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Abstract

A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between
large carthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to
the Pareto tail and the actual distribution of the maximum to the Fréchet distribution. while the sample distribution
of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for
the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions
shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither sell-
similarity nor the Gutenberg-Richter law can be considered universal, The energy-magnitude transformation
converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and
not the Gompertz distribution as in the Lomnitz- Adler and Lomnitz generalization of the Gutenberg-Richter law.
Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chincse
Earthquakes. An analogy is drawn between large carthquakes and high cnergy particle physics. A generalized
equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquake
temperature and volume are determined as functions of the energy. Large insurance claims based on the Parcto
distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

Key words  Gurenberg-Richrer and Pareto laws — berg-Richter law insofar as it overestimates the
Frécher and Gumbel distributions for energy and likelihood of high-cnergy events (Lomnitz, 1974:
magnitude — compound Poisson processes — earih- Esleva, 1975). It was conjectured that the energy
qiake temperatitre and volume — upper ordei- scale ceases to be valid at very large values ﬂl;d
statistics — maxinunn eaithgiake energy S . - - . B : ’

d s with it, the validity of the Gutenberg-Richter

law (Bolt, 1970; Otsuka, 1973; Chinnery and
North, 1975). An upper cut-olf on the Richter

1. Introduction magnitude scale for each region could possibly
L ) be used to salvage the Gutenberg-Richter law

The realization that the Gutenberg-Richter on the high magnitude side (Cornell, 1968; Yegu-
law belongs to the class of Pareto distribution Jalp and Kuo, 1974; Smith, 1976: Caputo, 1978).
functions (dfs) has facilitated the introduction Yet the Gutenbere-Richter law is a statistical
of scaling coneepts into earthquake prediction. law, and one that is not based on any particular
Criticism has been lodged against the Guten- geographical area, or physical model. Conse-

quently, if a «maximum magnitude» exists, it
must be determined by statistical considerations —
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dl — and not from considerations based on a
specific geographical region, or physical model.

Such a physical model has been proposed by
Lomnitz-Adler and Lomnitz (1978, 1979), based
on strain accumulation and release at plate
boundaries. The model assumes that large carth-
quakes form a Poisson process whose interoc-
currence limes are exponentially distributed.
These times were implicitly equated with the
accumulation time, which is proportional to the
accumulation of potential slip across the bound-
ary. Since the latter is proportional to the seis-
mic moment, and the seismic moment is expo-
nentially related to the magnitude, the model
led to a double exponential df for the smallest
value, known as the Gompertz df. The logarith-
mic transformation from magnitude to energy
brings the negative shape parameter Weibull df
for the smallest value into evidence (Kijko,
1982). Both dfs have right endpoints meaning
that there are upper bounds on both the magni-
tude and energy for large carthquakes. Yet, no
such «maximum magnitude» appears to exist(').

The Gompertz df was presented as a gener-
alization of the Gulenberg-Richter law, so that
in a well defined limit it should reduce to the
latter. An exponentially increasing [unction of
the magnitude replaces the magnitude itself in
the generalized magnitude-frequency expression.
Only for small magnitudes would the two ex-
pressions coincide, since the Maclaurin series
expansion ol the exponent would, in general,
diverge (Lomnitz-Adler and Lomnitz, 1978,
1979). However. it is the high magnitude region
where the generalized Gutenberg-Richter law
should be superior to the ordinary one. since the
latter tends to overestimate the likelihood of
high-energy events (Lomnitz-Adler and Lom-
nitz, 1978, 1979). Moreover, the energy-magni-
tude relation used to derive the Gompertz df
was not the same as that proposed by Gutenberg

(') Although Lomnitz (1994) acknowledges that the
cumulative df of the magnitude is the Gumbel, and not the
Gompertz, df, it does not follow that the Gumbel df «can be
derived from first principles in various ways» [rom the phys-
ical model proposed by Lomnitz- Adler and Lomnitz (1978).
The problem is that the energy is an exponential increasing
function of the magnitude. and not a decreasing one (¢f. Sec-
tion ).
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and Richter (1949). The value of the slope pa-
rameter a (cf eq. (4.6) below) was chosen to fit
the data, which turned attention away from the
strain energy and put into focus the potential
seismic moment on the particular segment of
the plate boundary. This incompatibility was
subsequently re-addressed by Jones et al. (1982),
who generalized the relation between the seis-
mic moment and the accumulation time o jus-
tify the surprisingly small value of ¢ which is
necessary to fit the empirical data. The Guten-
berg-Richter law is very sensitive to the loga-
rithmic transformation between energy and
magnitude. Large magnitudes imply extremely
high energies; at such magnitudes, the Guten-
berg-Richter relation «diverges for any magni-
tude-cnergy relation» {Lomnitz-Adler and Lom-
nitz, 1978, 1979).

The negative shape parameter Weibull df for
the smallest value of the energy, or the Gom-
pertz df for the smallest value of the magnitude,
is an asymptotic df], and, as such, it is derivable
from an initial sample df which belongs to its
domain of attraction. There has been much ado
about the putative universality of self-similar,
homogeneous power laws, especially the Guten-
berg-Richter law (Bak, 1996). No physical model
is necessary to transform the homogeneous pow-
er law Pareto df into the exponential Fréchet
df., which is one of three EV dfs. A nonscaling
Fréchet df is close to a scaling, self-similar Pareto
law in the upper tail. I the sample size is large,
then the Fréchet df can be accurately fitted to
the actual sample df of the maximum. In the
limit, it would appear that large earthquakes are
not {ree of natural scales. The Fréchet df is,
however, a distribution for the largest — and not
the smallest — value. Thus, there is no connec-
tion between the Gutenberg-Richter law and the
Gompertz df. The Gompertz df, used in the
statistical analysis of extreme life spans, has a
right endpoint denoting maximum life expect-
ancy or, equivalently, «maximum magnitude»,
If such a relation did exist (Kijko, 1982; Lom-
nitz-Adler and Lomnitz, 1982), it would defleat
the purpose of generalizing the Gutenberg-Rich-
ter law, since it would introduce an upper bound
on the magnitude, which could be considered as
an upper limit to the validity of the Gutenberg-
Richter relation itself.
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Yet there appears to be nothing wrong with
the fit of the Gompertz law to the empirical data —
so long as one does not question the magni-
tude-energy relation used for the fitting. But, if
the Gompertz law holds for the magnitude, then
it is certainly not a generalization of the Pareto
law for the energy. The solution to this paradox
resides in the magnitude-energy relation itself.
The particular transformation used by Lomnitz-
Adler and Lomnitz (1978,1979) happens to set
the same scale for both energy and magnitude.
Consequently, large magnitudes were not trans-
formed into extremely high energies. However,
an exponential stretching of the scale will give
a sample mean excess function which is an
increasing function of the energy, and with a
shape parameter greater than one. In addition,
the sample hazard function decreases with in-
creasing energy, which represents the «age» al
which the system is known to have survived.
The larger the magnitude, the less likely it is for
an earthquake to occur at that magnitude. The
behavior of these two functions implicates an
EV df for the largest value, since contrary be-
havior would suggest an EV df for the smallest
value, as the analysis of extreme life spans has
shown. The latter maintains that the older the
individual gets, the more likely he is to dic.

One of the aims of this paper is to show that
if the original Gutenberg-Richter energy-mag-
nitude relation is used. the Gompertz law will
no longer {it the empirical data. Rather, it will
be found that the Gumbel df. which was origi-
nally proposed by Epstein and Lomnitz (1966),
is the one that fits the empirical data for magni-
tude-frequency. The Pareto law for energy stands
in the same relation o the Fréchet df as the
Gutenberg-Richter law for magnitude is to the
Gumbel df.

In order to muke the paper as self-contained
as possible, we briefly review EV theory and
the statistical analysis ol EV in Section 2. In
Section 3, we treat the statistics of & compound
Poisson process. where the number of jumps in
a given time interval is Poisson regulated while
the intensity of the jumps is governed by a
Pareto law. This has the advantage of modifying
the teclonic parameter in the Gutenberg-Richter
or, equivalently, the shape parameter in the Pareto
tail df. Positive values of the shape parameter
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correspond to the Pareto df, while negative val-
ues convert it into @ Beta df. The Beta df has
been employed by several authors to treat after-
shock sequences in which the energy of any
aftershock is bounded from above by the energy
of the largest shock in the sequence (Utsu, [960;
Vere-Jones, 1966). This should provide a uni-
fied treatment ol main shocks and aftershocks.
with the added feature that whereas the sample
exceedance df of main shocks fit to the Pareto
df. or a Gutenberg-Richter law, the aftershock
sumple df for values of the energy not exceed-
ing that of the primary shock should fit to a Beta
df. This would imply that the logarithm of the
number of aftershocks whose energy is less than,
or equal to, the energy of the primary shock is
a lincar increasing function of the magnitude
of the primary shock (¢f. eq. (3.7) below and
Lavenda (in preparation)). In Section 4, we draw
an analogy between large carthquakes and high-
energy particle physics in which a generaliza-
tion of the thermal equation of state is used to
transform the Gamma density into the density
of order-statistics for the v = 1 largest energy.
The Gamma density is intimately related to the
central limit theorem; it approaches the normal
df as the number of degrees-of-freedom increas-
es without limit. The df of vth largest energy
becomes the Gumbel df upon setting v = 1, there-
by confirming the choice of the Gumbel df as
the EV df lor the largest value. An earthquake
temperature is defined which vields a thermal
equation of state that is reminiscent of a con-
strained thermodynamic system. The nonequi-
librium constraint, or the dilference between the
carthquake temperature and the thermodynamic
temperature, is responsible for the encrgy de-
pendence of the earthquake volume. Numerical
comparison is made in Section 5 with the results
of Lomnitz-Adler and Lomnitz (1978, 1979}
using the same Catalogue ol Chinese earth-
quakes, 780 B.C. to 1973 A.D. In Section 6,
an analogy is drawn between the maximum
energy of an earthquake and the largest insur-
ance claim in order to show that such an energy,
or insurance claim, does not exist. The deriva-
tion of the compound Poisson process is given
in the Appendix together with the derivation of
the rate function from the large deviation prin-
ciple.
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2. A brief account of extreme values and their
statistical analysis

In addition to exceedances beyond a given
threshold, maxima can be extracted from blocks
of data, each block being delineated by a given
period of time or region of space (*). If the ran-
dom variables, X . ..., X, are independent and
identically distributed (iid) according to a com-
mon df £, then(")

P(max X, <x)=

=PX, <x,.. X 2x)=F"(x).

In a certain sense, F'(x) is closc 1o a max-
stable df G(x). More specifically, il there exist
sequences of constants a, and b, such that
F'la,x+b) = F(x), then F belongs to the do-
main of attraction of max-stable df, G(v). Na-
ture has simplified matters considerably by lim-
iting the number ol EV classes to three: the
Gumbel df, G, (x} = exp (—exp (- x)}. which
has support on (-, @), the Fréchet df, G (x) =
= exp (—x '), with support on (0,%) and a
shape parameter 0 <y < oo, and the Weibull df
with a negative shape parameter, G,(x) = exp
(— (= x) ), with support on (=, ().

The initial dfs F which belong respectively
to the domain of attraction of the Gumbel, Fré-
chet, and the negative shape parameter Weibull
dfs are the exponential df, £ ,(x) = 1 —exp(— x),
for x = (), the Pareto df, F(x)=1-x7" forx = |
and a positive shape parameter, and the Beta df,
F.()=1-(-x) " for—[ £ x <0and anegative
shape parameter. The exponential and Pareto
dfs are decreasing on their support. Beta densi-
ties with shape puarameters y < —1 also share
this property, while those with ¥ >—1 are in-
creasing functions. Beta densities of a positive

() See, for instance, Reiss and Thomas (1997) for the
classification scheme, the statistical tools, and the refer-
enees given therein.

() 1f the X, represent the energies of large carthquakes.
then the iid property means that they are to be taken from
declusterized catalogues. As Lomnitz {1994) points out,
large carthquakes on the same lault are likely to be widely
spaced in time, and large carthquakes occurring consecu-
tively near to one another should be very rare.
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variate and a negative shape parameter belong
1o the domain of attraction of the Weibull df for
the smallest value.

The limiting dfs of minima are in a one-to-
one correspondence with the EV dfs. They are
therefore referred to as «converse» EV dfs. In-
stead of specifying the initial dfs, we specify
their tails, or survivor functions, F = | — F, so
that if there exists a sequence of constants ¢, and
d then

PminX, >c,x+d )= F"(c x+d )= F(x)
[T

implies min-stability. The converse Gumbel df
is the Gompertz df, G (x) = | —exp(—¢"), with
the same support as the Gumbel df. while the
converse Weibull df, having a negative shape
parameter, is G (x) = 1 - exp(—x ), for a posi-
tive variate. In the older literature, the converse
Weibull df is referred to as the Weibull df, or the
«third asymptote» (Gumbel, 1958), since it was
the Swedish engineer Weibull who used such a
df to characterize statistically the principle that
the «weakest link breaks the chain».

In addition to the location and scale param-
eters, ¢ and ¢ > 0, the Pareto and Beta dfs have
a shape parameter y. The Parcto tail df, with a
positive variate greater than, or equal to, one,
and Beta df, with a positive variate less than, or
equal to, one, can be transformed into one an-
other by changing the sign of the shape param-
eter; they (it closely with the upper tails of the
Fréchet and the converse Weibull dfs, respec-
tively. In order to distinguish between the two
tail dfs, we note the following: the Pareto df has
a left endpoint, while the Beta df has a right
endpoint, representing «maximum age». The
left endpoint of the Pareto df is the scale param-
eter, ¢, corresponding to the threshold value,
Although the Fréchet and Pareto densities pos-
sess similar upper tails, only the former is tied
down to zero at the left endpoint. Henceforth we
shall limit ourselves to positive variates only.

The mean excess. or the mean residual life,
function of the Pareto df is a linearly increasing
function, while it is a linearly decreasing func-
tion in the case of the Beta df. The hazard
functions, or the failure rates, show contrary
behavior: the hazard functions of the Pareto and
Beta dfs decrease and increase, respectively.
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Roughly speaking, the hazard function of the
Pareto df implies that the longer the system is in
operation the less likely it is to fail, while hazard
function of the Beta df asserts that the older the
system gets, the more prone it is to failure. The
distinction is analogous to that of an «open», as
opposed to a «closed». thermodynamic system:
in the former there is no restriction on the ener-
gy whereas in the latter there is only a finite
amount of energy available. We will now sec
how these tail dfs have been, and are, used in
earthquake prediction,

3. Stochastic processes underlying
the Gutenberg-Richter law

It is well-known that the Gutenberg-Richter
relation can be converted into a scaling relation
on a par with Pareto’s law, If N(X >x) is the
number of exceedances of the scaled energy
x = E/E, where E, 1s some conventionally fixed
lower value, then both the Gutenberg-Richter
and the Pareto laws can be expressed as (Lom-
nitz, 1974, 1994)

mMNX>n)=Inn-yhnxy x21 (3.1)

where n is the number of earthquakes greater
than or equal to £,. Normalizing the number of
exceedances we gel the probability of exceed-
ance N(X > x)/n = P(X > x). This allows the

tectonic parameter in the Gutenberg-Richter law
to be written as a fractal dimension

—InP{X > x)
‘)}:: AR . — i

Inx

xzl, (3.2)

If the random variables X, are iid, the initial Pa-
reto df belongs to the domain of attraction of
a stable law for the largest value as either the
sample size #n. or the time interval 7, increases
without limit, since they are related by n = «,
where 4 is a constant intensity. The larger the
sample, the more likely it is to include high-
energy events. The Gutenberg-Richter law tends
to overestimate the likelihood of these high-
energy events. This is why the maxima should
fit better to an EV df.
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The distinction between main shocks and
aftershock, or foreshock, sequences can be made
on the basis of the initial dfs which belong to the
domain of attraction of the EV dfs or their con-
verses. The characterizing property is the range
ol the shape parameter ¥ in (3.2). According to
classical EV theory, there is no restriction en the
exponent y in Pareto’s law, other than it be
positive, Its maximum likelihood estimate is the
inverse of the logarithm of the geometric mean
of the observations. However, if we consider its
characteristic function, or generating function
(gl), we are immediately confronted by the lact
that the shape parameter is either limited to the
open interval (0,1), or to the open interval (1,2).
As we discuss in the Appendix, the Pareto df in
each of these intervals represents the intensity of
small jumps: In the (0,1) interval, the jumps are
necessarily positive, while in the (1.2) interval
there is a «compensation» of jumps (de Finetti,
1975), which can be thought of as being respon-
sible for the existence of a mean value. In both
cases the variance is infinite. Moreover, the shape
parameter can even become negalive, resulting
in a4 Beta df. The Beta df has been used by Utsu
(1960) and Vere-Jones (1966) in the modeling of
aftershock sequences. If the original shape pa-
rameter is to be considered positive, but limited
to the two open intervals mentioned above, there
is only one way to consider the transition be-
tween positive and negative shape parameters
and that is by considering a compound Poisson
process: the times the jumps take place are reg-
ulated by a Poisson process, but the intensity of
the jumps themselves are distributed according
to the Pareto df. This affords a continuous ap-
proximation to a discrete jump process, and it is
independent of the Poisson regulatory process.

In the case of fractals, the range of the
Hausdorff dimension depends upon the dimen-
sion in which the fractal is embedded. Consider
the Cantor set which is embedded in one-di-
mension. The Hausdorff dimension y lies in the
open interval ((0,1). Other types of fractals are
embedded in two-dimensions, like the Sierpin-
ski gasket. The Hausdorff dimension lies in the
open interval (1,2). It would appear that larger
values ol ¥ would necessarily correspond to
higher embedding dimensions, and there is no
limit on the dimensionality.
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The rates of large earthquakes and aftershock
sequences show different dependencies on the
energy. For large earthquakes, the rate decreases
as the energy increases, while for aftershocks
the rate decreases with the energy (Utsu, 1960;
Vere-Jones, 1966). In the latter case, it would
appear that the fractal dimension is negative.
The raies of large earthquakes and aftershocks
can be derived from classical EV theory. Using
clementary limits, the probability of largest
value M, not exceeding a value x in a sample of
size n is

P(M, < x)=exp{-nP(X > x)} = exp(—nx ).

It says that if the exceedances are distributed
according to a Pareto tail df, the df of the max-
imum value will be a Fréchet df with a shape
parameter ¥ > (0. Moreover, if T represents the
smallest time necessary for the energy of an
earthquake to exceed a threshold value x, then

P(M, <x)=(P(T, >7)=exp(-1,7)

for large threshold values. The above two ex-
pressions can be compared by observing that
n = k1, where £ is a constant frequency. The
rate is thus found to be

X P (33)

The rates of large earthquakes decrease with
increasing energies.

In contrast, the rate of aftershocks should
decrease monotonically to zero with the energy
(Vere-Jones, 1966). If the probability of not
exceeding the threshold value x <1, which is
now the ratio of the energy of a shock to the
energy of the largest shock in the group (Utsu,
1960), is given by a Beta df

PX <x)y=x7, x| 3.4
with a negative shape parameter y, the tail df of
the smallest value of the energy, W . will asymp-
totically be given by

P(W >x)=exp(—nP(X <x)).
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This is the class ol converse Weibull dfs. The
probability that no value of the energy will fall
below the threshold value x in the time 7 is the
same as the probability that the waiting time T
for this to happen is greater than T, viz.,

POW, >x) = P(T, >0y = e "
where the rate is

A =xxt™,

i}

(3.5)

The shock rate (3.5) decreases monotonically to
zero with the energy. This is in direct contrast to
the rate of large earthquakes (3.3). A fortiori,
Utsu (1961) gives some grounds for consider-
ing a shape parametery = — 2, which is a partic-
ular case ol the converse Weibull class known as
the Rayleigh df.

The existence of negative shape parameters
leads to a new type of [ractal dimension

InP(X <x)
—y:= bl

Inx

x <l

(3.6)

which is referred to as the «cluster» dimension
(Hastings and Sugihara, 1993; Lavenda, 1996).
Definition (3.6) follows directly from the Beta
distribution (3.4). In contrast to the fractal di-
mension (3.2), in which there is «thinning out»
of the geometrical object, (3.6) shows a « filling
in» of the volume x". The logarithm of the num-
ber of aftershocks not exceeding the energy x
will be given by

InNX <x)=1Inn+ylnx (3.7)
where 1 is their total number. Therefore, if the
rates of large carthquakes and aftershocks are
given by (3.3) and (3.5), respectively, aftershocks
will not follow the Gutenberg-Richter law (3.1)
as previously suggested (Scheidegger, 1973),
but, rather be characterized by a line of positive
slope in a double logarithmic plot (Lavenda. in
preparation).

The occurrence of large earthquakes is usu-
ally assumed from a Poisson process in time
(Lomnitz-Adler and Lomnitz, 1978, 1979). That
is, a large earthquake is a rare event, and it
might be supposed that il we took a series of
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large samples. the frequencies of large earth-
quakes would follow a Poisson distribution.
However, this is not necessarily the case, for all
land areas are not equally exposed to risk. Risk
inequality makes the simple Poisson process
unsuitable for large earthquake prediction. Sim-
ple Poisson processes give consistently high
estimates of a seismic hazard (Johnston and
Nava, [985. and references cited therein). The
independence ol Poisson events can be summa-
rized us «no matter how long it has been since
the last one, we are no closer to the next one».

Each jump in the Poisson process will not
rigger an earthquake; rather, it is the gradual
build-up of the accumulated strain energy that is
finally liberated as a main shock. The cumula-

Nt
tive number of jumps up to time 7, Z ¢
is a compound Poisson process, where the
number of random variables N(r) is a Poisson
process with rate 4 > (0. The probability that up
to epoch 7 the process has exactly # jumps is
P(N(T) = n) = e ™A 7)'/n! In other words, the
time the jumps take place is regulated by a
Poisson process while the jummps themselves, X,
are random variables whose intensity is distrib-
uted according to a continuous Pareto df.

In the Appendix we derive an upper bound
on the df of the sample mean in terms of the
entropy reduction

AS(x)y=—nx "y, (3.8)
By combining the Pareto df for the intensity of
positive jumps with the Poisson process which
regulates the time of the jumps, a compound
Poisson process is constructed with a new shape
parameter

v

77-—1_?}

(3.9)
Positive values of 5, implying values of y < 1,
again implicate the Pareto df for the distribution
of the intensity of the jumps, while negative
values of the shape parameter in the interval
| <y < 2 indicate that the intensity of the jumips
follows a Beta df. The limiting case of yy =2
corresponds to the normal df. Unlike the origi-
nal shape parameter, y, there are no limitations
in magnitude placed on the new shape parame-
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ter (3.9) as y varies on either the open interval
(0.1) or the open interval (1,2).

Initially, values of y < 1 meant that the aver-
age tends o infinity with the sample size. Now,
thanks to the compound Poisson process, upper
limit has been reduced to 1/2. The average is
likely to be much greater than any single com-
ponent, which is possible only if the maximum
term grows exceedingly large and dominates
the average. Since the expectation of the ratio of
the sum of random variables and the maximum
term tends to a positive constant for y < 1 (Fel-
ler, 1971), the same bound can be placed on the
df of the maximum value as on the df of the
sample mean. The latter will be determined in
the Appendix.

4. Thermodynamics of large earthquakes

In systems with a variable number of parti-
cles, or events, the entropy is directly propor-
tional to their number, In constrained thermody-
namic systems, the reduction in entropy is pro-
portional to either the negative of the number of
exceedances over a given threshold, or the neg-
ative of the number of events less than or equal
to a threshold value. The former applies to EV
dfs, while the latter to converse EV dfs, or the
dfs of the minimum (Lavenda, 1995). In the
Appendix we identify the entropy reduction (3.8)
with the rate function of the large deviation
principle.

The entropy reduction (3.8) is concave, non-
positive and continuous. It tends to zero as the
energy increases without limit, which coincides
with the state of maximum disorder. A temper-
ature,

4 St =nr™ " =B

dx

(4.1

can be defined in accordance with the second
law. where § is the inverse temperature meas-
ured in energy units. This temperature is to be
associated with the reduction in the amount of
stored elastic energy in the stress field when
rupture occurs along a tault. The energy can be
released in the form of radiation as seismic
waves, dissipated into heat, or used partially to



Bernard H. Lavenda and Elvio Cipollene

perform work. The thermal equation of state,

No)

displays the fact that the energy grows more
slowly than the temperature. This is a hallmark
of a constrained thermodynamic system (La-
venda, 1995).

The temperature is proportional to the aver-
age kinetic energy. Ordinarily, the energy is
greater than the average kinetic energy enabling
the system to utilize the excess energy in forms
other than translational motion. For instance,
the energy increases as the fourth power of the
temperature in thermal radiation. The energy
can be used to create photons. In bound sys-
tems, the energy increases at a slower rate than
the average kinetic energy of its constituents,
like the slow build-up of clastic energy in the
stress field which is generated in a limited re-
gion about the fault.

In fact, earthquakes bear a remarkable re-
semblance to the thermodynamics of high-ener-
gy particle physics (Lavenda, 1997). If the sta-
tistical physics of earthquakes followed the law
of large numbers, the energy would be distribut-
ed as a Gamma density (Lavenda, 1991)

LN
T(v) '

(4.2)

J(x)= (4.3)

According to the law of equipartition of ener-
gy, which is given by the first moment of (4.3),
BX = v, the average energy, X, is equal the
product of half the number of degrees-of-free-
dom, », and the absolute temperature. It we
identify this number of half degrees-of-freedom
with the number of exceedances above a thresh-
old energy. the law of equipartition generaliz-
es to

Px=NX > x). (4.4)
Now, in order that the thermal equation of state
hold, the number of events exceeding the ener-
gy x must be given by

N(X > x) = —nAS(x).
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The absolute value the entropy reduction is pro-
portional to the number of events exceeding a
given energy, which in turn is proportional (o
the rate (¢f. eq. (3.3)).

If we consider (4.4) as the transformation of
a variate z = fx, which obeys 1 Gamma density
(4.3), then the variate x will be distributed ac-
cording to

R I At

= n'

gly)=n_——x ¢ 4.5
which is the order-statistic density of the
Fréchet df. For the largest value v = [, (4.5) is
the Fréchet density. The Gutenberg-Richter
energy-magnitude relation (Guilenberg and
Richter, 1949)

Inx = ay+b (4.6)
where a and b are assumed to be universal
constants, transforms the Fréchet order-statistic
density (4.5) for the energy into the order-statis-
lic Gumbel density

B
g():) =A—¢
(v

vay —fle M

4.7

for the magnitude y. A and B are positive con-
stants with values A = ya and B = ne ", The
mean magnitude of earthquakes with y >0 is
I/A. This means that the smaller the shape
parameter, #, the larger is the mean magnitude
(cf. Section 6). For v = 1 (4.7) is the Gumbel
density.

For arbitrary v, (4.7) will have a maximum at

y=A" Iu(EJ
v

which is the modal magnitude. Rearranging this
expression gives

InN(Y >5)=InB- Ay

where N(Y > V) = . Thus the maximum modal
magnitude is the magnitude that we can expect
one earthquake of magnitude of ¥ or larger, in a
7 year period since N(Y > ¥) = 1. In the 7 year
period there has been a total of n earthquakes.



The mean return period,
T =B = 1IN(Y > y)

is the mean interval between large earthquakes
(Gumbel, 1958). The mean return time of the
most [requently observed maximum magnitude,
F.is T =1 (i.e. N(Y > §) = 1). Finally,

SULLARN ]

Hyvy=—=In(1—¢™™

is the cumulative hazard function for an earth-
quake of magnitude y in a T year period. Its
derivative is the hazard rate, or the mortality rate
at «age» v. These expressions were tested against
the California earthquake Catalogue for the pe-
riod 1932-1962 and were found to provide an
adequate basis for making predictions on the
occurrences of the largest earthquake magni-
tudes in time (Epstein and Lomnitz, 1966).

When two nucleons with very large energies
collide, energy is suddenly released into a small
volume surrounding theni. The volume is deter-
mined not by the exterior geometry of the ves-
sel; rather, it is carved out by the redistribution
of the energy among the various degrees-of-
freedom present in the volume that have suc-
ceeded to reach thermal equilibrium (Fermi,
[950). In other words, the necessity to redistrib-
ute the sudden release of energy, and the ther-
malization of the various modes into which the
energy has been released, determine the charac-
teristic volume.

The elastic strain, prior (o an earthquake, is
uniformly distributed over a volume V which
houses an elastic energy, £ = 1/2 ue’V, where £ is
the strain, and g is the elastic modulus of the
rock. When an earthquake occurs, a certain {rac-
tion of this energy is radiated away as seismic
waves, while the rest is either dissipated as heat
or partially converted into compressional or dil-
atational work. According to Benioft’s elastic
strain rebound theory, the strain is a logarithmic
increasing function of time, and it is directly
proportional to the square root of the radiated
energy (Lomnitz, 1974). The constant of pro-
portionality varies [rom earthquake to earth-
quake. This implies that the earthquake volume
is constant if the fraction of radiated energy is
independent ol magnitude. However, it appears
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that the earthquake volume is a steeply increas-
ing function of the magnitude (Lomnitz, 1974).
Thus the strain should be independent ol the
magnitude (Scheidegger, 1975). The question is:
how does the earthquake volume acquire a depen-
dence on the magnitude?

In general, the mechanical equation of state
relates two independent variables, say volume
and temperature, to the pressure. If an addition-
al equation of state is imposed, then only one
variable can be varied independently. The ther-
mal equation of state (4.1) is just such a con-
straint. It 1s analogous to a polytropic change in
a stellar system in which the heat capacity is
made to vary in a specified way during a quasi-
static change. The «heat capacity» ¢ = dQ/dT
has two extremes, ¢ = 0 in which the quasi-
static change is adiabatic, d@ = (), and an iso-
thermal change, T = 0, in which it is infinite.

Taking into account the elastic energy stored
in the rock, we introduce the scaled energy,
e = &/€, into the increment in the entropy

dS = Bdy —de) (4.8)
where &€, is the residual elastic energy that is
uniformly distributed over a reduced volume,
V.. after the shocks have occurred. When both
the elastic modulus and strain are assumed to be
constant throughout the region, ¢ becomes the
scaled earthquake volume v = V/V,. The temper-
ature, defined in (4.1) is, in gencral, much high-
er than the thermodynamic temperature 1/
appearing in (4.8). Their difference is propor-
tional to the thermal gradient which is responsi-
ble for the constraint that is imposed upon the
increment in the entropy given by (4.8).

For illustrative purposes, let us suppose that
the thermodynamic temperature is given by the
ideal thermal equation of state 7 = v/x, where
the number of degrees-of-freedom, proportional
1o v, can associate with faults, or sublaults, into
which elastic energy has been stored. Then equat-
ing the increment in entropy (4.8) with that
given in (4.1) and integrating result in

]—Im

where the arbitrary constant of integration has

NX >x
v(in—1)

Inx+In| 1+
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been set equal to zero. The ratio in the argument
of the logarithm is proportional to the number
of shocks which have an energy exceeding x to
the number of the degrees-of-freedom in the
carthquake volume V into which the elastic en-
ergy has been distributed. For sufficiently large
x this will be a small number so that upon
expanding the logarithm to first order and intro-
ducing the energy-magnitude relation, (4.6), we
obtain

Bef.'l_\'

Inv=av+b+——.
vin—=D

Neglecting the last term because of its small-
ness in comparison with the other two terms, the
above expression reduces to the empirically
determined relation with ¢ = 1.47 for the sur-
face wave magnitude and & = 9.58 (Scheid-
egger, 1975). The ratio of the thermodynamic
temperature to the earthquake temperature stand
in the same proportion as the ratio of the number
of shocks cxceeding magnitude v to the number
ol degrees-of-freedom present in the earthquake
volume.,

5. The Catalogue of Chinese Earthquakes
revisited

Lomnitz-Adler and Lomnitz (1978, 1979) pro-

posed

InN(Y > y)=C- De” (5.1)
as a generalization of the Gutenberg-Richter
law, where C and D are positive constants. The
constant C was identified as the logarithm of the
total number of events with magnitude y = 0
and greater, and a comes from the magnitude-
energy relation (4.6), where ¢ = 1.5 In 10 and
b = 11.8 In 10 are supposedly universal con-
stants.

Lomnitz-Adler and Lomnitz considered the
small magnitude limit and expanded the expo-
nential function in (5.1) in a Maclaurin series in
powers of y. To first order, they recovered the
Gutenberg-Richter relation. That is, the gener-
alized relation (5.1) tends asymptotically to the
original Gutenberg-Richter relation in the low
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magnitude range('). However, the Gutenberg-
Richter relation, like the Pareto df, can only be
fitted to the upper tail, and not to the lower one.
As the authors correctly note, the exponential
¢", which replaces the linear term in the original
magnitude-frequency relation, diverges for large y.

Previous to the proposed generalization of
the Gutenberg-Richter relation (5.1), Epstein
and Lomnitz (1966) suggested

InG(y) =—Be™. (5.2)

Observing that the expected number of earth-
gquakes which have a magnitude exceeding v 1s
Be™, (5.2) can be written as

InN(Y > y)=InB - Ay.

Both (5.1) and (5.2) involve a double exponen-
tial df; (5.1) would be the logarithm of tail of the
Gompertz dl if € vanished, while (5.2) is the
logarithm of the Gumbe] df.

Unlike the Fréchet df, where the variate is
always positive, double exponential dfs have an
unlimited range. Nevertheless. even in cases
where the variate must be positive, one may
prefer to use a double exponential df. Recall
that the coefficient £ is proportional to the sam-
ple size, 11, Preference of (5.2) as the df of magni-
tude to the Fréchet df for the distribution in
energy is due to the observation that the proba-
bility of the largest magnitude to be negative,
P(() = exp(-B), decreases with increasing n
(Gumbel, 1958}). Since this is also the probabil-
ity of the smallest magnitude being positive,
large sample sizes guarantee that the largest
magnitudes are positive.

("} Kijko (1982) assumes that the probability of an earth-
quake is given by a converse Weibull df for the smallest value
of the energy. Introducing the Guitenberg-Richter magnitude-
energy relation reduces it to the generalized Gutenberg-
Richter law (18) with C'= (. Since the integral of the Weibull
density over all values of the energy is finite, he concludes
that there is no need to introduce an upper bound to the mag-
nitude. Yet it is precisely becausc the converse Weibull df
has an upper endpoint that the integral over all energies is
finite. Although there is no need to specify the right end-
point for purposes of convergence, it nevertheless exists.
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Because the Gompertz df derived by Lom-
nitz-Adler and Lomnitz (1978, 1979) is size in-
dependent, there is no guarantee that the mag-
nitude will be limited to positive values. Tn or-
der to ensure that the magnitude in their double
exponential df will be positive, it would be nec-
essary to introduce a location parameter which,
if large cnough, would make the probability of
a value below the a priori lower bound negligi-
ble (Leadbetter et al., 1983). This would require
the introduction of some conventionally fixed
magnitude in the energy-magnitude relation, and
require a re-delinition of # as the number of
earthquakes equal or greater than that magni-
tude.

Instead of using the value ¢ = 3.454 in (4.6),
Lomnitz-Adler and Lomnitz found that the val-
ue @ =0.17 gave a better fit to the empirical data
taken from the Catalogue of Chinese Eurth-
quakes, 780 B.C.-1973 A.D. The catalogue has
the fixed threshold value of magnitude 6 for
which there are 629 events ol greater or equal
magnitude. Figure 1 shows that the sample mean
excess function, or the mean residual life tfunc-
tion, is a decreasing function of the energy.
The straight line is obtained from a parametric
maximum likelithood estimation using the statis-
tical software XTREMES (Reiss and Thomas,
1997). The shape paramelter was estimated to be
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Fig. 1. The sample mean excess function as a
function of the energy and its straight line parametric
estimate of the Chinese Catalogue using the Lomnitz-
Adler and Lomnitz best fit of the parameter a = 0.17.
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Fig. 2. The sample hazard function as a function of
the energy for the Lomnitz-Adler and Lomnitz
analysis of the Chinese Catalogue.
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Fig. 3. The beta df for the energy fitted to the
histogram using « = (.17 in the magnitude-energy
relation,

n = 3.11,ory = 0.757. with location and scale
parameters ¢ = 2.56 and o = 0.34, respectively.
A straight line with negative slope would indi-
cate modeling with a Beta df. The sample haz-
ard function in fig. 2 tends to corroborate this
conclusion, since it is an increasing function of
the energy. In fig. 3, a Beta df is fitted to the
histogram. If this Beta df is appropriate then
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there is a right endpoint to the distribution which
is the «maximum energy» of an carthquake. Yet
the deviations of the sample mean excess func-
tion and sample hazard function from straight
line behavior, and the estimation of a positive
shape parameter, rather than a negative one, cast
doubt on the validity of modeling large earth-
quakes as a parametric df for the smallest value.
Consequently, the motto that «the older you get
the more probable is death» does not seem to
apply to large earthquakes.

If the energy scale is stretched out using the
logarithmic transformation between energy and
magnitude (4.6). and the conventional values of
a and b are employed, the picture changes dra-
matically. The sample mean excess function
shown in fig. 4 has a straight line segment for
magnitudes between 7.5 and 8.1. The paramet-
ric maximum likelihood estimate has a shape
parameter, n = 1.07, ory = 0.52, with a van-
ishing location parameter and scale parameter
g = 101.73. The minimum distance estimator
between the sample and EV df supports a shape
parameter 7 = 1.04, ory = 0.51. Only general-
ized Pareto dfs have straight lines with positive
slope for mean excess functions. This is corrob-
orated by the sample hazard function, shown in
fig. 5, which is a decreasing function of the
energy. The smooth curve, #/x, with # > 1 and
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Fig. 4. The sample mean excess function and the
straight line mean excess function estimated from the
maximum likelihood method.
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Fig. 5. The sample hazard function and the Pareto
(smooth curve) hazard function.
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Fig. 6. The Poisson df is superimposed upon the
histogram (energy in units of 10" ergs).

x> 1, is the parametric hazard function of the
Pareto df. For such processes, the longer the
system is in operation, the less likely it is to fail.

Superimposed upon the histogram in fig. 6
is the Poisson df. It is visibly clear that the
Poisson df cannot account for the long upper
tail of the df. Alternatively, the Fréchet df is
fitted to the histogram curve in fig. 7 using
the minimum distance estimators for shape
= 1.041, location u = 3.84, and scale ¢ = 1.55,
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parameters. Employing the same estimators, the
generalized Pareto tail df is seen to give a higher
tail estimate. There is no right endpoint to these
dfs so the event of «maximum magnitude» need
not occur. Finally, the sample and estimated
Fréchet quantile functions are shown in fig. 8.
The qualitative similarity of the two curves re-
flects the goodness of fit of the Fréchet df to the
sample df.

6. The «E  _ catastrophe»

Consider the usual argument for a maximum
energy (Knopoff and Kagan, [977). The combi-
nation of the Gutenberg-Richter magnitude-fre-
quency and magnitude energy relations gives a
Pareto distribution, with a positive shape pa-
ramelter ¢, for the probability of a scaled energy
greater than x> 1,

Flal=x"o (6.1)
which has a heavy upper tail, especially if ¢ < [.
The «total amount of energy released by an
earthquake» is

n

n J“ F(x)dx = i

a(l—ca) * (6.2)

must be finite while x

min

Forvaluesofa < 1. x,
can be zero, and since the Pareto and Fréchet
dfs possess the same number of moments, the
same holds for the Fréchet df. Moreover, the
smaller the shape parameter, the larger the prob-
ability of a large value of the cnergy. Recall
from Section 4 that 1/aza is the mean magnitude
of all earthquakes of magnitude v > 0.

We began by considering random variables
which scale as #'”. Their sum scales as X 1",
while their average has a X 7' scaling. 1f
y < 1, the average increases without limit with
n. Now if these averages are considered as iid
random variables, § /n = (X +... + X )/n. their
average will have the same distribution as
S In the event y > 1/2, this factor will
tend to zero as n does. However, in the case
cited in Knopoff and Kagan (1977) a ~ 1.5
so thut y = 3/7, and, consequently, the factor
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Fig. 7. The Fréchet density whose left endpoint is
tied down at 6,16X 10™ ergs, and the Pareto tail density
are superimposed upon the histogram.
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Fig. 8. Sample and Fréchet estimated (smooth curve)
quantile functions.
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Sn" or equivalently §n"™, will tend to
infinity with sz. The average is likely to be much
larger than any of the variables which make up
the average. Consequently there must be at least
one component which grows exceedingly large
and dominates the average. Given that X, > x, it
is unlikely that any of the other X, exceed this
value. Even if the energies X, were not inde-
pendent, they become so as x increases. Hence
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the conditional probability for any X, > x, given The situation is analogous to insurance claims
X, > x, tends to zero as x increases. where a single large claim can control the entire

Why the condition y < 1/2 makes the aver- portfolio {Teugels, 1984). The df of the claim
age of sums of random variables tend to in- size is assumed to be Pareto (6.1), and if et < 1,
crease without limit is due to a grouping effect the mean claim size (6.2) cannot be used to
where sums of random variubles replace the calculate the premium because it does not exist.
random variables themselves. Without group- To place an upper bound on (6.2) is artificial and
ing, we require y < |, which corresponds to meaningless. The problem becomes one of sta-
strictly stable dfis. Since strictly stable dfs do not tistical estimation in which the hypothesis & > 1
have any moments, (6.2) cannot be used to de- is to be tested against the alternative hypothesis
termine the total energy that is released by an « < 1. If the null hypothesis is rejected then
carthquake. If the intensity of the jumps follows some kind of reinsurance should be considered.

a strictly stable Pareto law, the shape parameter
1 < 1. But provided y > 1/2, the shape parameter

of the compound Poisson df # > 1, and conse- Acknowledgements

quently no maximum energy catastrophe oc-

curs. The lower limit on the original shape pa- This work was supported, in part, by Pro-
rameter can be lowered continuously simply gramma Accordo MICA-ENEA, and MURST
through the process of re-grouping. ex-40% and 60%.

Appendix

In this section we will derive the compound Paisson process, and the large deviation principle expressed in
terms of a particular rate function known as the entropy reduction. Regarding compound Poisson processes,
Epstein and Lomnitz (19606) derived the Gumbel distribution from just such a process using the initial df rather
than its convolution. That is, instead of considering the probability ol a suwm ol iid random variables to be less
than a given value, they considered the probability that each random variable is less than that value. The convolution
makes a stronger statement, since the sum must be less than the given value, and it is the convolution that should
be used to form a compound Poisson process (Feller, 1971). Considering the probability that each iid random
variable is less than the threshold value is the same as asking for the probability that the maximum does not
exceed that value (¢f. Section 2), but averaging over all sample sizes using a Poisson df does not lead to a
compound Poisson process. Rather, it gives the EV df (Epstein and Lomnitz, 1966). Tt is for this reason that we
will work with the gf of the initial df since the probability of sums of random variables has a gf which is the
product of the individual gfs.

Consider a random walk where we want to determine the probability that the system will be at a given
position after j jumps have occurred. The time intervals between successive jumps correspond to independent
variables cach having an exponential density xe™, where & is the constant jump [requency. This s to say that the
times in which the jumps take place are controlled by a Poisson process while the intensity of the small positive
jumps are distributed according to a Pareto law, with shape parameter y < 1. The substitution of a Pareto law for
a discrete jump process means that we are considering a continuous approximation to the latter.

Since the number of jumps. j, that occurs in the time interval 7 1s regulated by a Poisson process, the gf of the
compound Poisson process is
(kTy'e "’
7

2. M= 0P = exper(Q, (B)— 1)

j=l

where the gl of the random jumps is given by the Laplace transform

Qp =] " dF)

0
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of the df . We now specify that the df in the intensity of the jumps is given by a strictly stable Pareto tail df
(y < 1) so that the gf of the compound Poisson process will be given explicitly by

(A

KT pel—e™™
mQ (f)=——
Il —}’)j

r+l
) x

An integration by parts gives

InQ (py=—-x181y

which can easily be checked by differentiation. The gf is said to be infinitely divisible, meaning that any root, or
power, of the gl is also a gf, 2 (f) = Q7(A).

Payla’s conditions for any £2(f8) to be a gl are: 2(0) = 0, () 2 0 and decreasing, and that it be continuous
convex. The latier implies y < 1 and the corresponding dfs are said 1o be «strictly stable». Lévy cxtended the
range to | <y < 2, and termed Lhese dfs «quasi-stable». These stable dfs represent continuous, small jump processes:
the strictly stable laws allow positive jumps only, while the quasi-stable laws show a «compensaticn» in the
jumps where both positive and negative jumps occur {de Finetti, 1975). Strictly stable laws have no moments at
all. Quasi-stable dfs have a mean value which can be thought of as being achieved through a compensation in
forward (positive) and backward (negative) jumps. This prevents the process from running off to infinity. In
regard to aftershock sequences, this would mean that no individual shock can have an energy greater than the
primary shock, while no such restriction can be placed on large carthquakes if they obey strictly stable laws, Both
strictly stable and quasi-stable laws have infinite variance; for if the variance were finite then the probability of a
random walker to be at a given point after a larger number of jumps would tend (o & normal df independent of the
underlying jump probabilities.

We can now determine an upper bound for the cumulative probability distribution in an analogous way that
the large deviation principle determines bounds on the tail of the df of the sample average. Setting 7 = n, the size
of the sample, we can write the distribution of the sum, §, = X, + ... + X, of iid random variables as (Varadhan,
1984)

PS8, In<x)= " dpP (zy = [ o ap (z) e Ce T ap (zy=e"|0Q é
r " " n ]
a 0 ik

for any 8 > 0. The last expression utilizes the fact that the gf is infinitely divisible.
For a fixed threshold value x, the function, fx + n In 2 (A/n), is convex in 3 with an infimum A(x) given by the
solution of

-
.\':—H:}%lllQl(ﬁ(l)/f?):[%J :

This is none other than the thermal equation of state (4.2). Introducing the value of S(x) found in the above
expression into fx + s In Q,(f3/n) results in the concave expression (3.8) for the entropy reduction. Consequently,
the upper bound on the probability df can be expressed as a generalized Boltzmann principle for the large deviations
(Lavenda, 1995)

P(Sin<x)<e ™,
Since the expectation of the ratio S /M, tends 1o a positive constant if y < 1 (Feller, 1971). we may use the

exponential of the entropy reduction as the upper limit for the probability of the maximal term M being less than
or equal to x,
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