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Abstract

Time scale properties of self-potential signals are investigated through the analysis of the second order structure
function (variogram), a powerful tool to investigate the spatial and temporal variability of observational data. In
this work we analyse two sequences of sell-potential values measured by means of a geophysical monitoring
array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few
minutes to several days. It is shown that signal fluctuations are characterised by two time scale ranges in which
self-potential variability appears to follow slightly different dynamical behaviours. Results point to the presence
of fractal, non stationary features expressing a long term correlation with scaling coefficients which are the clue
of stabilising mechanisms. In the scale ranges in which the series show scale invariant behaviour, self-potentials
evolve like fractional Brownian motions with anticorrelated increments typical of processes regulated by negative
feedback mechanisms (antipersistence). On scales below about 6 h the strength of such an antipersistence appears
to be slightly greater than that observed on larger time scales where the fluctuations are less efficiently stabilised.

Keywords fractal properties — variogram analysis — Among these, geoelectrical parameters might
antipersistence — self-potential signals — earthquake be very useful to monitor and understand a col-
prediction lection of seemingly complex phenomena relat-

ed to seismic activity (e.g., Johnston, 1997; Park,
1997). As an example, variations in the stress

1. Introduction and fluid flow fields can cause changes in the
self-potential field, in resistivity, and in other
In the context of the scientific research de- electrical variables (Scholiz, 1990) so that the
voted to earthquake dynamics, interest is in- study of these induced fluctuations might pro-
creasing in a variety of geophysical and geo- vide information on the driving mechanisins
chemical parameters which could provide indi- both in normal conditions and during intense
rect information on the dynamics underlying seismic activity.
the tectonic processes (e.g., Rikitake, 1988). At present, the use of electrical precursors in

earthquake prediction is to a large extent still
empirical, due to the many difficulties that still
Mailing address: Dr. Maria Lanfredi, Istituto di Melto- CXISl‘ m_ undcrstun@ng thE} p]1y51C%.u11del'lylllg
dologie Avanzate di Analisi Ambientale, CNR, ¢.da S. Loja, the source mechanisms of geophysical precur-
85050 Tito Scalo (PZ), Naly; e-mail: lanfredi @imaaa.pz.cnr.it sory phenomena and to well define objective

271



Vincenzo Cuomo, Maria Lanfredi, Vincenzo Lapenna, Maria Macchiato, Maria Ragosta and Luciano Telesca

criteria to evaluate the reliability of the short-
term predictions based on this type of precurso-
ry signals (e.g., Geller er af.,, 1997). A typical
example is the VAN experiment (Varotsos et al.,
1993) in which a significant statistical analysis
of claimed geoelectrical anomalies and a dis-
crimination ol the cultural noisy sources uare
completely omitted (e.g., Mulargia and Gaspe-
rini. 1992; Kagan and Jackson, 1996; Pham
et al.. 1998).

In order to asses the use of geoelectrical
parameters as earthquakes precursors, the fun-
damental issue to address is if these parameters
are able to pick up characteristics of active tec-

tonics. In other words, we have to understand if

there is a significant correlation between scis-
mic sequences and electrical fluctuations statis-
tically distinguishable from the electrical back-
ground behaviour (anomalous patterns). Obvi-
ously, the actual presence of such a connection
can be established only after a general statistical
characterisation of the given geoelectrical sig-
nals is carried out: this is the fundamental step
which allows us to define the «anomalous pat-
terns». In agreement with this approach philos-
ophy. in this work we investigate the dynamical
properties of sell-potential signals, as they can
be detected from observational time series (Cuo-
mo et al., 1996; 1998).

Self-potential signals are the result of the
interaction among very heterogencous and not
well known mechanisms (Scholz, 1990). In par-
ticular, there are many ambiguities to indicate a
common physical process able to describe the
possible generation of electrical signals in seis-
mic¢ active areas. Taking into account the geo-
logical and seismological setting of the Irpinia-

Basilicata Apennines, the preliminary results of

our recent monitoring activity and the quantita-
tlive dynamical information extracted from the
analysis of geolectrical time series, a reasonable
common physical process could be the dilatan-
cy-diffusion-polarization model (Di Maio and
Patella, 1991). Local features can be mixed with
the generul ones (Patella e al., 1997) so increas-
ing the difficulty of rightly characterising and
interpreting the signal time variations. In addi-
tion, as occurs for many environmental signals,
observational data are made even more erratic
by the presence of electrical signals coming
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from anthropic sources which make its dynam-
ical characterisation harder (Cuomo et al., 1997,
Pham er al., 1998).

In the study of seemingly complex phenom-
ena, like those generating self-potential signals,
methodologies able to determine time scale struc-
tures in observational time series are particu-
larly useful tools to obtain information on the
features and on causes of variation at the differ-
ent time scales. They can also be very useful to
test models proposed Lo explain spatio-temporal
variability in complex systems. In particular,
{ractal analysis techniques, developed to draw
qualitative and quantitative information from
time series, have recently been applied to the
study of a large variety of irregular, erratic sig-
nals and by now have proved very uselul to
detect deep dynamical features. Often, analys-
ing long samples of data it is possible o dis-
close trends which appear to vary between suc-
cessive subsamples. Although one may assume
the presence of nonlinear trends or generic non-
stationary behaviours, similar features naturally
arise, e.g., in [ractional (fractal) Brownian mo-
tion (Mandelbrot and van Ness, 1968). Observed
series like these, show a red spectral density
with an accumulation of variance in frequencies
which are not much greater than the inverse of
the sample length (e.g., see Granger, 1966). For
these processes, {ractional Browniian motion may
provide a good study framework especially to
understand the interplay between the seemingly
non stationary behaviour and the variance dis-
tribution between the various lime scales with
all its dynamical implications.

As far as the methodologies useful to detect
fractal properties in time series is concerned,
structure functions have become a universally
accepted tool to investigate the presence of scale
invariance in time and space {Mandelbrot, 1982)
and particularly to analyse fractional Brownian
motion. In addition, structure function of sec-
ond order or «variogram». that is the variance of
the signal fluctuations at the different scales, is
a well used tool in geostatistical and environ-
mental studies to investigate and model spatial
features {e.g., Cressie, 1993; Sen, 1995). In the
context of the study of time variability, the struc-
ture function analysis allows us to detect any
possible non stationary behaviour. In particular,
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for fractional Brownian motion, the variogram
shows the typical power law behaviour (scaling
regime) and the value of the power law coelli-
cient characterises the persistence properties of
the fluctuations. In the scale range in which a
scaling occurs, the signal changing is the result
of the accumulation of scale invariant random
fluctuations. By estimating the scaling coeffi-
cient we are able to obtain quantitative informa-
tion on the strength of its persistence features
and to gain insight into the kind of mechanisms
which may be responsible for its generation.

In this work we analyse two time serics of
self-potential measurements instrumentally re-
corded in the Basilicata region, onc of the most
seismic areas of the Apennine chain (Pantosti
and Valensise, 1984). Time scales, from a few
minutes to several days, are investigated to char-
acterise the short time scale variability of the
observational time series and the results are dis-
cussed.

2. Data

Our data consist of two sequences of 15 min
averaged self-potential measures recorded from
I January 1995 to 31 December 1995 in two
sites, Tito and Tramutola (Basilicata Region -
Italy), located in a seismically active area of the
Apennine chain (see fig. [). Such an area is
recognised among the most interesting lor the
analysis of those geophysical phenomena pos-
sibly related to earthquakes (Martinelli and
Albarello, 1997). Monitoring stations in fig. |
measure geoelectrical parameters (self-poten-
tials), geochemical (CO,. “Radon, etc.) and
acoustic emissions, and meteo-climatic varia-
bles (air temperature, radiance, humidity, etc).
Self-potential signals investigaled in this paper
are measures of voltage differences between
electrodes installed with a spacing of 100 m and
inserted in the ground at about 1 m depth. As far
as the technical features of the experimental
equipment are concerned, we refer the reader to
Cuomo et al. (1997) and for the results of mono-
and multi-parametric preliminary statistical
analysis of the monitored variables to Di Bello
et al. (1998). In this paper we focus our alten-
tion on the analysis of time scale properties in
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geophysical parameters of electrical nature. The
samples of 15 min-averaged observations are
shown in fig. 2a.b: strong variability and non
stationary (eatures are detectable in the plots at
a naked eye view.

3. Basic definitions and methodology

Observed signals, especially those from the
natural world, are very often irregular and present
details in a wide range of time scales. When
plotted, observational time series describe jag-
ged and crinkled curves which may also be
highly non stationary. In order to draw dynam-
ical inferences on the properties of the mecha-
nisms generating this irregularity, the concept
of fractal dimension or equivalent [ractal de-
scriptor can be applied to time series for quan-
tifying the «crinkliness» of the trajectory though
phase space which is related to the time correla-
tion of the observed signal (Theiler, 1991).

Various methods Tor analysing the correla-
tion properties of a time series arc available, the
variance spectrum being one of the most classi-
cal tools. In particular, many techniques have
heen developed to detect and quantify fractal
features in experimental and observational data
and many empirical studies have been carried
out to validate them (see e.g., Beran, [994; Tagqu
and Teverosky, 1995 and references therein).
Among these, the analysis of the structure func-
tions of time series is particularly suitable (o
qualitatively and quantitatively characterise the
persistence properties of the fluctuations in ob-
served signals.

Let {x{n)} (r =1, ..., N) be a time series of
length N. The structure function of order p of
this time series is delined according to

S(T} =</lx(t+0)—x(D) /">

with the angular brackets denoting the expected
value. For any given time scale 7, § (7) repre-
sents the p-th moment of the magnitude of the
signal fluctuations at such time scale.

For fractional Brownian motion, which is
the fractal extension ol the classical Brownian
motion (e.g., Mandelbrot and van Ness, 1968),
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Fig. 1. Monitoring network. Data analysed in this work come from Tito and Tramutola.

S (r) scales as T
S () e T

In particular, the scaling coefficient of the sec-
ond-order structure function (variogramy is usu-
ally denoted by 2H with the constrain 0 < H < 1
in order to ensure that the structure function
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does not diverge (Panchey, 1971)
ST =<[xi+71)—x(1)] >ec T

The coefficient H describes the power law «dif-
fusion» rate, For small times 7, if 0 < H < 1 the
motion is necessarily crinkly whereas smooth
motion leads to A = [. In the large = limit. a
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linear drift gives H = 1 whereas bounded motion
implies A = 0. As a consequence, in the proper
fractional Brownian range O < H < 1, the motion
is crinkly and unbounded.

According to Mandelbrot and van Ness
(1968), for H = 1/2 we deal with classical Brown-
jan motion (ordinary diffusion), which is char-
acterised by a zero correlation between the proc-
ess increments. To see this, we define the incre-
ments A7) = x( + 1) —x(r) (r =2 1) and set
A,(0) = 0. The covariance between the past in-
crement — A (—7) and the future increment
AfT) 1s

<-A(-DAT)>=

2 < [A) - AL > -2 < [A@] >)=

24f

= 2 ](21_)113' o

Dividing by <A (1)’ >=1", we obtain the incre-
ments correlation

p(H}= 231: 171

which is independent of 7 and vanishes for
H=1/2,

Such a correlation is instead positive if 1/2
< H < 1, that is increasing (decreasing) fluctua-
tions in the past imply on the average increasing
(decreasing) fluctuations in the future. This fea-
ture leads to persistence; the signal appears rather
smooth and shows seemingly periodic patterns.
Persistent fractional Brownian motion is useful
to describe processes generated by positive feed-
back mechanisms. Examples of persistent be-
haviour can be found in climatic processes (e.g.,
Mandelbrot and Wallis, 1969) or in the statistic
of ocean waves (see Feder, 1988) where it is
possible to observe clear trends in wave-height
with relatively little noise. The upper boundary
H =1 indicates deterministic behaviour. Con-
versely, if 0 < H < 1/2, increasing (decreasing)
fluctuations in the past imply decreasing (in-
creasing) fluctuations in the future and the sig-
nal appear very noisy. Such kind of fractional
Brownian motion is suitable to describe antiper-
sistent signals governed by stabilising mecha-
nisms (negative feedback). Stochastic compo-
nents with antipersistent features are detectable
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Fig. 2a,b. 15-min averaged sclf-potential data
recorded from | January 1995 to 31 December 1995
(1 year = 525600 min): a) measures recorded at Tito;
b) measures recorded at Tramutola.

e.g., in lime series of air pollution concentration
(Lanfredi er al., 1998) where atmospheric dis-
persion mechanisms and chemistry act as stabil-
ising factors. The lower bound, H = 0, expresses
perfect stabilisation (stationary fluctuations).

For a theoretical fractional Brownian motion
these properties apply for any possible ¢-value,
differently from other random functions (e.g.,
Markov processes) having the properties that at
sufficiently distant times, functions samples are
independent.

The coefficient H is related to the exponent
in the spectral power law 1/f” (see Mandelbrot
van Ness, 1968) by the formula g = 2H + 1. As
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noted by Theiler (1991), in real cases, pure 1/f”
power spectra are physically impossible. Indeed,
the total power would diverge to infinity: ex-
plicit (of dynamical origin) or implicit (induced
by the finite length and by the sampling rate of
the series) LUIO“.\ have to be expected which
makes bund-limited {ractals behaviours in real
time series.

The variogram estimator used in our analysis
is the classical one (Cressie, 1993)

S, (1) = (x(t+7) = x(1))”
’ JM 7| \Z )

where the sum is over the number N(t) of the
observations localed at an r distance apart in the
observational sample. The time series has not
to necessarily be sampled at equal time intervals
and a lack of information in periods which are
short in comparison with the length of the series
is not expected to dramatically affect the char-
acterisation of background behaviours.

4. Results and discussion

Figure 3a,b shows the variograms estimated
from the observational time series concerning
respectively Tito and Tramutola on the scales
going from a quarter of an hour Lo ten days. As
it is possible to note, a very ditferent behaviour
is detectable in the two plots. In the variogram
relative to Tito (fig. 3a) a 24 h cycle is shown
which instead is not present in the plot concern-
ing Tramutola (fig. 3b). Since the variogram
represents the correlation structure of a given
time series in the time domain, such a cycle is
the signature of the presence of a daily modula-
tion. This modulation was already noted and its
correlation with the ambient temperature was
already discussed in previous works (e.g., Di
Bello er al., 1994). As at Tramutola the sensors
were slightly deeper than the sensors of the Tito
station, the temperature variations did not sutfer.

In spite of the presence of an additional [ore-
ing in the signal measured at Tito, if we inves-
tigate the early time scales in log-log plots, very
similar behaviours are detectable (see fig. 4a.b).
Below about 360 7 (6 h), clear power laws are
shown which express the occurrence of scale
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Fig. 3a,b. Second order structure function (\'dl‘io—
aram) cstimated from the samples of fig. 2a,b. The
range ol time scales covers 10 days (1 day = 1440 min):
a) Tito; b) Tramutola.

invariance. In both cases the sculing coefficients
estimated, H, is less than 1/2 and gives us an
indication of antipersistent behaviour. Since H
measures the strength of the stabilising skill of
the mechanisms underlying the signals (the val-
ue H = () characterising a perfect stationary
behaviour), the series recorded at Tramutola ap-
pears rather well stabilised whereas the negative
feedback mechanisms ruling the self-potential
measured at Tito seem 1o be less ellicient. Also
this difference might be explained as an effect
of the daily temperature change. Indeed, per-
fectly stabilised signals are bounded and do not
show significant trends. If we suppose that a
given observed signal represents the position
sequence of a particle motion, about stabilised
features express the tendency of the particle to
turn back where it came from. On time scales as
short as T = 6 h, which is only a quarter of the
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Fig. 4a,b. Log-log variograms on time scales going
up to about 10 days (1 day = 1440 min): linear patterns
disclose fractal features. a) Tito; b) Tramutola.

daily period, the temperature change is seen on
the average as a drift which tends to send away
the particle (persistence mechanism) and atten-
uates the antipersistent effect of stabilising mech-
anisms. In any case, the differences in the values
of H do not express a particularly significant
difference of dynamical character.

Above the 1440 7 scale (about 24 h), another
very clear linear behaviour is detectable in
fig. 4b with a H-value slightly greater than that
characterising shorter time scales (lower stabil-
ising effectiveness). Note as in the Tito vario-
gram (fig. 4a) the oscillatory behaviour is also
displaced on a near linear trend with about the
same slope. If one neglects the diurnal modula-
tion, the two signals appear to have very inter-
esting similar dynamical features.

As still seen in fig. 2a,b, showing self-poten-
tial data, on time scales greater than those ana-
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lysed above, the signals appear very irregular.
Al a variogram analysis of our series. these
irregularities would trivially reflect in irregular-
ities in the plot of 5,(z). In order lo investigate
also these scales, longer observational time se-
ries are needed which can allow us to under-
stand how these {luctuations fit in the dynamics
of the signals.

5. Conclusions

The investigation of the time scale properties
of two one year time series of sell-potential
recorded at two sites of a seismically active area
located in the Basilicata region, has disclosed
very evident fractal features. On time scales
going from a few minutes to several days, al-
though one of the two signals is modulated by a
daily cycle, the variograms of both the signals
show two scaling regimes characterised by [rac-
tal exponents typical of fractional Brownian
motion with anticorrelated increments. Such kind
of motion well describes signals governed by
negative feedback (antipersistent) mechanisms.
Fractional Brownian motions are not stationary
so that our findings show that the investigated
fluctuations are not perfectly stabilised. Never-
theless, especially in the signal measured at
Tramutola which is not modulated by a daily
cycle, the strength of the stabilisation, measured
by the distance from 0 of the fractal exponent H
(in our case H ~ 0.3), is efficient. These mech-
anisms allow the variance of the signal to ex-
plode only on very large times so that, if such a
regime occurs only on short time scales, like
those detected in our analysis, the fluctuations
appear rather stationary.

The irregularity of the time series on time
scales larger than those investigated in this pa-
per suggests analysing longer samples of meas-
ures in order to assess large scale variation fea-
tures. Having a more complete time scale char-
acterisation of the persistence properties of the
signals we could better understand the back-
ground electrical variability and gain insight
into the possibility of defining «anomalous»
patterns which are not made up of intrinsic fluc-
tuations and might be related to the seismic
activity forcing. At the same time, because of
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the similar dynamics shown by the two sites, we
believe that a similar analysis, carried out on
data coming from different sites located in the
same zone and from sites belonging to different
seismic areas might be very interesting to gain
insight into the links among fractal properties,
features peculiar to the specific site like the
local tectonics and very general properties of
the self-potential signals,
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