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Determination of electrical signal
masked by random noise using

«super-averaged» functions
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Abstract

Electrical and electromagnetic methods often require the determination of the amplitude of a periodic signal,
produced by controlled sources and masked by natural and artificial noise. Since noise is usually random and
uncorrelated, several techniques based on a stacking procedure and spectral decomposition are applied. In this
paper we tevise some of these procedures based on Fourier analysis. We propose a technique which uses «super-
averaged» [unctions obtained from the average of the results of the Fourier analysis from the whole data set.
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1. Introduction

Direct current electrical soundings for deep
studies often require great distances between
current and potentiometric dipoles. Since the
electric field decreases with distance, the signal
1o be measured at the potentiometric dipole could
be very low and masked by the electrical noises
produced by natural and artificial sources.

Some methods have been proposed to evalu-
ate the difference of electric potential at the
potentiometric dipole. even when the Signal-to-
Noise Ratio (SNR) is very low (Loddo and Pa-
tella, 1977: Alfano er al., 1982; Ciminale and
Patella, 1982: Lapenna et al., 1987, 1994). In
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fact, the useful signal for electrical and electro-
magnetic prospeeting is usually periodic and
generated by a controlled source: it is masked
by non-periodic disturbances which might be
relatively large and produced by casual phe-
nomena (noise).

In this paper we describe the techniques of
stacking and Fourier analysis and a technique
that we have used with success in very unfa-
vourable situations. In the second section we
recall the basic principles of the stacking proce-
dure and Fourier analysis and we show the Iink
between them. In the third section we analyse
some characteristics of a standard «time de-
pendent» Fourier analysis. In the fourth section
we introduce the «time independent» Fourier
analysis. which is the basis of our technique,
described in the fifth section and applied w
synthetic and real data in the sixth section.

Before entering into the core of the paper we
fix some notation. We denote with V, the ele-
ments of a numerical series, which represent,
for instance, the voltages measured at constant
time intervals during an electrical or electro-
magnetic survey. We assume that the signal,
generated with controlled sources, is periodic
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with a period T which is an integer multiple of

the sampling interval, A, so that 7= JA. There-
fore we can indicate the signal period with J,
which means that we are using the sampling
rate as the measurement unit for time.

In order to describe some properties ol stack-
ing and Fourier analysis, it is useful to deline
the «operating period» as a collection of J
successive elements of the data series; we number
the operating periods with the index n and the
elements of the series within an operating
period with the index i. Then we can write V, =
=V, . [tis convenient to arrange the data
series in a table, where each row includes the
data belonging to one operating period

VI Vl VJ
VJ'H V.I-+1 VE.’ (]])
V@ 11 V((_) 12 V()J

The rows of (1.1) correspond to the Q operating
periods contained in the recorded numerical
series.

Each element of the data series is given by
the sum of the signal contribution, §, which
correspoends to the artificial voltage caused by
electrical currents injected into the ground, a
random noise with zero mean. &, ., and more
regular disturbances, whose average value is not
constant during data acquisition, @, so that

I+ 1%

+@d

[T B (m=bn+ir

1%

ftn=bxf+i

=8 +N (1.2)
We are interested in the sinusoidal component
of the signal with period T = JA and therefore
we assume

S, =8sin(2wi/ S+ ), (1.3)
where we have supposed that the phase ¢ of the
signal is unknown, which is the case in the ficld
when it is not possible to synchronise source
and receiver.

We assume that high-frequency components
have been removed with anti-alias filters betore
the application of the techniques for signal ex-
traction.
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2. The stacking procedure and
the Fourier analysis

The stacking procedure and Fourier analysis
are well known to geophysicists and are de-
scribed in any textbook of applied geophysics
(see, e.g., Telford ef al., 1990). We briefly recall
their characteristics, for the specific application
to the determination of the periodic signal in
electrical and electromagnetic prospecting.

2.1. The stacking procedure

The stacking procedure permits an cvalua-
tion of the signal component by computing

=13y,

o e .

i=l.. (2.1)
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The quantities U, given by (2.1) are the averages
of the columns of (1.1).

If the data series contains rigorously non-
periodic random noisc only, namely itV .=
=N, .. the data of each column are generally
different from each other and they are distribut-
ed in a random way. Now, according to the
probability principles, the limits of the mean
values U, must tend to zero for sufficiently great
values of Q. the number of analysed periods.
namely lim U/, = 0.

(o

In practice, each element of the data series is

given by (1.2), so that if we could measure
infinitely many operating periods,

<(I)£_ >!

where (D) denotes the ensemble average of
@, .. whenn =1, 0 If the shape of the
signal is known and if () is sufficiently smooth
within the operating period, ie. as a function
of i, the elfect of the second term of eq. (2.1)
may be neutralised and the stacking procedure
can be applied to evaluate the signal. Actually, it
is evident from (2.2) that the stacking procedure
can be effective if a sufficient number of operat-
ing periods is available: namely, if the recording
time has been sufficiently long.

limU, =5, +

L (2.2)



2.2. The Fourier transform

We refer the reader to specific books (e.g.,
Oppenheim and Schafer, 1989) for complete
descriptions of Fourier transforms of discrete-
time signals. Here we focus on the single com-
ponent of the Fourier transform corresponding
to the frequency 1/J.

Let us consider the two sinusoidal [unctions
with period ./

CH =sin(2mi/J) and C[" = cos(2mi/ J}.
(2.3)

With these functions we can introduce the Fou-
rier transform of the data series and in particular
compute the contribution corresponding to the
signal period: we use both sine and cosine com-
ponents because we have assumed that the phase
of the signal is unknown. Then the sine and
cosine components, /' and F'', are given by

2 ) /
FPhe N° % ¥l
QJ n=l Za o el (2.4

and F'' = é f ] E,II PR
It is well known that lor large values of Q (the
number of operating periods available in the
data series) the quantities F™ and £ assume
typical values in three particular cases:

a) If the data series represents a sinusoidal
function with a period different from J then /"
and F"' tend to zero.

b) If the data series is characterised by a
random distribution of values, namely if it rep-
resents a non-correlated non-periodic function,
then F*' and F" tend to zero.

c¢) If the data series represents a sinusoidal
function with amplitude S and period J. but with
a whatever phase @, and if the sampling interval
Ads small, then £ and F"' assume respectively
the values

; 2 ) ’ (s
F“ = SCOS(‘P)JFEZE IZ: |CDU! ]JJ+¢Cr\ '

(2.5)
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In this case it is necessary to eliminate the effect
of the second term of the right hand members of
(2.5) and then the signal amplitude S can be
computed as

S:(‘L"li]- +Fv(()')l-"f (26)

2.3. Comparison between Fourier analysis
and stacking procedure

We can easily connect Fourier analysis and
stacking procedure. In fact, rearranging the sums
of (2.4) and using (2.1) we obtain

! 2 =i l 0
vy B E) —
F _72:'—1 C, EZH \V(” L=dei |7

2 _ (2.7)
= 7 Z:‘ I (CEMU'}

and the similar expression for £,

Equation (2.7) clearly shows that the Fourier
transform (2.4), computed with the Q. terms of
the data series, is equal to the Fourier transform
computed with the J values resulting from a
stacking operation.

Namely Fourier analysis implies stacking,
and some properties of the former are based on
those of the latter. In particular the remarks
following (2.4), both for a non-periodic and for
a periodic series, derive from the analogous
behaviour of the staking procedure (2.1).

Let us now suppose that a stacking proce-
dure with operaling period J is applied to a data
series whose elements correspond to (1.2). In
the Fourier transform the signal component is
characterised by a monochromatic spectrum,
while the noise component is represented by a
continuous function of frequency. It is well-
known that we have a finite amplitude of the
Fourier transform of the signal for a given fre-
quency. whereas the Fourier transform of the
noise gives the relative amount of cach sinusoi-
dal component and we can define the amplitude
density for a given frequency interval only.

As already pointed out, when the data series
includes a sufficiently large number of operat-
ing periods, the results permit computation of
the amplitude of the signal. In fact. the resulting
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amplitude of the non-periodic noisy component
decreases when the number of available operat-
ing periods becomes greater. Unfortunately the
stacking procedure is poorly efficient for the
noise elimination in the period intervals around
the value J and around its submultiples. On the
other hand. the Fourier analysis appears to be
useful since it can destroy more efficiently the
high frequency noises and in any case it consti-
tutes an additional operation with respect to the
simple stacking, with a noticeably shortening of
recording limes.

The methods that we are going to explain in
the next sections ure bused on the application of
the Fourier analysis.

3. The «time dependent» Fourier analysis

The basic elements for the «time dependents
analysis are the Fourier components with period
J computed for each operating period, ie. for
each row of (1.1)

Vi Z: | ((ﬁ;(. ‘V.n |\ } and

A.‘
(3.1)

2

B, == (€KW m=1i,

g

where " and €' are the functions defined in
(2.3).

A «time dependent» analysis is carried out
computing the sum of A and B, for the first m
operating periods of the data series, i.e. comput-

ing the functions
I i
— Z A, and
S

] z: [ B“ :

Note that F;' = F" and F, = F"'. We denote
with A(m) and BGn) the absolute values of £
and F', namely

Fl-} =

It

F((‘»:

"

m=1...,0.

and Bii) :‘F,:J’ . o m=1L...0

(3.3)

Almi) = ‘ £

In general A and B may assume casually pos-

2

itive or negative values, whereas A(s1) and B(m)
are positive by definition.

Il the amplitude of the noise is constant dur-
ing the data acquisition, the effects of the noise
component cun be correctly predicted by simple
probabilistic laws and A(z) and Bun) have the
following theoretical behaviour:

Amy=|S, *a/ Vm| and Bon) = IS, £/ N

(3.4
m=1,...0.

where § and S, represent, respectively, the sine
and cosine components of the periodic signal,
and the expressions c/vin and 3/7m describe the
effect of noise on the sine and cosine compo-
nents. Notice that we assume S . S, ¢ and i to
be positive quantities. Therefore the alternative
sign in (3.4) corresponds to the possibility that
signal and noise have concordant or opposite
signs. We plot the theoretical diagrams of
A(m)iec and B(n)if obtained from (3.4 in fig. 1.

These diagrams can be compared with the
corresponding experimental diagrams and can
be used to evaluate signal and noise amplitudes
of the recorded data series. For each value of the
ratios S fec and S, /5 listed in the caption to fig. 1.

10
20
S
a e
: \k\___
E §
3 01t B I
b \
‘ \ I/ L
P,
0.01 - \i -
1 10 100 1000
m

Fig. 1. Plot of At/ and B8 as a function of
the index smi. The curves correspond to the following
values of the signal-to-noise ratio (S /e or S,/3): dotted
line 0.4: dashed line 0.2: continuous thin line 0.1:
continuous thick line 0.
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we plot two diagrams, corresponding to the plus
or minus sign in (3.4); in particular the upper
diagrams are obtained [or the plus sign, whereas
the lower diagrams are obtained for the minus
sign. These theoretical diagrams give the bound-
ing curves for the diagrams obtained with real
data for different SNR.

The theoretical model given by (3.4) crudely
assumes that the amplitude remains approxi-
mately constant during data acquisition and
shows that, in absence of signal, i.e. when pure
noise is recorded (S, = S, = 0). AUn)a and
B(m)/j are given by straight lines with a nega-
tive slope equal to —1/2.

The diagrams cotresponding to the negative
sign in (3.4) sharply decrease towards zero and
then rise up to the limit value for great values of
m. This happens because in this case the ampli-
tude of the signal and the average amplitude of
the noise have opposite signs; when their abso-
lute values are upproximately of the same order
they tend to annihilate cach other, so that A(m)/c
and B(m)/f tend to zero.

I we overlap a diagram obtained with real
data over one of the master curves represented
in fig. 1, we can estimate the SNR and, il the
noise is approximately constant during the re-
cording time, we can estimate the absolute val-
ues of the signal and the noise. We refer to this
method of determination of the signal ampli-
tude as «time dependent» analysis, since it is
based on an examination of the functions A(m)
and B(m), which are computed with the data of
the first s operating periods of the whole re-
corded time series. These functions can be com-
puted very easily on line, i.e. while data acqui-
sition is going on.

Unfortunately. the condition of constancy of
non-periodic noise during data recording poses
a strong limitation on this analysis. The lack of
this condition has the effect of changing the
shape of the experimental diagrams, which are
influenced not only by the amplitude and sign
of the signal and the noise, but also by the time
variations of the noise amplitude: this renders
the comparison with theoretical master curves
very difficult or even impossible. As a conse-
quence, this method requires further improve-
ment, with the aim of removing this difficulty.
We suggest a solution in the next section.

(8]

4. The «time independent» Fourier analysis

The weak point of the «time dependent»
analysis is the fact that A(1) and B(1) are com-
puted with the first recorded operating period,
and their values depend upon the SNR of this
operaling period, which in general is not repre-
sentative of the average SNR of the whole re-
corded time series. This problem remains if
we start with any of the operating periods, namely
if we define A(1) as A(1) =|A ], or A(1) =[A,, or
using any other single operating period. The
same considerations apply to A(2) and B(2),
since they are computed only by means of the
first two periods, and so on for AGn) and B(n),
withm=1,...,0.

A simple choice (o change this procedure
and to reduce the dependence on the time vari-
ations of the noise level might be to compute
A(1) and B(1) with several operating periods of
the recorded series and obtain values that are
more regular because they are influenced by the
mean value of noise. The «time independent»
analysis is based on the use of the whole data
series, f.e. the computation of quantities similar
to A(m) and B(m), m = 1,...,0Q. using ull the
available operating periods.

We call «super-averaged» functions the quan-
tities W (i) and W (m), m = 1..... 0, defined as
follows:

‘H” (m.n) =

N )
Wn(m):ézn 1

(s ymod ¢

_ o
anrl

| il
= A
ni 2\?1)
W, () = lé Zf i ‘Hh (1, n)‘ =

R ZQ 1 zmwB
e e ; (s mymod ¢
0 =l o " ls+a)mod ¢

The functions W (m) and W, (in) generalise the
definition given by (3.3). In fuct the quantities
H (m,n) and H,(m,n) represent the averages of
Fourier transforms carried out on subsets of
data composed of wmr operating periods: the
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number of these subsets is Q. strictly equal to
the total number of recorded operating periods.
Moreover, H (m,1) = F', H(m, 1) = " and

W, (0) = AQ) =

(s
r(_f

=|F“" and

(4.2)
W (Q) = B(Q) = 'FJ w’ L ’Fu-:‘_

In other words, the last value of the «super-
averaged» functions represents the absolute val-
ue of the average of the components for all the
operating periods.

The computation of the quantities H (n,n)
and H (m,n) is based on the Fourier analysis for
the operating period (s+n) mod O, which means
that i s+n > @, then A, ., .0 = A, and
Bissmosp = Boop in (4.1). This is equivalent to
stating that the results of the Fourier analysis
for each operating period lay on a circle and
the sums that define the quantities H (#.1)
and H,(m.n) are performed along the circle
itself.

The following formula shows how this rule
work for a particular example, when @ = 32:

f(8.27) =
(4.3)

= (A, +A, AL +A A +AL+A +A)S.

The proposed «time independent» analysis con-
sists of the following steps:

a) Computation of the sine and cosine Fou-
rier transforms A and B for each operating
period, i.e. for the data in each row of (1.1),
using (3.1). Itis important to point out that these
quantities have positive or negative signs in a
random way if the noise prevails over the signal.
whereas their sign is the same as that of the
signal. if the latter prevails over the noise.

b) Computation of the «super-averaged»
functions W (m) and W,(m), m = 1....,0. Note
that it may be sufficient to compute W (m) and
W (m) for a limited number of values of the
independent variable m to obtain good results.
In fact, since the two functions are usually
smooth and plotted with log-log scales, the cal-
culation of the whole function of s should not
be necessary.

We stress that according to (4.1), the index
n denotes the first operating period used for the
computation of H (m.n) and H (m,n), whereas
the remaining (m—1) elements of the sum are
those following in time order. However the
time order may be disregarded, as it is shown,
for instunce hy (4.3). In particular we could
define the quantities H (m,n) and H (m.n),
introducing all the possible permutations of the
operating periods. We avoid this {urther gener-
alisation, because it does not add any sensiblc
improvement to the «time independent» analy-
Sis.

From (4.1) it appears that the computation of
H (m,n) and H,(m,n) consists of the algebraic
summation of the Fourier analysis of the operat-
ing periods, similarly to the «time dependent»
analysis, but only the absolute values of these
sums are used for the successive operations and
the determination of the «super-averaged» func-
tions. A difference between the «time depend-
ent» procedure and the «time independent» one
is that, for each value of m, more groups of
operaling periods are used for the «time inde-
pendent» analysis than for the «time depend-
ent» analysis: in particular if we consider oper-
ating periods in time order, for each value of m,
we use the maximum number of groups of op-
erating periods for computing the «super-aver-
aged» lunctions, namely mQ.

c¢) The «super-averaged» functions W (mn) and
W, (1) define two diagrams concerning the sine
and cosine components of the recorded data set
which permit evaluation of the signal amplitude
according to the criteria described in the follow-
ing section.

5. Determination of signal amplitude with
«super-averaged» functions

We distinguish three cases. The [irst case
concerns an absence of periodic signal. Accord-
ing to probability principles. the noise, if it is
perfectly random and even if its amplitude is not
constant with recording time, gives diagrams of
«super-averaged» [unctions, namely W (n1) and
W () as functions of i, which are straight lines
with a negative slope equal to —1/2 in log-log
scales.
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The second case concerns the presence of

a periodical signal without any noise. In this
case the diagrams are straight lines parallel to
the abscissa axis. The two constant values of
«super-averaged» functions correspond respec-
tively to the sine and cosine components of the
periodical signal.

The third and most interesting case regards
data series for which the mean oscillation am-
plitude of the noise varies with recording time
and the SNR is much smaller than 1. In this case
the signal is completely masked and it is hardly
detectable with the stacking procedure or the
«time dependent» analysis, if the number of
operating periods is not very high. In this case
the variation of noisc amplitude with time might
be important. Therefore the last contribution of
the right hand side of (1.2) has to be removed;
this can be done in an effective way assuming
that this quantity is represented by a linear trend
between the measured values V,, ., and V.
Qur experience shows that removing this linear
trend from each operating period is sufficient to
eliminate the effects of @, on the «super-
averaged» functions.

Both diagrams derived by the functions (3.4)
present typical shapes. For m = [, W (1) and
W,(1) are influenced mostly by the noise but
also by the signal amplitude and by the phase of
the signal. Because of the noise prevalence and
according to the already suid probability princi-
ples, for m > 1 the values of the two «super-
averaged» functions decrease so that the corre-
sponding diagrams, in log-log scale, generally
show a negative slope, whose value is smaller or
greater than — 1/2, which is the signature of lack
of signal.

The difference in the slope of the «super-
averaged» functions (greater or smaller than
—1/2) in presence of a signal is caused by the
signs of the average value of the noise compo-
nents and the signal. In fact, if we recall that
(3.1) and (3.2) involve only linear operators and
take into account (1.2) and (4.3), we can casily
prove that W (Q) and W,(() correspond to the
absolute values of the algebraic sum of. respec-
tively. the sine and cosine components of the
signal and of the average noise. Therefore when
the average of a noise component evaluated on
the basis of the whole data series is opposed 1o

Tii+i

Lh

h

the value of the same component of the signal,
then the «super-averageds function correspond-
ing to that compoenent tends to zero for increas-
ing m, so that its diagram in log-log scale shows
a slope smaller than —1/2. On the other hand, if
a signal component has the same sign as the
corresponding component of the average noise
and if a sufficiently long record has been ac-
quired, i.e. if we have recorded many operating
periods, then we observe a characteristic behav-
iour of the «super-averaged» functions. In par-
ticular there is a definite value of m, say ", such
that W (n1) = W (m") = W.(Q). for every m = m’,
... 2, or an analogous property for the cosine
component. In other words the «super-averaged»
function becomes exactly constant. This is a
very simple and useful criterion to establish the
presence of a signal in the acquired data set. It
is easy to check from (4.1) that W (m) = W (),
m = m',....Q, il all the quantities H (', n).
n=1,...0, have the same sign.

Finally the determination of the signal com-
ponents can be obtained by subtracting tentative
arbitrary values of the signal components from
A, and B : when the tentative values correspond
to the correct values of the signal components,
the modified Fourier transforms for each oper-
ating period would include only the effect of the
random noise and the diagrams of «super-aver-
aged» functions should approximate a straight
line with angular coefficient — [/2 in log-log scale.
Therefore the determination of the signal compo-
nents is based on the fitting ol the «super-
averaged» functions with such a simple master
curve.

6. Examples with synthetic and real data

We show some results with synthetic data
in fig. 2a-c. In particular we have generated
synthetic data series for 0 = 32 as follows: A,
n = 1,..,0, have been computed by adding
pseudo-random uniformly distributed numbers
which simulate noise to an assigned signal val-
ue, 5. We have modelled several different real-
isations of the synthetic random noise and the
results are qualitatively the same as those repre-
sented in fig. 2a-¢ which correspond to a noise
with mean value equal to 0.1 and standard devi-
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Fig. 2a-c. Plots of W (m) and A(m) for synthetic data sets. a) Pure noisy data; b) signal superimposed on the

noise: ¢) signal opposed Lo the noise.

ation equal to 0.8. We consider three cases,
corresponding to different values of the signal:
§=0,5=0.02and S=-0.1. Forecach case in fig.
2a-¢ we plot both the «super-averaged» func-
tion, W (m), and the function A(n); for the read-
er’s convenience we plot in the same figure a
straight line which corresponds to the theoreti-
cal model given by (3.4).

Figure 2a shows the results for the case of
pure noise, i.e. when § = 0; it is easily seen that
the diagram of the «super-averaged» function
approximates a straight line much better than
the function A(m), which shows an erratic trend.

Figure 2b shows the results when S = 0.02,
i.e. when the signal is 1/5 of the average value of
the noise and the ratio between the signal and
the standard deviation of noise is 1/40). In this
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case the «super-averaged» function becomes
constant for m = m" = 27. In this case the «time
dependent» analysis does not allow us to obtain
a confident estimate of the signal, nor it can
indicate clearly if the signal can be revealed by
the recorded data set. In fact the behaviour of
the function A{n1) is still quite erratic so that it is
difficult to infer whether signal is present and to
evaluate its amplitude.

Figure 2¢ shows the results for §=-0.1, i.e.
when the signal and the average noise are op-
posed. We see that the «super-averaged» func-
tion decreases rapidly, namely with a slope
smaller than —1/2, i.e. it decreases by a factor
of ten in less than two decades for m.

These results show the advantage of the «time
independent» analysis with respect to «lime
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dependent» analysis. In particular we see that
the analysis of the «super-averaged» functions
allows us to obtain several information. Moreo-
ver fig. 2u-c shows that the «super-averaged»
functions are very smooth, so that in the field it
is not necessary to compute the whole function
for every value of m. but it suffices to compute a
limited number of values. However the «super-
averaged» functions presented in this paper have
always been computed for all the values of 1,
for the sake of completeness.

We now show the results corresponding to
the application of the Fourier analysis to the real
data set represented in fig. 3 which correspond
toA=1s,J=20and Q= 40. In particular we
plot both the gross data. recorded in the field
(thick line in fig. 3) and the data after the reduc-
tion for removing the long-period trend that
corresponds to the term @ .. of (1.2). The
stacking procedure for this example seems to
give good results if we look at the plot of fig. 4;
in fact the stacking procedure shows a coherent
trend with a signal phase ¢ close to 180°. On the
other hand, the plot ot the error bars shows that
the determination of the signal amplitude from
the stacking procedure is quile uncertain.

The results of the Fourier analysis are shown
in fig. 5a.b. Since the phase of the signal is close
to 180°, the sine component should be less than
the cosine component. This is clearly shown by
fig. 5a. which refers to the sine component; the
results of the «time independent» Fourier analy-
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Fig. 3. Real time series of potential dilferences.
Thick line = gross data (values on the left axis). Thin
line = data after removing the long-period trend
(values on the right axis). Vertical bars separate the
operating periods.
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Fig. 4. Results of the stacking procedure for the real
data set of fig. 3. The length of the error bars
corresponds to twice the standard deviation,
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Fig. 5a,b. Plots of the results of the Fourier analysis for the real data set of fig. 3. a) Sine component; b) cosine

component.
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sis show that this component is mainly affect-
ed by noise, but nevertheless permits us to eval-
uate its amplitude. In particular W (m) becomes
constant for m = m" = 38, whereas the results of
the «time dependent» analysis arc less clear and
more ambiguous. On the other hand the «super-
averaged» function W, (m) for the cosine com-
ponent becomes constant for m 2w’ = 7: this
gives clear evidence that the data series contains
a good signal,

The importance of the use of the «super-
averaged» function for this example is twoflold:
first, the «super-averaged» function permits us
to evaluate the signal amplitude; second, it con-
firms the presence of a periodic signal in the
data series and increases the reliability of the
results of the stacking procedure.

7. Conclusions

We have shown that several techniques for
extracting electrical signal from noisy data se-
ries are based on refinements and developments
of the stacking procedure. In particular, we have
analysed this for the classical technique of Fou-
rier analysis.

The «time dependent» Fourier analysis can-
not be efficient if a large number of operating
periods has not been recorded and il the noise
level varies during data recording. Therefore we
have introduced the «time independent» Fourier
analysis, which is based on the use of the clas-
sical Fourier analysis and of the «super-aver-
aged» functions, With this technique we do not
evaluate the signal components with the classi-
cal technique of periodogram estimation but we
introduce functions which use the results of
Fourier analysis for all the available operating

[Re]
tn

periods in the data series. This permits us to obtain
estimates of the electrical signal in a more reli-
able way than with other techniques and, in
particular, also for unfavourable signal-to-noise
ratios.
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