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Probabilistic interpretation
of «Bath’s Law»

Anna Maria Lombardi
Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

Abstract
Assuming that, in a catalog, all the earthquakes with magnitude larger than or equal to a cutoff magnitude Mc

follow the Gutenberg-Richter Law, the compatibility of this hypothesis with «Bath’s Law» is examined. Consi-
dering the mainshock M 0 and the largest aftershock M 1 of a sequence respectively as the first and the second
largest order statistic of a sample of independent and identically distributed exponential random variables, the
distribution of M 0 , M 1 and of their difference D1 is evaluated. In particular, it is analyzed as the distribution of D1

changes when only the sequences with the magnitude of the mainshock above a second threshold Mc
* Mc are

considered. It results that the distributions of M 0 , M 1 and D1 depend on the difference Mc
* Mc and on the

number of events in the sequence. Moreover, the expected value of D1 increases with increasing of Mc
* Mc for

every value of N. Then it is shown that «Bath’s Law» could be ascribed to selection of data caused by the two
thresholds Mc and Mc

* and that it has a qualitative agreement with the model proposed.

1.  Introduction

In 1958, Richter, in a note to his book, wrote:
«Dr. Bath has lately noted that in many instances
the magnitude of the largest aftershock is about
1.2 less than that of the main shock» (Richter,
1958, pag. 69).

Some years later, Bath (1965) confirmed this
issue, asserting that in a catalog for shallow
shocks and for magnitudes based on the surface
wave scale the sample mean of the difference D1

between the magnitude of the mainshock M 0 and
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the respective largest aftershock M 1 followed the
rule

(1.1)

independently of the sequences examined. He also
provided some examples for which the formula
(1.1) did not completely fit the data and tried to
make changes to it.

In spite of this, from then onwards, eq. (1.1)
has become, under the name of «Bath’s Law»,
one of the most important and mentioned
statistical laws concerning the distribution of the
earthquakes in a seismic sequence. Several
papers have been published concerning the law
and many related aspects (i.e. the distribution of
the mainshock and the one of the larger
aftershock; the distribution of the events in a
sequence; the relation of M 0, M 1 and D1 with b
or with the number of events in the sequence, ...)
and in particular, diverse attempts have been
made to provide a statistical explanation of the
eq. (1.1).

The most commonly accepted form for the
magnitude distribution in a catalog is expressed
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by the well-known formula (Gutenberg-Richter
law)

(1.2)

where N (M) is the number of events with mag-
nitude larger than of equal to M (Gutenberg-
Richter, 1954). This equation is equivalent to
the statement that the magnitudes of events
in a catalog are independent and identically
distributed random variables: their distribution
is exponential with parameter = b ln(10)
(Ranalli, 1969). Considering that the estimated
value of the parameter b in eq. (1.2) is close to
unity, the value of is about 2.3.

If Mc is the cutoff magnitude (the lowest
magnitude above which the data set is complete),
the density function of the above-mentioned
magnitudes is (Ranalli, 1969)

(1.3)

Utsu (1961, 1969) noted that if the magnitude of
the mainshock was included in the sample of
random variables with density function (1.3), the
Gutenberg-Richter law and «Bath’s Law» were
in strong contradiction. In fact, it is well-known
by the theory of order statistics that if M1, ...MN

are independent and identically distributed
random variables with density function (1.3),
then the difference between the largest order
statistic M (N) and the second largest order statistic
M (N-1) is an exponential random variable with the
same parameter as in (1.3), irrespective of the
sample size N; furthermore, under the same
assumptions, this difference is positively
correlated with M (N ) (Feller, 1966; Utsu, 1969;
Vere-Jones, 1969). Therefore Utsu pointed out
that, if the mainshock was included in the random
sample, the observed sample mean of D1 (equal
to 1.2) was considerably larger than the expected
value 1/ (�0.5). Moreover, the positive
correlation between M (N ) and M (N ) M (N-1), pre-
dicted by the Probability Theory, was in
disagreement with the independence, implicit in
«Bath’s Law», or with the marked negative
correlation, observed by himself on the Japanese
aftershock sequences (Utsu, 1961, 1969),

log10 N M a bM( )[ ] =

f m e m Mm Mc( ) = ( )
c.

between D1 and M0. He inferred from these results
that the mainshocks had a different distribution
from the aftershocks: it was not acceptable to
consider the mainshock as the largest order
statistic of an exponential random sample.

The statistical interpretation of Utsu was
confuted by Vere-Jones (1969): he ascribed the
discrepancies observed by Utsu to the bias in
selecting data and not to intrinsic properties of
the aftershocks. In fact, only the sequences with
the magnitude of the mainshock above a second
threshold Mc

* (larger than Mc) were included
in the data set. This selection caused, in his opin-
ion, a different distribution of order statistics,
an expected value larger than 1/ for D1 and
a negative correlation between M0 and D1.
Therefore, he concluded that «Bath’s Law» and
the results of Utsu were compatible with the
hypothesis that the mainshock is the largest
member of a sample of independent exponential
random variables. He corroborated this thesis in
a second work (Vere-Jones, 1975).

It does not seem that the following papers on
distribution of D1 (Papazachos, 1974; Purcaru,
1974; Tsapanos, 1990) have accepted the in-
terpretation given by Vere-Jones, preferring to it
the one given by Utsu. Moreover, in other papers,
«Bath’s Law» is mentioned as a proof that the
mainshock does not come from the same
population as the aftershocks (Evison, 1999;
Evison and Rhoades, 2001; Lavenda and Cipol-
lone, 2000). On the contrary, in my opinion, Vere-
Jones provides a satisfying explanation of the
problem.

The purpose of this paper is to go on with the
interpretation of Vere-Jones making a thorough
mathematical analysis of «Bath’s Law» and of
related matters,  based only upon basic elements
of the Probability Theory, and to verify if the
hypothesis that all the events come from the same
population and «Bath’s Law» are compatible.

2.  Data and statistical analysis

Considering the magnitudes of the main-
shock and of its aftershocks as a sample of
independent and exponential distributed random
variables, it is possible to evaluate the density
functions ofM0,M1 andD1 conditioned by the event
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{M0 Mc
*} and the relative expected values. In

Appendix A, the mathematical elaboration is
explained in detail: it is shown as the conditional
ditributions of M0,M1 andD1 depend on b, Mc

* Mc

and on the number N of aftershocks in the sequence
(see eqs. (A.5), (A.7), (A.8)).

To verify the reliability of the hypothesis of
full compatibility between the Gutenberg-Richter
law and «Bath’s law», the catalog compiled by
the Southern California Earthquake Data Center,
including events with magnitude equal to or
larger than 2.0 occurred in the time period 1990-
2001, was analyzed; the total number of events
is 62 394.  As fig. 1 shows, the Gutenberg-Richter
law fits very well the magnitudes of events and
the catalog can be considered complete.

To decluster the above-mentioned catalog the
Reasenberg algorithm was used (Reasenberg,
1985). The clusters with aftershocks identified
number 1763 and the clustered events are 33 360.

To estimate the b-value the maximum like-
lihood method was used (Utsu, 1966). The value
obtained was b̂ = 0.8851.

The dependence of probability distributions
of M 0, M 1 and D1 on N implies that, to make a
statistical analysis, the data must be divided into
groups according to the size of clusters.

Table I shows the results of the analysis of
catalog: the data have been divided into groups
and only the results relative to all clusters and to
groups with at least 30 sequences have been re-
ported. The clusters with Mc

*= 4.0 and Mc = 2.0
have a very variable size and it is impossible
to make a statistical analysis with data relative
to a single value of N; then only the results
relative to all clusters have been reported. Com-
paring the sample mean of M 0 and D1 (M� 0, D�1 ),
relative to clusters with number of events N
(foreshocks have been left out) and with
thresholds Mc and Mc

*, with the corresponding

Fig.  1. Gutenberg-Richter law for clustered events (33 360) of Southern California catalog, with magnitude  2.0
which occurred in the interval time 1990-2001.
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efficient is inside the range [0.6-0.9]. Also by
the analysis of the catalog it results that D1 and
M0 are positively correlated random variables
and that the estimated values of the correlation
coefficient agree with the theoretical ones. As
table I shows, the overall estimated correlation
coefficient between M 0 and D1 for Mc

* = 4.0 and
Mc= 2.0 is very near to 0. As I show in following
section, this results is not in contradiction with
the positive values of the theoretical correlation
coefficient plotted in fig. 2.

3. Discussion

Unfortunaly, it is very difficult to verify, with
a rigorous statistical test, if the theoretical

averages expected by the model (IE[M0], IE[D1]),
a substantial agreement can be noted: for the
same value of N the sample mean for D1 in-
creases with increasing Mc

* Mc and the overall
mean value 1.2 can be justified only for a
difference between the two thresholds equal
to 2.

The table also lists the estimated values of the
correlation coefficient between M0 and D1

(EstCorr [M 0, D1] ) and the corresponding valu-
es predicted by the model

. For the sake of brevity not all calcula-
tions to evaluate it by the model are reported.
However in fig. 2 its theoretical values are plotted
versus N for four values of Mc

* Mc,N 100 and
for b=1. As fig. 2 shows, M 0 and D1 are always
positively correlated and the correlation co-

  
Corr N

D M1 0, /( )[( M0/{
Mc}] )

Table I. Results of the statistical analysis of the Southern California catalog divided according to number of
events in every cluster and to the difference of the two thresholds. N is the number of events in the cluster
(foreshocks have been left out); Ncl is the number of clusters with number of events N (only values with Ncl 30 are
shown);     is the sample mean of D1;    is the theoretical expected value of D1;      is the sample mean of M0;

is the theoretical expected value of M0; EstCorr[M0, D1] is the estimated sample correlation coefficient;
Corr[M 0, D1] is the theoretical correlation coefficient. In columns relative to    and   , after the symbol ± , there
is the standard deviation of the relative variable.

  D1

  
M 0   D1

N Ncl �D1 IE [D1 ] �M 0 IE [M 0 ] EstCorr [M 0, D1 ] Corr [M 0, D1 ]

all 1763 0.4487±0.4607 0.4907 2.8836±0.6914 0.7036
2 1077 0.4162±0.4329 0.4907 2.6713±0.5079 2.6860 0.8327 0.8944

Mc
* = 2.0 3 285 0.4368±0.4590 0.4907 2.8368±0.5460 2.8496 0.8063 0.8571

Mc  = 2.0 4 99 0.5515±0.5346 0.4907 3.1253±0.6428 2.9722 0.8259 0.8381
(1763 clusters) 5 58 0.5224±0.5991 0.4907 3.2879±0.6931 3.0704 0.7628 0.8266

6 36 0.5306±0.4720 0.4907 3.2083±0.6429 3.1521 0.8626 0.8189
7 32 0.4812±0.5727 0.4907 3.1000±0.5913 3.2222 0.8325 0.8133

all 653 0.8190±0.5212 3.5881±0.6141 0.4082
Mc

* = 3.0 2 275 0.9262±0.4867 1.1039 3.3629±0.3950 3.4578 0.6509 0.8003
Mc = 2.0 3 100 0.8260±0.5266 0.9335 3.4320±0.4360 3.4751 0.6963 0.7782
(653 clusters) 4 54 0.8556±0.5375 0.8318 3.5852±0.4788 3.4926 0.7438 0.7740

5 37 0.7405±0.6453 0.7628 3.6676±0.5696 3.5102 0.7020 0.7742

Mc
* = 4.0

Mc  = 2.0 all 142 1.1718±0.6492 4.5204±0.5936 0.0766
(142 clusters)

  
D1[ ]IE

  
M0[ ]IE

  
M 0
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distribution evaluated in Appendix fit the data
used by Utsu and other authors for their statistical
analyses, most of all because the sample size N
of every sequence is not known. However some
results, presented in the works on «Bath’s Law»,
seem to agree with the model. For example, an
explanation of Purcaru’s results (1974), obtained
in his analysis of Japanese and Greek data, can
be provided. In his paper, he observed that in
both data sets, M 0 followed the exponential
distribution with the same parameter as the
distribution of general earthquakes. Vere-Jones
(1969) showed that this result was incompatible
with the Probability Theory (the maximum of
a sample of N independent and identically
distributed random variables does not follow the
same distribution as the elements of the sample)
and that the distribution of M 0 was only asymp-
totically (i.e. when Mc

* + ) an exponential
one. Figure A.1a-e shows that for every value of
N, M 0 is not an exponential random variable and
that the mainshocks have a different distribution

from that of any random variable in the sample:
in fact it is not a generic variable of the sample,
but it is the largest one. However, the distribution
of M 0 converges rather fast to an exponential
when Mc

* Mc + and then the model is
completely in agreement with their conclusions,
considering that in the catalogs analyzed by the
two authors Mc

* Mc  it is larger than or equal to
2; to be precise:

in Vere-Jones paper, for the Japanese
catalog, it is M 0  6 and M 1  4;

in Purcaru’s paper, for the Japanese catalog,
it is M 0  6 and M 1  3.2;

 in Purcaru’s paper for the Greek catalog it
is M 0  5.6 and M 1  3.5.

It has been observed (Solov’ev and Solov’eva,
1962; Vere-Jones, 1969; Lavenda and Cipol-
lone, 2000) that there is a linear relation be-
tween the sample mean of the magnitude of the
mainshock and the natural logarithm of the
number of events (or only of the aftershocks) in
the sequences of a catalog. Moreover, Vere-Jones

Fig.  2. Correlation coefficient between M 0 and D1, relative to the conditional distributions of Section 2, versus
the sample size N for Mc

*=Mc , Mc + 1, Mc + 2, Mc + 3.
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(1969) demonstrated that there is a linear relation
between the expected value of M (N) and ln(N)
when Mc

* is equal to Mc. As fig. 3 shows, eq.
(A.6) is consistent with this result for Mc

* equal
to Mc , but when Mc

* is larger than Mc, the relation
is only asymptotically (i.e. when N + ) linear.

With regard to the distribution of M 1, Purcaru
(1974) noted that it is closer to a normal dis-
tribution that an exponential one. Considering
the high difference between the two cut-off
values of M 0 and M 1 in two data sets examined
by him, this issue is predicted by the Gutenberg-
Richter law (see fig. A.2a-d). Moreover, there is
an impressive similarity between the smoothed
histograms for the distribution of M1, shown in
figs. 14, 15 and 16 of the Purcaru’s work, and
the theoretical densities plotted in fig. A.2a-d of
the present paper, for Mc

* Mc = 2 and Mc
* Mc= 3.

Moreover, comparing fig. A.1a-e to fig. A.2a-d,
it is evident that the distribution of M 0 is not equal
to that of M 1. Therefore, the observed differences
between the two above-mentioned distributions
do not necessarily have to be ascribed to «different

conditions in which the mainshocks and the largest
aftershocks occur» (Purcaru, 1974): M 0 and M 1

are not variables selected at random, but they are
the first and the second largest observations of a
random sample respectively and, in agreement
with the theory of order statistics, they cannot have
the same distribution. Then, even considering the
Gutenberg-Richter law true for all the events, the
Probability Theory predicts that the mainshock
and the largest aftershock come from different
populations.

As regards the distribution of D1, Purcaru
(1974) showed in his paper that it was not an
exponential one: in fact the histograms of the
differences between the mainshocks and the
relative largest aftershocks for the catalogs tested
by him did not agree with the exponential density.
Moreover, the evaluated values of the coefficient
of variation (0.52 for Japan and 0.5 for Greece)
were discordant with the value (equal to 1) of
the coefficient of variation for an exponential
variable. Furthermore, in his conclusions, he
pointed out that the observations did not confirm,

Fig.  3. Conditional expected value of M0 by the event {M0  Mc

*} versus the natural logarithm of the sample size
N for Mc

*=Mc , Mc + 1, Mc + 2, Mc + 3.
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0.59 and the coefficient of variation increased
from 0.54 to 0.9.

As fig. A.3a-e, figs. 4 and 5 show, all these
results completely agree with the model. In fact, D1

is an exponential variable only when Mc
* Mc is

equal to 0 or when Mc
* Mc is positive and N + .

In fig. 4, the coefficient of variation is plotted
versus N for b equal to 1 and Mc

* Mc equal to
2.0 (value of Mc

* Mc for the Japanese catalog
analyzed by Utsu, 1961 and Vere-Jones, 1969),
2.1 and 2.8 (values of Mc

* Mc for the Japanese
catalog and the Greek catalog, respectively,
analyzed by Purcaru, 1974): these curves could
be consistent with the values, close to 0.5, of the
analyses of these authors.

generally, «Bath’s Law» and that, when the same
cut-off was chosen for M0 and M1, the dis-
tribution of D1 seemed to be an exponential one
with a sample mean close to 0.5 (see Purcaru,
1974: tables 7 and 8) and an estimated coefficient
of variation close to 0.8. In the end, he observed
that the sample mean of D1 increased with the
increase in the difference between the cut-off
value of M 0 and M 1 by a linear dependence.
Similar results had been obtained by Vere-Jones
(1969) in his analysis of the catalog of Japanese
aftershock sequences compiled by Utsu in 1961.
In fact, he had shown that when the difference
between the two thresholds decreased from 2 to
0, the sample mean of D1 decreased from 1.39 to

Fig.  4. Coefficient of variation of D1 relative to the conditional density function of eq. (A.8) versus the sample
size N for Mc

*  Mc = 2.0 (value of the difference between the two thresholds of the Japanese catalog analyzed by
Utsu (1961, 1969)) and by Vere-Jones (1969)), for Mc

*  Mc = 2.1 (value of the difference between the two thresholds
of the Greek catalog analyzed by Purcaru (1974)) and for Mc

*  Mc = 2.8 (value of the difference between the two
thresholds of the Japanese catalog analyzed by Purcaru, 1974).
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The plot in fig. 5 shows, for b equal to 1 and
four values of N, the relation between the condi-
tional average and the dif-
ference of the two thresholds Mc

* and Mc: it is
consistent with the linear relation observed by
Purcaru (1974: fig. 11), considering that in both
catalogs analyzed by him Mc

* Mc is larger than
2.0.

In a more recent paper, Drakatos and La-
toussakis (2001), in their description of spatial
and temporal characteristics of sequences in
Greece, dealt with the distribution of D1. They
concluded that data were fitted by a normal
distribution with an average of 0.9. Considering
that the two thresholds chosen were Mc = 3.2 and
Mc

* = 5.0, this result is consistent with the model:
the similarity between fig. 5 of the Drakatos-
Latoussakis paper and fig. A.3a-d of the present
work is evident.

The only point that seems to be in disagree-
ment with the results and conclusions of Utsu and
Purcaru, is the correlation coefficient between
M 0 and D1. In fact fig. 2 shows that it is always
positive for every value of N and Mc

* Mc . Also
the analysis of the Southern California catalog,
in the previous section, shows a positive
correlation between the two variables, but the
overall estimated correlation coefficient for
Mc = 2.0 and Mc

* = 4.0 is 0.08. To weigh the
compatibility of this value with the model, a
simulation was done of 1000 groups of 142
clusters of independent exponential variables
with the same size as clusters identified in the
California catalog and the same b-value. The
values obtained for the correlation coefficient are
inside the range [ 0.010, 0.522]; moreover 15
of them are less than 0.08 and 190 are less than
0.2. Then, considering all clusters, apart from

Fig.  5. Conditional expected value of D1 by the event {M0 Mc
*} versus the difference between the two thresholds

Mc
* Mc for N = 2, 10, 100, 1000.

  
D M1 0/{ }[ ]McIE N
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their size, the value of the correlation coefficient
between M 0 and D1 can be rather low. It is not
easy to justify this result with the model pro-
posed: it becomes necessary to consider a distri-
bution function for the cluster size N and to study
the distribution of M 0 and D1 for a generic
cluster (aside from N ). However it is not im-
possible for M 0 and D1 to have a correlation
coefficient very near to 0 or even negative, as
for the data analyzed by Utsu and Purcaru.
Moreover, as the same authors noted, for some
clusters of their catalogs, the values of D1 were
not known and then they were excluded in the
statistical analysis: this selection could have
caused a bias in results.

In my opinion, there are too many factors
that influence the results: the declustering
algorithm used, the precision in estimate of
magnitudes and then of b-value, the number
of events not recorded (it is known that soon
after a mainshock with high magnitude, the
aftershocks are not recorded). The question
needs further enquiries, but, in my opinion, only
by analysis of data, without hypotheses about
the magnitude distribution, it is evident that the
value 1.2 of the «Bath Law» is justified only if
the catalog is selected with thresholds that have
a difference equal to or larger than 2.0. More-
over, it does not seem to me that the previous
studies exhaustively justify the incompatibility
between the Gutenberg-Richter law and the
«Bath Law».

4.  Conclusions

Considering the Gutenberg-Richter law
true for all the earthquakes of a catalog and
utilizing only the results of the Probability
Theory about the order statistics, the
conditioned distributions of M0, M1 and D1

by the event {M0  Mc
*} are evaluated. As

shown in the previous sections, most of the
results obtained in the past on «Bath’s Law»
are consistent with the probabilistic analysis
expounded in the second section. In particular,
assuming that the mainshock is the largest
event of a sample of independent and
identically distributed exponential random
variables, it results that:

1) M 0 converges in distribution to an ex-
ponential variable when Mc

* + : for low
values of N the convergence is very fast and this
could justify the frequent conclusion that the
mainshock magnitude is an exponential variable.

2) M 0 and M 1 are random variables with
different distributions, not because the main-
shocks have a different nature from aftershocks,
but because the order statistics are not in-
dependent and identically distributed random
variables as the non-ordered random variables
of the sample.

3) The choice of the two thresholds Mc and
Mc

* is crucial for the distributions of M 0, M 1 and
D1. Moreover, these distributions depend on N
and, of course, on b. In particular, when Mc

* is
larger than Mc, D1 is not an exponential variable,
its expected value is higher than 1/ and it could
be consistent with «Bath’s Law».

4) There is a substantial agreement between
the theoretical model presented and the results
obtained in the past on the distribution of M 0,
M 1 and D1 and those obtained by the analysis of
the Southern California catalog. In particular, the
hypothesis of Vere-Jones, i.e. that «Bath’s Law»
can be ascribed to the selection of data caused
by the choice of the threshold of the mainshocks
Mc

*, seems to be confirmed.
5) Even if the model predicts a positive

correlation between M 0 and D1 for every value
of Mc

* Mc and N, it has been shown by simu-
lations that for all clusters, apart from N, the value
of the correlation coefficient can become near
to 0 or negative. This result could justify the
negative or law correlation observed by Utsu and
Purcaru, considering also that for catalogs
analyzed by them, the values of D1 were not all
known and that a selection of data was made.

The purpose of the present study was to show
that «Bath’s Law» is justified only if catalogs
are suitably selected and that it does not seem to
be in disagreement with the very simple hypo-
thesis that all the events follow the Gutenberg-
Richter law. Of course, further analyses must be
made on this matter. First of all, the model has to
be tested on a suitable data set: in fact the
dependence on N of the distribution of D1 in the
model requires that this be tested in a catalog
with many aftershock sequences and that the size
of every sequence is known. As observed in
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Appendix  A.  Mathematical background.

Let M1, ..., MN be N independent and identically distributed random variables with density function
(1.3) and let M (1) ... M (N) be the corresponding order statistics; then (Feller, 1966; Casella-Berger,
1990) M (1), ..., M (N ) are not independent and

 the density function of M (i), 1 i N, is

     (A.1)

 the joint density function of M (i ) and M ( j ), 1 i < j N, is

     (A.2)

where .

Let’s consider the random variables D1 = M (N ) M (N-1), D2 = M (N-1) M (N-2), ..., DN-1 = M (2) M (1), DN = M (1);
thenD1, ...,DN are independent exponential random variables with parameter , 2 , ..., N , respectively. Therefore
the distribution of D1 is independent of the sample size N and its expected value is

     (A.3)
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D1. of the magnitude scale used. In conclusion,
the same probabilistic elaboration could be made
utilizing different distributions from the exponential
one for the magnitudes of a catalog (i.e. the Kagan
distribution; Kagan, 1997).
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Section 2, when Mc
* Mc 0, the size of sequences

is highly variable and then it is impossible to make
a statistical analysis for a value of N. Moreover,
the influences of declustering algorithms and of
rules used to identify the sequences could be
studied. In fact, the definitions themselves of
«mainshock-aftershock sequences» chosen by
some authors for their analyses (see, i.e. Utsu, 1970;
Evison, 1981; Evison and Rhoades, 1993) could
cause arbitrary selections of data and then they
could further modify the distribution of D1. It
could also be interesting to study the influence
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Furthermore D1 and M (N ) are positively correlated and the correlation coefficient is

     (A.4)

(Vere-Jones, 1969).
From now onwards we shall denote the largest order statistic M (N) and the second largest order

statistic M (N 1) with M 0 and M 1, respectively.
Let now Mc

* be a constant larger than or equal to Mc. Let’s compute the density function of M 0, M 1

andD1  conditioned by event {M 0  Mc
*}.

A.1.  The density function of M 0 conditioned by {M0 Mc
*}

Let’s denote the density function of M 0 conditioned by the event {M 0 Mc
*} with      Then

     (A.5)
=

The relative conditional expected value is

     (A.6)

The conditional distribution of M 0 depends on as well as on the sample size N. Furthermore it depends
on difference between the two thresholds Mc

* and Mc, but this dependence vanishes when N + (see
fig. A.1a-d).

In fig. A.1e the conditional expected value of M 0 (eq. (A.9)) is plotted versus the sample size N for
four values of Mc

* Mc  and for b = 1: it is evident that the value of increases with
the increasing of N and of Mc

* Mc .
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Fig.  A.1a-e. a) Conditional density
function of M0 by the event {M0 Mc

*}
(see eq. (A.5)) for Mc

*=Mc , Mc + 1, Mc + 2,
Mc + 3, and for N = 2. b) The same as (a)
but for N = 10. c) The same as (a) but
for N = 100. d) The same as (a) but for
N = 1000. e) Conditional expected value
of M0 by the event {M0 Mc

*} (see eq.
(A.6)) versus the sample size N for four
values of difference between Mc

*and Mc

(Mc
* Mc= 0,1,2,3).

a b

c d

e
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A.2.  The density function of M 1 conditioned by {M 0 Mc
*}.

Let’s denote the density function of M1 conditioned by the event {M 0 Mc
*} with

Then

             =

Fig.  A.2a-d. a) Conditional density function of M1 by the event {M0 Mc
*} (see eq. (A.7)) for Mc

*= Mc,  Mc +
1, Mc + 2, Mc + 3, and for N = 2. b) The same as (a) but for N = 10. c) The same as (a) but for N = 100. d) The same
as (a) but for N = 1000.
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=

    (A.7)

As eq. (A.7) and figs. A.2a-d show, also the distribution of M 1 depends on b, N and Mc
* Mc but the

dependence on Mc
* Mc is less marked than that of M 0.

A.3.  The density function of D1 conditioned by {M 0 Mc
*}.

Let’s denote the density function of D1 conditioned by the event {M 0 Mc
*} with
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=

Computing the integrals and deriving the conditional distribution function, it results

     =  if  x  Mc

*  Mc

if  x > Mc

*

c

 (A.8)

The relative conditional expected value is

                (A.9)

The conditional distribution of D1 depends on , N and Mc
*  Mc . As fig. A.3a-e show, if  Mc

* is equal to
Mc, there is no conditioning and D1 is an exponential variable. Furthemore, for N + , D1 converges
in distribution to an exponential random variable, for all values of Mc

* Mc, but the lower is the value
of Mc

* Mc the faster is the convergence. Consequently, it results

              (A.10)

(see fig. A.3e).
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Fig.  A.3a-e. a) Conditional density
function of D1 by the event {M0 Mc

*}
(see eq. (A.8)) for Mc

*= Mc, Mc + 1,
Mc + 2, Mc + 3, and for N = 2. b) The
same as (a) but for N = 10. c) The same
as (a) but for N = 100. d) The same as
(a) but for N = 1000. e) Conditional
expected value of D1 by the event {M0

Mc
*} (see eq. (A.9)) versus the sample

size N for four values of difference
between Mc

* and Mc (Mc

* Mc= 0,1,2,3)e

a b

c d
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Given that the estimated values of b are very close to 1, the asymptotic value of the conditional
average of D1 is about 0.4343.

Table A.I shows the dependence of              on the b-value for some values of N and of
Mc

* Mc and for b in the range [0.5, 1.5]. The kind of this dependence is highly variable and it does not
have a monotone trend (for some values of Mc

* Mc and N the conditional average of D1 decreases with
the increasing of b, while, in other cases, it has a minimum for a value of b inside the range examined).

However a variation smaller than 0.15 of the conditional expected value of D1 corresponds to a
variation of 0.1 for b.

Table  A.I. Values of the expected value of    conditioned by the event {M 0 Mc
*} for some values of b, N,

and Mc
* Mc.

  D1

 Mc
* = Mc Mc

* = Mc+1 Mc
* = Mc+2 Mc

* = Mc+3

b all N N=2 N=10 N=100 N=1000 N=2 N=10 N=100 N=1000 N=2 N=10 N=100 N=1000

0.5 0.8686 1.3509 0.8855 0.8686 0.8686 2.1510 1.1602 0.8686 0.8686 3.0622 1.7605 0.8977  0.8686

0.6 0.7238 1.2476 0.7583 0.7238 0.7238 2.0887 1.1405 0.7248 0.7238 3.0297 1.8535 0.8499 0.7238

0.7 0.6204 1.1796 0.6782 0.6204 0.6204 2.0532 1.1576 0.6294 0.6204 3.0144 1.9557 0.9022 0.6206

0.8 0.5429 1.1328 0.6279 0.5429 0.5429 2.0323 1.1926 0.5783 0.5429 3.0071 2.0532 1.0078 0.5513

0.9 0.4825 1.0996 0.5974 0.4826 0.4825 2.0198 1.2356 0.5666 0.4825 3.0035 2.1409 1.1355 0.5373

1.0 0.4343 1.0755 0.5801 0.4343 0.4343 2.0122 1.2811 0.5846 0.4343 3.0017 2.2176 1.2677 0.5850

1.1 0.3948 1.0577 0.5720 0.3949 0.3948 2.0076 1.3260 0.6222 0.3954 3.0009 2.2839 1.3945 0.6751

1.2 0.3619 1.0444 0.5703 0.3624 0.3619 2.0047 1.3688 0.6718 0.3675 3.0004 2.3411 1.5113 0.7879

1.3 0.3341 1.0343 0.5730 0.3358 0.3341 2.0029 1.4086 0.7279 0.3564 3.0002 2.3905 1.6166 0.9091

1.4 0.3102 1.0266 0.5788 0.3147 0.3102 2.0018 1.4451 0.7865 0.3647 3.0001 2.4334 1.7104 1.0299

1.5 0.2895 1.0207 0.5868 0.2992 0.2895 2.0011 1.4784 0.8451 0.3900 3.0001 2.4709 1.7938 1.1450

  
D M1 0/{ }[ ]McIE N
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