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Abstract

Two apparently distinct approaches to studying the observed low frequency variability in the atmosphere have
evolved over the past few years. One approach invokes multiple, recurrent flow regimes to explain the observed
variability. An alternative approach involves the linear stability properties of the climatological mean flow. In the
present study, these approaches are merged to understand the different stability properties of the basic states
associated with different flow regimes. In particular, the different zonally asymmetric components of the regime
basic states lead to differing stability properties that in turn may explain the transition mechanism between
regimes. This is particularly true for the transition between an amplified atmospheric planetary wave flow regime
and a zonal regime. The observed transition streamfunction anomaly pattern compares very well to the most
unstable stationary eigenmode of a linear stability calculation for both the barotropic and two-level baroclinic
casc studied. However, the growth rate of the barotropic case is too slow compared to observations and it is quite
sensitive to the dissipation rate and the resolution of the calculation. In the baroclinic case, the same eigenmode
appears but with a faster growth rate and more structural stability. Within the constraints of a two-layer model, the
effect of baroclinicity is to remove the dependence on dissipation rate of the growth rate of the most unstable
barotropic mode, allowing fast growth without sensitivity to chosen parameters. The most unstable stationary
baroclinic eigenmode strongly resembles the anomaly pattern of the observed transition. The energetics of the
growing mode involves extraction of energy from the zonally asymmetric flow in agreement with observations.
Experiments with greatly increased dissipation reveal very little sensitivity of the growth rate of this stationary
cigenmode to the rate of dissipation. Alternatively, the eigenmodes for the opposite transition considered,
from the zonal to amplified wave regime, are different from this former case in terms of structure, growth rate
and energetics. Therefore, we conclude that the linear stability properties of the atmospheric flow are a function
of the amplitude of the zonal asymmetries in the antecedent regime basic state, and that the dynamics of the
transitions between regimes might be understood within the context of the linear instability properties of
the regime basic states.

Key words  regimes — instability — baroclinic 1. Introduction

The concept of weather regimes dates back
to the 1930°s when regimes were classified on
the basis of the patterns observed in surface
synoptic charts (e.g., Baur, 1951 and relerences

. o ) therein). In his penetrating appraisal of the domi-
Fisicn, Edfhcin Forr, Univerath i Roma 1 Sapiengay,  1enL problems of modem metcorology. Rossby
Piazzale A. Mora 2, 00185 Roma, Italy; e-mail: hordi@ (1959) emphasized the weather regimes ques-
roma2.infn.it tion and gave a description of why the atmos-
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pheric planetary scale circulation alternately
cycles between prevalently zonal and predomi-
nantly meridional behavior. Weather regimes
problem was reopened by Charney and Devore
(1979) who proposed a new point of view that is
based on the intrinsic nonlinear nature of the
atmospheric motion. In fact, in a nonlinear sys-
tem the space of its physical state may be such
that a trajectory in this space may wander around
a few preferred regions of phase space. For the
atmospheric case, Charney and Devore went so
far as to identify such regions with the attraction
domain of the stable steady states of a highly
truncated barotropic, non-divergent model. Since
then, work has been devoted to both identifying
and modeling the atmospheric circulation as
a discrete set of attractive regions in the full
atmospheric phase space (e.g., Legras and Ghil,
1985; Hansen and Sutera, 1986; Benzi et al.,
1986a,b: Molteni et al., 1988) including recent
work by Hansen and Sutera (1995a,b,¢), Mal-
guzzi ef al. (1996), and Molteni (1996a,b). Many
of these studies concentrate on the search for
multiple steady states of atmospheric models of
increasing complexity. A somewhat less studied
question has been that of determining the physi-
cal processes that are responsible for the transi-
tion among the quasi-steady states. There are
few notable exceptions. Molteni and Palmer
(1993) and Buizza and Molteni (1996) suggest
that the transitions are the result of nonmodal
instabilities. In most of these papers, including
Charney and Devore’s pioneering work, an im-
plicit common assumption is that there exists a
process that is the source for the transitions
between different weather regimes. From the
point of view of atmospheric low frequency
variability (at least for time scales related to
atmospheric intraseasonal variability), it is only
a knowledge of such mechanisms that might
provide for an explanation of a relevant portion
of this variability. Then, the observed circula-
tion may be interpreted, as Rossby foresaw, as
the end result of the switching among these
steady or quasi-steady states.

An alternative line of research (developed
in parallel with the work discussed above) has
studied the observed low frequency variability
by means of the linear instability analysis of the
observed, zonally varying climatological mean
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flow (Simmons et al., 1983; SWB hereafter and
originally discussed by Lorenz, 1972). There-
after, this subject has flourished and has been
considered by many authors (see Fredricksen
and Webster, 1988 and references therein). It
has also been used in improving short term
predictability of rapidly evolving synoptic dis-
turbances by exploiting the interesting proper-
ties associated with the non normality (Kato,
1966) of the evolution of the lincarized meteoro-
logical operators (Borges and Hartrmann, 1992).
A key element of these studies is that the insta-
bility arises through the zonally asymmetric
component of the climatological mean flow.
Numerous studies have attempted to identify,
with varying degrees of success (Branstator,
1985, 1990, and references therein), the unsta-
ble normal modes computed from linear sta-
bility analysis with the observed patterns of low
frequency variability. In many cases, an appeal
is made to non-modal or finite-time instability
to explain the observed growth of anomalies
(Molteni and Palmer, 1993; Chang and Mak,
1995). In addition, Palmer (1988) has investi-
gated the barotropic stability properties of op-
posite signs of teleconnection patterns.

In this paper we will attempt to exploit the
former theories (instability of a zonally asym-
metric basic field) to suggest an explanation of
the transition mechanisms between regimes.

However, there is one aspect of the tradi-
tional eigenanalysis of zonally asymmetric basic
flows that is so far debated. It deals with how
the basic state is specified and maintained. Re-
garding this concern, Andrews (1984) has ar-
gued that the nature of the forcing is crucial to
the resulting instability problem. In fact, the
perturbation forcing that arises can act to stabi-
lize perturbations 1o a mean flow that would
otherwise be considered unstable without the
forcing.

As commonly done in instability calcula-
tions, we take the basic state to be an observed.
time averaged flow corresponding to a particu-
lar weather regime, assuming the background
flow to be maintained by external, ad hoc for-
cing that does not interact with the growing
disturbances.

We will show evidence that physically dis-
tinct instability processes might be the source of
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the transition between regimes. This distinction
arises from the nature of the zonally asymmetric
component of the flow in different regimes (in
fact, the symmetric components are the same in
the two regimes, see Hansen and Sutera, 1987).
In particular, the amplitude of the flow asym-
metries will be shown to be a determining factor
of the nature of the instability. This approach is
not new, in fact, it was foreseen by Charney (sce
page 81 of Lindzen er al.,1990). Here we will
show that the approach is rewarding and allows
a favorable comparison with ohservations.

To pursue this goal, we need to consider a
suitable definition of weather regimes. Among
the various approaches to identifying weather
regimes, well documented and statistically ro-
bust observational evidence for the existence of
multiple weather regimes is that proposed by
Sutera (1986) and Hansen and Sutera (1986).
Some concern has been raised by Nitsche er al.
(1994) on the technique used by Hansen and
Sutera (1986) to establish the statistical confi-
dence in the existence of multimodality of proba-
bility density distributions, but much of their
concerns have been dissipated by additional re-
sults presented in Hansen and Sutera (1995b)
(which include, among other things, compari-
sons to different regime definitions; e.g., Mol-
teni et al., 1990; Cheng and Wallace, 1993;
Kimoto and Ghil, 1993).

Therefore, we will use in our stability calcu-
lations the two fields which may be derived by
the definition of regimes corresponding to the
two modes of the planetary wave amplitude
indicator defined in Hansen and Sutera (1986,
1995b). One of the regimes corresponds to a
zonal pattern on the hemispheric scale (here-
after referred to as the Zonal Regime or ZR),
while the other corresponds to a wavy, planetary
wave pattern featuring a major ridge over the
Eastern Pacific and downstream trough over
North America (hereafter referred to as the
Amplified Wave Regime or AWR). As shown in
Hansen and Sutera (1993), the latter regime
includes nearly all Pacific blocking cases as a
subset.

In Section 2 we will linearize barotropic,
non-divergent atmospheric equations around
these two basic states and calculate the relevant
linear instabilities for these two circulation re-
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gimes. We will show evidence that the resulting
instability patterns and the associated e-folding
times. though strongly dependent on dissipa-
tion, arc consistent with observations that de-
scribe such transitions. In Section 3 we show
how the instability found may be explained in
terms of a single triadic interaction. We will also
show that the nonlinear closure of the triad model
leads to asymiptotic states that partially cancel
the non symmetric component of the unstable
basic field. In Section 4 we introduce a two level
model to represent a baroclinic atmosphere. Itis
shown that, in this environment, some of the
concerns {which apply also to our barotropic
calculations) about instability calculations in
the presence of dissipation raised by Borges and
Sardeshmukh {1995) can be greatly mitigated.
Conclusions and plans for future work are in
Section 6.

2. Observational background

In Hansen (1988; H88 hereafter) the struc-
ture of the mean transition composite between
the regimes detected in the probability density
function of large scale amplitude indicator pro-
posed by Sutera (1986) is considered. This indi-
cator is defined as follows. Let Z(4, ¢, 1) be the
500 mb geopotential height at a time £, where 4
and ¢ are longitude and latitude respectively.
Then consider two latitudes ¢, and ¢,. Let

a2
A0 = [ 2, p.0dp (2.1)
Py
and
Z(An=" A e*. (2.2)
k
Thus the indicator is defined as
TR
1= AL (2.3)
k=2

The data used in H88 consisted of four winters
(1980-1984) of Northern Hemisphere fields,
which were the same used in Sutera (1986)
(statistical analysis of the indicator was later
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extended to 42 winters in Hansen and Sutera,
1995b). The days that in H88 are considered as
transition days, based on the composite time
evolution of the wave amplitude, are those 2
days prior to the day on which the amplitude
indicator mentioned above crossed the mini-
mum of the distribution and the following 2
days. If the onset of a given case occurs within
the decay of another case, or viceversa, observa-
tions occurring in the overlapping period of the
two transitions are not counted.

Based on this definition, the main findings
in H88 may be summarized as follows. The
transition between the ZR (also referred to as
«Mode 1» in previous papers) and the AWR
(also referred to as «Mode 2» in previous pa-
pers) and back occurs rather quickly; in fact, in
the composite of the 12 cases here considered,
it takes roughly 4 days for the transition to
occur. Energetics calculations indicate that the
ZR to AWR transition is consistent with a
strong baroclinic instability of waves shorter
than planetary scale with subsequent nonlinear
interactions allowing energy to cascade towards
longer scales and accompanying the growth of
the anomalies represented by the AWR state,
The most striking difference between this and
the reverse transition is that in the latter there is
a predominance of barotropic conversion to
even longer scale, namely zonal wave number
1. On the ground of the short time scale for
transitions compared with the persistence in the
regimes, we may suppose that the transitions
are due to instability processes. However, the
data are consistent with the instability mecha-
nism, operating during AWR to ZR transition,
which is of a different nature from that operat-
ing during the reverse one. This observational
suggestion constitutes a primary motivation for
the present work.

In order to be as close as possible to the H88
analysis, in this study we will consider data
from ECMWF archives at T21 resolution for a
period spanning from 1982-1988. Future work
will extend these results to a more exhaustive
climatology.

In the present paper, the stream function, at
300 mb and at 850 mb, is used instead of the
geopotential height used in the previous reports.
From the winter data (DJF) of 1982-1988,

we construct the mean Northern Hemisphere
300 mb and 850 mb streamfunction fields for
the climatology (not shown), for the zonal re-
gime (fig. la,b), and for the amplified wave
regime (fig. le,d). The main features of these
composites correspond, as expected, to the ap-
propriate flow features in the geopotential fields
reported elsewhere.

In addition, we have calculated the compos-
ite average streamfunction fields for both the
AWR to ZR transitions and vice versa. Accord-
ing to Sutera (1986), these fields were obtained
as follows. First consider the deviation of indi-
vidual daily streamfunction field from AWR
(ZR). Define the transition period as the number
of days during which the wave amplitude indi-
cator, starting from values typical of AWR (ZR),
is decreasing (increasing) irreversibly towards
values typical of those achieved in ZR (AWR).
Then the composite transition field from AWR
(ZR) to ZR (AWR) is obtained as by time aver-
aging the deviation field in that period. The
number of averaging days in each transition is
about 4 days though this may change in the
range of 3 to 5 days for some individual cases.
For our present data 12 transitions occur of each
type. The composite transition streamfunction
anomalies at 300 mb so obtained are shown in
fig. 2a,b while the respective non-symmetric
components are shown in fig. 2c¢.d.

In general, as mentioned in H88 and Hansen
and Sutera (1993) and Hansen and Sutera
(1995h), these fields were fairly consistent in a
broad sense {rom case to case. If the transitions
are due to some sort of instability, then the
anomaly patterns which we will have to de-
scribe arc the ones represented in figs. 2a-d.

Of course, it must be stressed that by com-
paring our results to the above transition maps
we are not seeking the most appropriate pertur-
bation field an individual transition, but for the
one that mostly likely is present in all transi-
tions.

3. The barotropic stability of mean states
The question we will address concerns whether

the observed transition anomaly patterns can be
understood in terms of linear stability theory.
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Tig. 1a. Mean streamfunction for the Zonal Regime (ZR) Fig. 1b. Mecan streamfunction for ZR at 850 mb; contour
at 300 mb. Contour interval is 1% 10" m’s™. interval is 0.5x 100 m’ s .

Fig. lc. Mean streamfunction for the Amplified Wave  Fig. 1d. Mean streamfunction for AWR at 850 mb;
Regime (AWR) at 300 mb. Contour interval is 1 X 10 n's'.  contour interval is 0.5 10" m’ s .
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Fig. 2a. Composite streamfunction anomaly at 300 mb  Fig. 2b. Composite streamfunction anomaly at 300 mt
for the AWR to ZR transition. Contour interval is 0.5 x 107 for the ZR to AWR transition. Contour interval is 0.5 x 10

m’ s not including zero. ms’

Fig. 2¢c. As infig. 2a with the zonal component removed.  Fig. 2d. Asin fig. 2b with the zonal component removed
Contour interval is 0.5 x 10'm’ s, Contour interval is 0.5x 10" m" s .
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For this and for comparing our result (o
others (for example, Branstator 1985), we con-
sider the following non-divergent barotropic
model in spherical coordinates

OV +JW, V¥ +2Qsing) =R (3.1

where the usual quasi-geostrophic scaling is used

u="Uu

x, y=Lx Ly (3.2)
T

1=—1
U

¥ is the 300 mb stream function V', is the
Laplacian operator in spherical coordinates and
Q is the earth angular speed. R is some form of
dissipation. As usually done

Y=Y+0 (3.3)
where ‘¥ is a flow that is supposed to be a steady
solution of the equation of motion and @ is a

perturbation on it. Next we expand ¥ and @ in
spherical harmonics

Yior ®) = Z Z p (ord™HP" ™

" !

(3.4)

where P" are the associated Legendre polyno-
mials and &, are functions of time alone.

Then, we linearize (3.1) around the zonally
symmetric part of each of the three 300 mb
mean fields considered {i.e., climatology, ZR
and AWR), truncating at T21 and setting

R=kV'+2V’ (3.5)

where the super-dissipation & = 0.2 x 10" m's'
and v is the Ekman dissipation rate.

By setting

q.) n

=@ ()" + (7)) (3.6)

we can calculate the fields instability by analy-
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zing the eigenvalue problem

wX =AX 3.7
where X is the vector whose components are the
projection coefficients of the perturbation field
and A is the matrix of the projection of advec-
tion operator.

A positive (negative) sign of the real value,
i.e. the growth rate (decay rate), of the complex
number @ will tell us if the basic field is an
unstable (stable) solution of the equation of mo-
tion. The imaginary part of w will enclose in-
formation on the periodicity of the disturbance
field.

For the barotropic model above, calculations
may be made by simply setting v = 0, since the
operator

R=0d v (3.8)
has eigenvalues w —v.

If the Ekman dissipation is set to zero, the
three zonally symmetric basic states are weakly
unstable with the largest growth rate correspond-
ing to e-folding time of about 145 days for
AWR, while ZR and the climatology are stable
states. From these results a barotropic insta-
bility of the zonally symmetric flow, say of the
Kuo type, is an unlikely candidate to explain
any regime transition.

Next we consider the barotropic instability
of the three zonally asymmetric [iclds mentioned
above. First, consider the climatological mean
flow. Using the same super-dissipation as SWB,
we oblain a most unstable mode with about 17
days e-folding time and period of about 31 days.

We notice, for what will be following, that
there is a mode with 86 days e-folding and in-
finite period. When we use their basic state, we
obtain identical results to theirs.

When a 10 days time scale dissipation and a
super-dissipation are added, there are no baro-
tropically unstable modes of the climatological
mean flow (sec also Borges and Sardeshmukh,
1993). Similarly, the ZR’s asymmetric flow, for
this Ekman number, is also barotropically sta-
ble. Conversely, the AWR basic state exhibits
one real eigenvalue corresponding (o a non propa-
gating disturbance. As already noted, we might
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Fig. 3a. The most unstable mode of the AWR basic
state in the barotropic model at T21 resolution. This
eigenmode is nonpropagating. Units are arbitrary with
contours every [ unit.

Fig. 3b. Corrclation map between the barotropic
eigenvector and the observed transition field. Units
are arbitrary with contours every 1 x 107 unit.
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expect that a nonpropagating (or slowly propa-
gating) mode be relevant in the observed transi-
tion, since the maps are obtained as a composite
of four days average.

In fig. 3a we show the structure of this unsta-
ble mode. Despite the e-folding time, 7.66 days,
is not of the desired length, the correspondence
between the main features of this eigenmode
and the observations is quite striking, especially
from Eastern Asia across the Pacific and North
America, while the European component of the
eigenvector has a stronger structure than the
observed transition map (fig. 2a,c). Morcover,
the structure of this mode features a mainly
zonal wave number one field, whicl is the main
eddy component that grows during the AWR to
ZR transition (H88).

To make this comparison more quantitative,
we also calculated the correlation map, shown
in fig. 3b, between the eigenvector and the ob-
served transition field. The strong correlations
in the Pacific sector are noticeable, while the
weak anticorrelations are confined mainly to
the Atlantic. However, the transition map shows
weak, small scale features. Differences are also
noticeable in the subtropical latitudes, This may
be expected since, by using the quasigeostro-
phic models, we can hardly accommodate for
the Hadley circulation (or any other thermally
direct circulation) which, instead, is included in
the transition map.

It 1s also important that a comparison be-
tween observations and the unstable pattern be
similar for the spatial distribution of their ener-
gy tendency. In fact, this tield describes quanti-
tatively the spatial structure of the relevant phy-
sical process occurring during the transition.

For this purpose, let us consider, assuming
the atmosphere be a single nondivergent layer,
the energy conversion field for the observations
at 300 mb.

In this case the relevant equations are in
Branstator (1985). For our case the resulting
spatial distributions of the energetics are shown
in fig. 4a,b for the observations and the eigen-
vector respectively. In fig, 4c the correlation
map between the two fields is illustrated. Simi-
larities (and dissimilarities), already noted be-
tween observations and the calculated pattern,
are confirmed and they lead to argue that the
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Fig. 4a. Barotropic energy conversion computed
from the ohservations at 300 mb. Units are arbitrary
with contours every (1.3 unit,

Fig. de. Correlation field between observed and
computed barotropic energetics. Units are arbitrary
with contours every 2 x 107 unit.

Fig. 4h. Barotropic energy conversion for the most
unstable mode of the AWR in the barotropic model.
Units are arbitrary with contours every 1.3 units.

main feature of the energy conversions has been
captured. In fact, the dominant contributions to
the barotropic energy conversions come from
the Pacific and Atlantic regions. In particular,
we can notice the maximum local contribution
in the northeast of the strong Pacific jet, where
observations and eigenvector energetics are also
strongly correlated.

Thus, the overall structure seems close
enough to stimulate further steps.

To proceed further, however, we must con-
sider two main problems that affect the insta-
bility calculations so far presented.

First, instability calculations determine eigen-
modes up to a sign. Thus, i’ we have an inter-
pretation for the pattern associated to a non
travelling eigenvector, it can hardly be adapted
also to the corresponding pattern obtained re-
versing the sign.

The second problem concerns the depen-
dence of the eigenvalue on the actual value of
the Ekman number. In the next two sections we
will show that both questions may be answered
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by considering, in order, a simple nonlinear
barotropic model and instability calculations in
a baroclinic environment.

4. A simple nonlinear model

Linear instability calculations, per se, cannot
remove the limitation associated with the intrin-
sically arbitrary sign of the eigenvector.

However, this limitation can be removed if,
by proceeding a step further, we try to under-
stand the finite amplitude, asymptotic behavior
of the disturbance.

In the present paper, we will not discuss the
dynamics of the T21 model, which we intend Lo
present on another occasion. Instead, we will
show, with the following simple calculations,
the way that may lead to a solution of the prob-
lem caused by the indeterminacy of the eigen-
vector sign.

Following Baines (1976), we know that, for
a basic state which is the sum of a super rotation
plus a Rossby stationary wave, the minimal
triad, which allows a non-propagating instability
(like the one discussed in the previous section),
is the one obtained by selecting the perturbation
tield as follows.

Let

W=ALP + AP + (%) (4]1)
with /, = 1 is a steady solution of the vorticity
equation, then if

O =) P} + P + (%)

, is {4.2)
we may study the instability W under @ for a
given [, [, /, and m. In other words, the perturba-
tion field contains a zonal component and a
wave of the same zonal wave number of the
basic field. For the barotropic model above, the
eigenvalue problem generated by the projection
onto the modes previously defined reduce to the
diagonalization of a 3 by 3 matrix. In absence of
dissipation the eigenvalues are

w=0,w==4]-y" +2ﬁa‘A,’“ |2 (4.3)

where a is the earth radius and

1 (LL, —LL
y=— gm{(‘_f‘,f’ -2Q,
o’ LL, '
LL —LL
p-L LDk,
a- LL, !
LL, —LL
a:—%i( 2 [)mK'W ;
a- LL, ’
(4.4)
LL,, :—lt')([(.j +l)7
’ a

1
K, =[Py 9, P du,

-1
1

me = J.me Pfi” au PI:] du
1

where u =sin(yp) and ¢ is latitude.
Thus instability of the Rossby wave occurs
3, —}/2 i
2 ——_ It iy easy to show
2ef3 d

whenever ‘Al’”

(Baines, loc. cit.) that the same basic field (4.1)
is unstable for a travelling disturbance com-
posed of two waves, rather than a zonal compo-
nent and a wave. Moreover, the latter instability
occurs for smaller amplitudes of the asymmaet-
ric component of the basic field.

This is analogous to the situation encoun-
tered in the previous section. Namely, only AWR,
i.e. alarge amplitude state, seems favoured to be
an unstable state with respect to a perturbation
with a standing growth.

Regarding the energetics of the growing
modes, it is plausible to argue that perturbations
grow extracting kinetic energy from the non
symmetric component of the basic state. In [act,
the super rotation, in the absence of form drag,
is stable with respect to barotropic perturbations
and any form of instability of Kuo type is there-
fore excluded.
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Moreover, from the eigenvalue structure of
the linearized problem, it is possible to antici-
pate that, when we consider the full nonlinear
problem (of course, retaining the same modes in
the perturbation as in the linear case), we expect
that above the threshold value of A} two steady
states will appear. In fact, the equations of mo-
tion are

0 : o mot o m m
a;(/);, :_IU¢," +alA, , AP

d,¢, =(v+y)p" + P +0¢, B (4.5)

a!¢[;," = (iv _J’)(lbf_.m = ﬂq&,‘: - é(p,‘(‘) ¢f:m

where

C(LL - LL,)
LL,

1
d= mj PUP", Pldu. (4.6)
1

It can be shown that the two new steady states
are stable and, more importantly, in the limit of
small dissipation they have close amplitude and
phase of the nonsymmetric component of the
perturbation field. It implies that, for any initial
condition, the solution will converge to a new
state where the nonsymmetric component is
nearly the same,

As an example we show in table I the solu-
tions for the particular setting of the parameters

Al =-198, 4" =10x(0.18 - 0.63),
(4.7)
L= = =5, 0 =3, LT
and, to mimic a limiting case, v = 1000 days".
The value of A] implies a reasonable superota-
tion of about 30 m 5™ at the equator (notice that

Table 1. Solutions for the simple non-linear model.
Parameters setting is in the text.

‘Solution 1 Solution 2

b, -9.6 7.6
Re () 06 —03
Im {(¢)) 2.5 2.0

45

the particular choice of /, m for the basic state
are suggested by the large difference shown by
AWR and ZR for this particular spherical har-
monics).

Thus, both solutions locally modify the am-
plitude of the asymmetric component of the
basic state field by a factor near to 1.5, while the
overwhelming value of the super rotation would
leave the symmetric structure of the solution
unmodified except for a shift of the jet axis (as
can be easily understood by considering the
meridional structure of the zonal component of
basic field and that of the perturbation).

In other words, for any initial condition,
during the time evolution of the total field (sec
eq. (3.3)), we would observe changes in the
pattern of the spatial distribution of the symmet-
ric component of the flow and a reduction in
some latitudinal band of the amplitude of non
symmetric component of the total field. This
property has to be required for a mechanism
that may explain the transition AWR to ZR.

In a forthcoming paper we will expand the
analysis above, adding also nonlinear calcula-
tions for a triadic interaction arising from the
baroclinic model, which will be presented in the
next section.

5. Instability for a baroclinic basic state

Although it is not the only possible choice,
for simplicity’s sake we have considered the
extension to a spherical domain of the Phillips
two layer model (see Pedlosky, 1979). Perhaps
a two layer model is the crudest possible at-
tempt to capture baroclinic dynamics and yet
maintaining the needed simplicity in a model
that attempts to isolate a particular physical proc-
ess. For example, placing Ekman layer dissipa-
tion in the lower layer, as a two layer quasi-geo-
strophic model requires, is surely a poor ap-
proximation to the atmosphere. Nevertheless, it
explores the baroclinic/barotropic dynamics and
addresses whether the approach employed may
lead to potentially useful results in terms of a
mechanism to explain flow transitions.

Let 'V, and ‘¥, be the stream function and g,
and g, be the potential vorticity at two pressure
levels, say 300 mb and 850 mb respectively.
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Then the equations of motion are (see Pedlosky,
1979)

D
Di (5.1)
D N
—q, =¥V ¥,
Di q; 2
where
g, =VY¥ +f+F(¥,-¥)
(5.2)
g, = VYW, +f+F(¥, -V,
and
= S AP _yos,
AP P
pl)
(5.3)

D, = layer — depth, i=1,2.

Here, we have neglected any internal dissipa-
tion on the layer’s interface, which implies that
the only dissipative mechanism present in the
model is an Ekman pumping confined to the
lower layer. | and F, are the Froude numbers
for the upper and lower layers, and fis the usual
Coriolis term. As representative pressure levels
of the lower and upper layer, we choose the
850 mb and 300 mb respectively. The free pa-
rameters of the problem are F, F, and, as in the
barotropic case, the dissipation rate. The latter
was the most sensitive parameter in the calcula-
tions so far discussed.

We wish to show that the dependence on dis-
sipation of the growth rate of the unstable eigen-
modes is weaker in the two layer model. We will
consider instability calculations only for the AWR
and ZR regimes. For this purpose we study the
instability of the basic fields of the ZR and AWR
for the averaged value of F=F =F,=2, a typi-
cal value (supposing a vertical scale height of
about 10 ki) for atmospheric conditions.

5.1. Stability of the AWR

Consider first the instability of the AWR at
T21 resolution. For F = F, = F, = 2, and for

146

the Ekman dissipation a value corresponding to
10 days. The first few most unstable eigenvalues
are reported in table II. The eigenvalues repre-
sent propagating features with periods typical
of baroclinic disturbances. There is, however,
an eigenmode with infinite period and a 5.5
days e-folding time. In fig. 5a,b we show the
infinite period eigenvector and the correlation
map between the eigenvector and the observed
transition at the upper level. Compared with the
barotropic case (fig. 3b), the correlation pattern
is either unchanged or ameliorated in many
areas, including the Pacific sector.

To compute the energetics of the two layer
model, we will extend the barotropic energetics
ol the unstable modes (e.g., Branstator, 1985) to
include also the baroclinic terms representing
the conversion of available potential energy from
both the symmetric and asymmetric components
of the basic state to the individual growing per-
turbations

The time rate of change of total energy is so
modified

J(KE+APE)=CK + CK +A+As (54)
with
F F
CK,=—2CK +-LCK_
o : | F: X
(5.5)
F F,
CK,=2CK, +-2CK,
N S
where
CK, =
1 2 »2 1
===l =¥,") d,u,, —v,, tangp
a cos
(5.6
CK‘,H =
l £ gk ”u.‘)
=——u, v, | cospd, | —"—+ v,
a Cosp  CosQ _

with n = 1, 2 referring to the two layers respec-




Table II. Few most unstable eigenvalucs for the
instability calculation of AWR regime at T2]
resolution.

e-folding period
(days) (days)
2.9 59
3.8 39
4.1 4.3
4.4 2.9
3.1 13.1
5.4 5.3
5.5 Infinity
5.6 1.1
6.1 10.2
tively, and
As = L(DI 9,0, (u,), —u,, )
acos @
(5.7)
A= #fbl (2, D, (), —u,, )+
€ Cos ¢
+cos d Py (v, —V3,)

Here £, is the mean Froude number of the two
levels and wu, and u,, are the zonal velocity
components of the symmetric basic state in the
two respective layers.

Note that in this formulation, the baroclinic
source terms are computed only for the conver-
sion of potential energy from the basic state to
the perturbation. The barotropic terms are the
kinetic energy sources for the perturbation, while
the dissipation is the computed Kinetic energy
dissipation by Ekman pumping in the lower
layer. When energetics is calculated using ob-
servations, Ekman pumping in the lower layer
of the atmosphere is assumed to have the same
time scale as prescribed in the model. In fig. 6a
we show the observed energetics that shows as
the most prominent feature some localized pat-
terns in the Pacific sector. In fig. 6b the energet-
ics for the most unstable stationary baroclinic
eigenmode is shown. Numerous features are
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Fig. 5a. Most unstable stationary eigenmode of the
AWR basic state in the baroclinic model for the upper
level streamfunction pattern with Froude numbers
F, = F, = 2. Units are arbitrary with contours every

(0.8 units.

Fig. 5b. Correlation map between the baroclinic
eigenvector and the observed transition at the upper
level. Units are arbitrary with contours every 1 x 10~
unit.
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Fig. 6a. Observed baroclinic energetics. Units are
arbitrary with contours every 0.3 units.

evident that are due to baroclinic activity, but
the prominent patterns in the Pacific sector, noted
in the barotropic calculations, are also present.

Figure 6¢ shows the correlation field be-
tween the observed and computed energetics lor
the standing baroclinic mode shown above. From
the latter, we can note that the spatial scale of
the physical mechanism presiding over the tran-
sition has been well captured. On the contrary,
none of the other more unstable modes shows
the same degree of similarity. Moreover, it ap-
pears that the unwished dependence of the e-
folding time on the dissipation has been re-
moved without altering significantly, or actual-
ly improving the similarity between the eigen-
mode and the observed transition map.

To investigate the latter point further, we
have explored the dependence of the e-folding
time of the mode that as an infinite period on the
dissipation time 7. The results arc summarized
in fig. 7. The weaker dependence of the mode
e-folding time when a baroclinic environment is

Fig. 6b. Baroclinic energy conversion for the most
unstable stationary mede of AWR in the two level
model. Units are arbitrary with contours every 0.8
units.

Fig. 6c. Correlation field between the observed and
computed energetics for the standing baroclinic mode
shown in fig. 5a. Units are arbitrary with contours
every 1.5 x 107 unit.
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Fig. 7. Dependence of the growth-rate of the most unstable stationary mode in the baroclinic model
(dashed line) and in the barotropic model (solid line) on the dissipation. Units are day L

considered is shown. Thus the dependence of Table III. As in table II but for ZR regime.
the growth rate on dissipation in barotropic cal- r— od =
culations (Borges and Sardeshmukh, 1995) does Hp RS perio
L : (days) (days)
not carry over to the baroclinic case, at least for -
stationary eigenmodes. Further investigations 15? 3.9
on this subject will be reported elsewhere. 14.8 Infinity
- ) 5.2 1.9
5.2. Stability of the ZR i 9.7
Consider next the stability properties of the 4.3 6.5
7ZR in the two layer model. Using values of 4.2 8.3
F, = F,=2at T21 resolution, we find predomi- 4.1 27
nantly baroclinic time scale traveling modes -
39 4.2
(see table III). The most unstable nonpropagat- i by
33 B

ing eigenvector has an e-folding time ol 15 .
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Fig. 8. Upper level streamfunction pattern for the
most unstable stationary mode of ZR basic state with
Froude numbers F, = I, = 2. Units are arbitrary with
contours every 1.5 units.

days. The upper level streamfunction for this
eigenvector is given in fig, 8. The pattern of this
eigenmode is quite different from that of the
AWR, confirming that the amplitude of the asym-
metries in the basic state have a profound im-
pact on the eigenmode structure, which is par-
ticularly evident for the stationary eigenmodes.
However, it is interesting to note that the pattern
of the ZR stationary eigenvector is quite differ-
ent (as shown by a hemispheric correlation of
about 10°7°) from the observed transition field
(fig. 2c). The slow growth rate of this eigen-
mode mitigates by considering simple linear
instability as a candidate to explain this transi-
tion, but its dissimilarity from the observations
is interesting. In fact, observations suggest that
the ZR to AWR transition is stimulated by ener-
getic baroclinic waves featuring strong non-
linear coupling 1o the large scale flow (H88§).
Further progress on this issue awaits additional
work in a nonlinear environment in which the
interaction of the cigenmodes with the basic
state and the equilibration of the instabilities are
treated explicitly.
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6. Conclusions

In this paper we considered the problem of
the transition from the two weather regimes
identified earlier by Hansen and Sutera (1986,
1995b) in the framework of the instability theo-
ry of non-symmetric basic states. This theory is
based on the hypothesis that each weather re-
gime is a steady state (or is maintained as such)
for the flow. We found that in a barotropic {low
linearized around the predominantly Zonal Re-
gime (ZR) is a stable configuration under global
perturbations. On the contrary, the Amplified
planetary Wave Regime (AWR) is an unstable
state with perturbations growing through signifi-
cant energy extraction from the non-symmetric
component of the basic field. For this case the
most unstable mode is nonpropagating and the
corresponding eigenvector resembles the ob-
served composite of the transition anomaly map
for the AWR to ZR transition. However, the e-
folding time of this mode is too long for realistic
values of the dissipation.

We have shown that in a simple nonlinear
triadic model, the finite amplitude states, in the
limit of small dissipation, are such that the arbi-
trariety of the eigenvector sign can be removed
(i.e. any initial condition would tend 1o a steady
stable state with a zonally asymmetric compo-
nent smaller than the basic field).

Moreover, by linearizing the equations of
motion of a two level Phillips model around
the AWR, we found the same eigenmode with
arealistic e-folding time of about 5 days. In this
case, both the eigenvalue and the eigenvector
are only weakly dependent on dissipation. The
Ekman dissipation mechanism does not prevent
the e-folding from being too long and remains
comparable with other modes whose growth
rates and propagation characteristics resemble
baroclinic disturbances. The energetics of this
mode suggests that a significant mechanism of
energy extraction is associated with the availa-
ble potential energy associated with the non-
symmetric component of the flow. This energy
source prevents the dissipation from inhibiting
rapid growth. Burotropic extraction of kinetic
energy from the asymmetric basic state is also a
significant energy source. Similar energetics can
also be found for the observed transition.
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On the whole, linear instability of the AWR
state is consistent with the observational studies
of H88 and appears to be a physical mechanism
plausible for explaining its rapid decay.

Regarding the zonal regime, our instability
calculations show a plethora of modes extract-
ing energy from the symmetric component of
the available potential energy of the flow, and
suggest that, perhaps, ordinary baroclinic dis-
turbances and nonlinear interactions may lead
to a transition from ZR to AWR.

In concluding we wish Lo stress that the work
presented should be considered only as sugges-
tive of a viable descriptien of low [requency
variability of the atmosphere. In fact, many ques-
tions have been left open and require further
study. Among such questions, the most impor-
tant are the understanding of the mechanism by
which a particular unstable cigenvector is se-
lected by the flow and the role that non-linear-
ities play in damping some modes rather than
others. In particular, it should be considered
why unstable modes with higher e-folding times
and with shorter periods are not preferred by the
flow for transition from the AWR.

The work presented has exploited the merits
of two different lines of research for under-
standing atmospheric low frequency variability
which too often have been thought of as alterna-
tive approaches. These are linear instability and
multiple weather regimes theories. Clearly, the
approach taken in this paper should be extended
to a model with better vertical resolution in
order to treat the dissipation in a manner mote
harmonious with the atmosphere. We anticipate
that the structure and dynamics of the relevant
eigenmodes in such a model will be more robust
and exhibit energetics more consistent with ob-
servations, but at the trade off of much more
complexity (more parameters to specify) and of
computational efficiency.
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