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Abstract
The monitoring of the underground medium requires estimation of the accuracy of the methods used. Numerical
simulation of the solution of 2D inverse problem on the reconstruction of seismic and electrical parameters of
local (comparable in size with the wavelength) inhomogeneities by the diffraction tomography method based
upon the first order Born approximation is considered. The direct problems for the Lame and Maxwell equations
are solved by the finite difference method that allows us to take correctly into account the diffraction phenomenon
produced by the target inhomogeneities with simple and complex geometry. For reconstruction of the local
inhomogeneities the algebraic methods and the optimizing procedures are used. The investigation includes a
parametric representation of inhomogeneities by the simple and complex functions. The results of estimation of
the accuracy of the reconstruction of elastic inhomogeneities and inhomogeneities of electrical conductivity by
the diffraction tomography method are represented.

1.  Introduction

Diffraction tomography is an imaging tech-
nique that makes use of a large volume of input
data (recorded traces) to produce the image of
underground medium parameters with high
spatial resolution. In contrast to ray tomography
(travel time tomography), for which the re-
solution is connected with the Fresnel zone and
the large number of the source-receiver pairs is
required, diffraction tomography (Devaney,

1984; Devaney and Zhang, 1991; Zhou et al.,
1993; Ryzhikov and Troyan, 1994; Alumbaugh
and Morrison, 1995; Kiselev and Troyan, 1997)
provides information on the medium parameters
with subwavelength resolution.

In our study (a complete review of dev-
elopment of the diffraction tomography is in-
troduced in (Devaney and Zhang, 1991)) most
attention is given to an estimation of the accuracy
of multiparametric reconstruction of elastic
parameters and reconstruction of an electrical
conductivity with the use of sounding by elastic
wave and electromagnetic wave correspondingly.
As a tool for our investigation, we use numerical
simulation in 2D space domain. The direct
problem is solved by the finite difference method
that allows us correctly to take into account the
diffraction phenomenon produced by the target
inhomogeneities. The linearized inverse problem
is solved by the diffraction tomography method
with the use of the first order Born approximation
(Keller, 1969).
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The applicability of the first order Born
approximation in diffraction tomography is
shown (Slaney et al., 1984) by numerical sim-
ulation conducted on a single cylinder using
analytical expressions for the exact scattering
field.

Beylkin and Burridge (1990) describe the
multiparametric inversion in the time domain
in the cases of acoustic and elasticity on the basis
of the generalized Radon transform. This
approach requires a large number of the source-
receiver pairs. We also implement multi-
parametric reconstruction in the time domain,
but our numerical simulation is realized with
not more than three sources and three receivers
(nine source-receiver pairs). For the multi-
parametric reconstruction in the elastic case
(reconstruction of the Lame parameters, mass
density and as a corollary – shear and lon-
gitudinal velocities) the optimizing procedures
are used. The multiparametric reconstruction
makes use of amplitude information connected
to the scattering characteristic (Wu and Aki,
1985; Beylkin and Burridge, 1990) of the
elementary disturbances of the reconstructed
parameters. Under tomography experiment,
these scattering characteristics should be taken
into account by the use of the relevant ob-
servation schemes.  Scattering by the elementary
disturbances of the parameters can be described
with the use of tomography functionals
(Ryzhikov and Troyan, 1994; Troyan and
Ryzhikov, 1994), which in a form of the ray
series are represented for elastic and electro-
magnetic cases.

2.  Basic equations and algorithms for
elastic case

The numerical simulation to reconstruct the
parameters of local inhomogeneities with a
smooth change of the elastic parameters , µ and
mass density is carried out for two-dimensional
model of the elastic medium, containing the free
surface and plane-parallel welded interfaces.

The source f f (x, t), located in the point
(x = xS , z = zS) of the Cartesian system of
coordinates (x, y ,z; e1 , e2 , e3), produces the wave
field u u (x, z, t) u (x, t) which satisfies the

equation

(2.1)

Boundary condition at the free surface (z = 0) is

and at welded interfaces (z = zi) we assume that

(2.3)

The field u will be produced by the sources f , f 1, f 3

(2.4)

with the time dependences f (t) and (t), which
are located at the source point x = (xS, zS) and at
the observation point x = (xr, zr). The velocities
of longitudinal ( p ) and shear ( s ) waves,
expressed through the quantities , µ, , read as

(2.5)

We introduce the differences = rf , µ =
µ  µrf and = rf of the values , µ, , for
the unknown medium, which are connected with

µ µ2u u u+ + × + ( ) .
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the wave field u(x, t)

(2.6)

and the values λrf (x), µrf (x), ρrf (x) for the known,
reference (rf) medium for which the wave field
is urf (x,t)

(2.7)

Assuming δλ, δµ, and δρ are small we can write

(2.8)

where δu = u − urf is the difference field. The
right hand side of (2.8)

(2.9)

can be considered as a source of this field.
We shall represent the components of the

difference field δui from (2.8) at the observation
point of x = xr, as following:

(2.10)

where S is the region of reconstruction;
and                       ,        are the solutions

of the eqs. (with sources from (2.4))

(2.11)

and

(2.12)

respectively.
After introducing the tomography functionals

(Troyan and Ryzhikov, 1994)

(2.13)

the components of the difference field δui (2.10)
can be written down as

(2.14)

Using the linear relations between δλ (x),  δρ (x)
and δµ (x)

          δλ (x) = cλδµ (x), δρ (x) = cρδµ (x),     (2.15)

(cλ = const, cρ = const)

λ µ µL L= − ≡ +( ) ∇∇ ⋅ + +ˆu f,      u u u∆
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u urf rf≈ −δ δL L
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2L j
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u
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the eq. (2.14) can be rewritten as

(2.16)

After the digitization of the eq. (2.16), the system
of equations for determination of δµ (vector dµ ),
cλ and cρ can be written as

 P(cλ ,cρ )dµ = du                     (2.17)

where du are the samples of the scattered field. The
final version of this system after introducing
regularizing terms reads as

(2.18)

where α1, α2, α3 are the regularizing coefficients;
matrices Bx and Bz are the finite difference images
of second partial derivatives with respect to x and
z correspondingly; C and D are penalty matrices
for non-zero values of δµ at boundary and near
boundary points of the reconstructed region S.

We find δµ, cλ and cρ by using an iterative
procedure. At the first step the system of linear
eqs. (2.18) is solved with some initial values cλ

(0)

and cρ
(0). By minimizing the sum of squared

differences of the left-hand side and the right-hand
side of (2.17), we find c

λ
(1) and cρ

(1), which are the
corrected values of cλ

(0) and cρ
(0). At the second step,

the values c
λ
(1) and cρ

(1) are used for solution of the
system of linear eqs. (2.18). The convergence of
this procedure is based on the distinctions of the
scattering diagrams (Wu and Aki, 1985) created
by the elementary disturbances of λ, µ, ρ. Similar
distinctions can be studied, for example, using
formulas (2.21) given below.

2.1. Ray representation of the tomography
functionals

The components of the wave field δui(xS,xr ,t)
(i = 1, 3) scattered by local inhomogeneity

(δλ, δµ, δρ) for incident wave field u (x, xS, t)
are given by relations (2.14), (2.13).

Using the ray method the fields u (x, xS,t),
u~ i(x,xr ,t) (2.11)-(2.13) can be represented as
following:

(2.19)

where τ~q ≡ τ~q(x,xr) (τq ≡ τq(x,xS)) is the time of
propagation of a wave from point xr, (xS) to a
point x. Substituting of the relations (2.19) in
(2.13) we write down the quantities
in the form of the ray series

(2.20)

thus the coefficients                                        read
as

(2.21)
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3.  Basic equations and algorithms for
electromagnetic case

Numerical simulation to reconstruct the
local inhomogeneities of electrical conductivity
σ = σ (x), located in the uniform space (electrical
conductivity σ = const, electrical permittivity
ε′  = εε0 = const, magnetic permittivity µ′  = µµ0

= const) is implemented for the 2D problem.
Electrical (E = E(x,t)) and magnetic (H = H(x, t))
fields excited by a current density jex = jex (x, t)
satisfy to the Maxwell equations

(3.1)

Electrical field E = E(x,t) in the medium,
containing the local inhomogeneity (σ = σ (x),
ε′ = ε′(x), µ′ = µ′(x)) (1) is given by a solution of
the equation

(3.2)

The reference medium (rf ) is supposed to be known
(σrf ,εrf,µrf) and electrical field Erf satisfies to the equation

(3.3)

As in the case of scattering by elastic inhomo-
geneities discussed earlier, we assume that
magnitudes of the values δσ = σ − σrf , δε = ε′ − εrf

and δµ = µ′ − µrf make it possible to write an
approximate equality

(3.4)

where δE = E − Erf is the difference field. Thus,
the value

(3.5)

can be considered as a source of this field.  The
components of the difference field δEi is possible
to write down as

(3.6)

that coinciding to within notations with (2.10).
Wave fields E(x, xs , τ ) and E

~
i(x, xr , t − τ ) satisfy,

respectively, the following equations:

(3.7)

where in a two-dimensional case the sources from
(2.4) are used.

Introducing the tomography functionals

(3.8)
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(1) The main relations considered below will be written
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anomalies of electrical permittivity and magnetic
permittivity.
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the components of the difference field can be
written as

(3.9)

We will consider the numerical experiments on
reconstruction of the anomalies of electrical
conductivity  ( = 0, µ = 0). In this case, after
the digitization, the integral eq. (3.9) can write
as the system of linear equations

     Pd  = dE                     (3.10)

with respect to vector d , which is sought for the
value (x), where dE is the time samples of the
components of the wave field scattered by
inhomogeneity. The final version of these
equations, after introducing the regularization
terms, is coincident with the system of linear
equations similar to (2.18).

3.1 Ray representation of the tomography
functionals

In Section 2.1 the expressions for the
tomography functionals (2.13) were written out
in the case of the ray description of the wave
fields u and u~ i , which are included into the
integrands of the right-hand sides of (2.13).
By assuming that the value of electrical
conductivity for the reference medium is equal
to zero, we can represent the wave fields E and
E
~

i  from (3.8) as

(3.11)

and can write the tomography functionals (3.8)

in a form of the ray series

(3.12)

In a case of n = 0 the values       ,       and      are re-
presented by the amplitude factors of the zero
approximation A0i, A and eikonals ~, (from
(3.11))

         (3.13)

The values (from (3.13)) describe the
space characteristics of the scattered fields, which
are produced by the elementary inhomoge-
neities ( , , µ) at the far-field region. The
directivity diagrams in the cases of scattering by
perturbation of electrical conductivity and
electrical permittivity coincide. The wave field
scattered by perturbation of electrical permittivity
contains higher frequencies than the wave field
scattered by perturbation of electrical con-
ductivity.

It should be noted that formula (3.13) for the
values         and         coincides with the formula for
scattering the elastic wave field by the elementary
perturbation of mass density (2).
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(2) Graphic representation of directivity diagrams for
the elastic and electromagnetic cases can be found in
Wu and Aki (1985) and Saintenoy and Tarantola
(2001).
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4.  Numerical simulation

4.1.  Elastic case

As the result of numerical simulation, we
obtain the values , µ and . With formula
from (2.5) we get value of p. The observation
scheme and the location of inhomogeneity are
represented in fig. 1. The sources and observation
points (9 pairs) are located at the free surface.

The results of reconstruction of p are rep-
resented in figs. 2a-d and 3a-d. Figure 2a and
fig. 3a show the models of two inhomogeneities
with 20% contrast relatively to the reference
medium. These inhomogeneities are located
inside the layer with intermediate velocity. Figure
2b,c and fig. 3b show the results of reconstruction
obtained by the solution of the system of eqs.
(2.18) with the different values of the regularizing
coefficients. The relative error of the recon-
struction in these cases is 20-25% (with the use
of two components of the wave field). For the
cases of more contrast inhomogeneities (20-40%)
the accuracy of reconstruction can be ~ 50%.
Figure 2d and fig. 3c,d show the results of
reconstruction using one (fig. 2d and fig. 3d) or

three (fig. 3c) parametric functions. In these
cases, we solve the system of the eqs. (2.17) by
minimization of the sum of squared differences
between the left-hand side and the right hand-
side of (2.17). The reconstruction with the use
of just one simple parametric function is very
stable.

From numerical simulation, we conclude that
the realization of the diffraction tomography
method offered in Ryzhikov and Troyan (1994),
under appropriate observation scheme, allows
satisfactory accuracy for velocity parameter
reconstruction in the case of not very contrast
inhomogeneities of size of ~ p at small number
of source-receiver pairs.

4.2. Electromagnetic case

The model of inhomogeneity of electrical
conductivity together with the results of re-
construction are represented in fig. 4a-c. The
inhomogeneity, comparable in size with the
wavelength of the sounding signal, is located
inside the uniform space (reference medium) with
parameters: = 10, µ = 1, = 0. The maximum

.

Fig.  1.  Model of medium and observation scheme. S is the region for reconstruction; location of inhomogeneity -
black color; 1, 2, 3 are the source and the observation points locations; s; s / p = 1/   .3
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a b

c d

Fig.   2a-d. Reconstruction of p for symmetric inhomogeneity. a) The model; b,d) results of reconstruction; b,c)
solution of the system (2.18) with 3 = 0 and 3 0 respectively; d) reconstruction in case of representation of
reconstructed inhomogeneity by simple parametric function.

value of electrical conductivity is 10 3 S/m. An
apparent frequency of the sounding signal is
5 × 106 Hz. We use the observation scheme which
is similar to the observation scheme represented

in fig. 1. Distance between the observation line
and the center of inhomogeneity is 10 ( = 20
m). The system of the linear eqs. (3.10) is solved
under introducing the minimum magnitudes of
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a b

c d

Fig.  3a-d.  Reconstruction of p for asymmetric inhomogeneity. a) The model; b,d) results of reconstruction;
b) solution of the system of eq. (2.18) with 3 = 0; c,d) representation of reconstructed inhomogeneity by three
and one simple parametric function correspondingly.

the regularizing coefficients 1, 2, 3 (2.18). The
errors of reconstruction in considered numerical
example are 50% (fig. 4b) and 30% (fig. 4c). The
accuracy of reconstruction of inhomogeneities

of electrical conductivity has a stronger de-
pendence on the values of the regularizing
coefficients in comparison with the elastic case.
This difference can be explained by greater
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Fig. 4a-c. Reconstruction of electrical conductivity. a) The model; b,c) results of reconstruction; in the case (b)
the regularizing coefficients are ten times greater than in the case (c).

a

b c
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distortion of a shape of the scattered signal in
the case of reconstruction of electrical con-
ductivity.
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