techniques. The small value of
the uncertainty in the slope attests to the statistical
reliability of the result, and is a consequence of
the large number (8083) of points in the
regression. Note that these residuals include
every combination of DN, F2 and A16 that was
present in the data, and so represent a decrease
averaged over all these variables. This is an
important point because, as will be shown, the
decrease is dependent on all these variables to a
greater or lesser extent. The second technique,
indeed, gives results that are specific for parti-

DN HR ƒ0F2/[MHz] MHz/year

23 13h00 0.41 0.018
286 15h00 0.37 0.016

Table  I.  Peak values of negative change.

Figure F2 A16

3(a) L L
3(b) H L
3(c) L H
3(d) H H

Table  II. Upper and lower quartile value of F2
and A16
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Fig. 4a-d. Contour maps of the function ƒ0F2 versus DN and HR for F2, A16 = a) LL; b) HL; c) LH, and d) HH.

a b

c d

cular values of DN, HR, F2 and A16, and can be
regarded as an average long-term behaviour for
any chosen set of the four input variables. A
comparison of the two techniques is possible by
choosing an hour (HR = 12 h 00) and averaging

ƒ0F2 (12 h 00) over DN = 1 365 for each of the
four combinations of F2, A16 = H,L and dividing
by the 22.83 year separation. This can be compared
with the figure quoted above, and is found to be

0.015 MHz/year, which shows consistency in the
two techniques. The equivalent results for 00 h 00
are 0.00244 ± .00067 MHz/year (technique 1)
and 0.00557 MHz/year (technique 2) which
agree at least in their order of magnitude.

A general result is that, at low solar activity,
the largest negative percentage change occurs

between 09h00 and 20h00 during late summer
(figs. 4a,c). At high solar activity, there are very
pronounced negative peaks at around 21h00 near
the equinoxes. The effect of increased magnetic
activity is not marked (compare figs. 4a with 4c,
4b with 4d). Note that the contention by, for
instance, Danilov (2000), that longterm trends
in ƒ0F2 could be explained by changes in the
spatial and temporal morphology of magnetic
storms would not be revealed by these techniques
since the influence of such storms is specifically
removed from the residuals in technique 1, and
specifically catered for in technique 2.

We have not, in this publication, attempted
an explanation for these quite large negative
trends in ƒ0F2 over Grahamstown. They appear
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to be amongst the largest reported in the literature
(Foppiano et al., 1999; Upadhyay and Mahajan,
1998; Chandra et al., 1997). We intend to analyse
data from other stations before venturing an
explanation. However, the methods we have used,
involving Neural Networks to remove the known
dependencies, appear to be reliable, and stress the
fact that long-term trends are very dependent on
season, local time, solar activity and to a lesser
extent, magnetic activity. It is thus not possible to
make quantitative statements about long-term
trends unless one is specific about geophysical
circumstances (DN, HR, F2, A16) under which the
comparisons are made. These dependencies should
provide valuable clues to the reasons for the
changes, when applied to other ionospheric stations.
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