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Abstract

The Gutenberg-Richter magnitude-frequency law takes into account the minimum detectable magnitude, and
treats aftershocks as if they were independent and identically distributed random events. A new magnitude-
frequency relation is proposed which takes into account the magnitude of the main shock, and the degree to
which afltershocks depend on the main shock makes them appear clustered, In certain cases, there can be two
branches in the order-statistics of altershock sequences: for energies below threshold, the Pareto law applies and
the asymptotic distribution of magnitude is the double-exponential distribution, while energies above threshold
[ollow a one-parameter beta distribution, whose exponent is the cluster dimension, and the asymptotic Gompertz
distribution predicts a maximum magnitude. The 1957 Aleutian Islands aftershock sequence exemplifies such
dual behavior. A thermodynamics of aftershocks is constructed on the analogy between the non-conservation of
the number of aftershocks and that of the particle number in degenerate gases.

Key words  Pareto and beta power laws — cluster main shock. Moreover, it is generally accepted
dintension — frequency-magnitude regression laws — that the samc f]‘cquency—maﬁlli[ude, or Guten-
order-statistics — independence and clusiering — berg-Richter (GR), law applies to aftershock

3y § # i e Jeg 5 . .
thermodynamics of aftershocks sequences as it does to main shocks (Ranalli,

1969; Evison, 1999).
The GR law takes into consideration the

1. Main shocks versus aftershocks minimum detectable magnitude, due in part to
. . the finiteness of seismological networks. Wheth-

In many respects, aftershocks behave in the er there exists, or not, a maximum magnitude,
same manner as main shocks. Unlike most phys- which would be applicable to all regions. is still
ical phenomena which decay exponentially, the an open question (Knopoff and Kagan, 1977;
decay of aftershock activity is hyperbolic in Lomnitz-Adler and Lomnitz, [978). In terms of
time. This was discovered over a century ago by energy, rather than magnitude, the GR law is a
Omori (1894), and it implies that aftershocks Pareto distribution. The Parcto distribution is a
are pastcz}lly anonstationary process. The prob- truncated distribution, applying, say, to salaries
ability ol occurrence of an aftershock decays above a given level. which is analosous to a
in proportion to the time clapsed since the minimum detectable energy of an aftershock.

The Pareto distribution has no right endpoint,
and consequently, there is no maximum salary.

Mailing address: Prol, Bernard H. Lavenda, Universiti Or «rmaximum magmwde»' Se.en “_1 These. tEll‘l‘!.‘;,-
degli Studi di Camerino, Casella Postale 53, 62032 Came- the GR law asserts that there are more poai
rino (MC). Italy; e-mail: lavenda@ camsery.unicam.it people than rich ones (Gumbel, 1958). While it
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is true that the Pareto distribution does not pos-
sess u finite mean when its exponent is less than
one, it cannot be used as an argument in favor of
a maximum magnitude (Knopoff and Kagan,
1977), since the existence of a mean value of the
energy has nothing to do with the finiteness of
the total amount of energy released in an earth-
quake. In fact, the sum of all incomes is not even
invariant for the maximum likelihood estimate
of the Pareto exponent (Gumbel, 1958).
Therefore, if aftershocks follow the same
GR relation as main shocks, they will be insen-
sitive to the magnitude of the main shock. Clear-
ly, the magnitude of the main shock is an upper
limit for the magnitude of any aftershock in the
sequence. This appears to be confirmed by the
observation that the difference in instrumental
magnitudes of the main shock and the largest
aftershock in a sequence is roughly 1.2, inde-
pendent of the absolute magnitude of the shock,
or the particular nature of the aftershock se-
quence. This has come to be known as Bith’s
law (Richter, 1958: Bath, 1965). Although a
relation between the magnitudes of the main
shock and the largest aftershock is not to be
unexpected, it appears to be independent of the
number of distinct aftershocks in the sequence,
or what constitutes the size of the sample. It is
well-known from the testing ol materials that
their mean strength depends on the size of the
sample that is being tested (Epstein, 1948). Just
as the size of the specimen aflects the distribu-
tion of strengths, so too should the mean mag-
nitudes for the largest and smallest aftershocks
vary as the number ol aftershocks in the se-
quence. A dependence on the number of after-
shocks has been proposed for the mode (Kuri-
moto, 1959), and the mean (Vere-Jones, 1969). of
the magnitude of the main shock. Specifically, it
has been suggested that the expected value of
the magnitude of the main shock should vary as
the logarithm of the number of aftershocks (Vere-
Jones, 1969). The decrease of the mode as the
logarithm of the number of shocks indicates
that the individual shocks should be distributed
according to a negative exponential distribu-
tion. Just as the strength of a specimen decreas-
es as the specimen size increases. so too should
the mean magnitude of an aftershock decrease
as the number of aftershocks increases. The
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manner by which it decreases with the number
of aftershocks will provide an indication of how
the magnitudes are distributed.

If there is a relation between the cumulative
[requency of altershocks and the magnitude of
the main shock it cunnot be given by the GR law
because it is independent of the magnitude of
the main shock. With only a finite energy avail-
able, the length of the life span will be deter-
mined by the gradual depletion of energy from
the earthquake zone. If the GR law applies to
aftershocks then they are impervious to the en-
ergy of the main shock, which cannot generally
be the case. Dilferent distributions can be dis-
tinguished according to their «hazard rates», or
the probability that a device will fail in a given
interval. If the system is prone to initial failure,
the hazard rate is a decreasing function of its
argument. The Pareto distribution is an exam-
ple. Rather, if the cause of failure is by chance.
then the hazard rate remains constant, The ex-
ponential distribution is typical of such process-
es. Finally, if the cause of failure is wear out,
then the hazard function is increasing. The
Weibull distribution for the smallest value has
an increasing hazard rate for an exponent great-
er than one. This distribution has a right end-
point which is charucteristic of oldest age, or
«maximum magnitude».

The power laws which characterize after-
shock sequences are given as [unctions of ener-
gy. time and location;

Energy or magnitude

1) Aftershocks, like main shocks, suppos-
edly follow Pareto’s law in terms of energy, &,

€y

il
E}

where F «survivor» function, or the tail of the
distribution. The minimum detectable energy of
the sequence is €, and g > 0. In terms of the
magnitude /m of an aftershock, (1.1) becomes
the GR law

log Nr(>m) = a — bm

F(s}-[ (1.1

(1.2)

where Nr (> m) is the number of aftershocks
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having a magnitude greater than m. The coeffi-
cients in the GR law are

a=logn + bm, (1.3)
and b > 0. where 1 1s the total number of after-
shocks in the sequence. and m, (if 20) is the
minimum detectable magnitude in the sequence.
Energy and magnitude are related by

loge = a + pim (1.4)
where the constant ¢ depends on the unit of
energy chosen, and = 1.5, according to Gu-
tenberg (1956). Calculating the energy in
ergs, « = [ 1.8 (Utsu. 1969-1970). The expon-
ent in the Pareto tail distribution is thercfore
p=b/B.

2) Magnitude stability in time. A mean mag-
nitude is stationary in time, and fluctuations
occur about this value with no appreciable de-
cay in time for periods of up to 100 days. This
was first proposed by Lomnitz (1966). Howev-
er, it does not necessarily imply that the magni-
tude distribution is stationary; rather, it appears
that the magnitudes are being selected from a
stationary sample distribution at a rate which
varies in time (Lomnitz, 1966). In other words,
we are dealing with an inherently nonstationary
process that cannot be represented as a Poisson
process with rates proportional to time (cf., see
(1.6) below) (Lomnitz and Hax, 1966).

3) The magnitude of the largest aftershock,
m . is given in terms of the magnitude of the
main shock, n*, according to Bath's law

=g =12 (1.5)
Bath’s law is an explicit statement that there is
an upper limit to the magnitude ol an after-
shock. The magnitude of the largest altershock
is related to it in a delinite manner that neither
depends on the magnitude of the main shock
nor, in any way, depends on the particular na-
ture ol the aftershock sequence.

Time

1) The frequency of aftershocks decays in
time according to the modified Omori relation
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(Utsu, 1969-1970)

N = Ar™” (1.6)
where 1 is time (days), A is a numerical paranm-
eter, and p = 1. Tt coincides with Omori’s law
for p =1 (Omori, 1984; Utsu et al., 1995).

2) The rate of energy release per unit lime
also follows a hyperbolic law

(=8B’ (1.7)
where B is a numerical parameter, and g > p.
The rate of energy decrease is more rapid than
the decrcase in the frequency of aftershocks
(Utsu, 1969-1970).

Voliine

1) On the basis of the assumption that the
energy which generates the aftershocks remains
in the source volume of the main shock, there is
a linear relation between this volume V™ (em’)
and the energy ol the main shock (Utsu, 1969-
1970), namely

e = ;‘1* v (1.8)

where 77 is the constant energy density. Based on
empirical evidence, Bath and Duda (1964) pro-
posed that the volume affected by an aftershock,
V., is proportional to the energy released. € =V,
where # is a constant, pertaining to the aftershock
energy density. In other words, V/V " should have
the same distribution as g/e™.

If the asymptotic magnitude distribution of
aftershocks has a right endpoint. their initial
distribution will be given by the one-parameter
beta distribution

e Y
e )

The exponent p is called the «clustering dimen-
sion» (Hastings and Sugihara, 1993). A power
law scaling is used 1o deline an object consist-
ing of a finite number of points. The object is to
be covered by boxes of size { which is much

F(e):( (1.9)
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smaller than the side ol the box enclosing all the
points, L. If we are considering an area in which
the points are located, the large box can be
divided up into L/(° small boxes of size (. The
sculing runge in this case is 2. Likewise, if we
consider points along a line of length L, then the
interval can be covered by L/{ smaller boxes
with a box dimension equal to 1. In general, the
average number of points in a box of size (
scales as (", where the exponent D is the cluster
dimension.

If aftershocks do constitute a compound Pois-
son process (Vere-Jones, 1966), (1.9) can be
thought of as replacing it by a more general,
continuous, «pure jump» process with station-
ary increments. Moreover, if we regard the af-
tershock sequence as u set of order-statistics,
consisting of independent and identically dis-
tributed random variables that are arranged in
order of cnergy, the members of the ordered set
are no longer independent, nor identically dis-
tributed (Stuart and Ord, 1994). However, if the
unordered sample has a distribution function,
F(v), with a continuous density f(x), the new
distribution of the ordered set will be expressi-
ble in terms of the original distribution accord-
ing to a two-parameler beta distribution (Stuart
and Ord, 1994), Moreover, if the size of the
sequence is sufficiently large, we should expect
the upper order-statistics to be independent of
the lower order-statistics, and both will tend to
independent gamma distributions (Cramér,
1946). That is to say. as the number of after-
shocks increases, the joint probability distri-
bution lor the largest and smallest energies
will reduce 1o a product of independent distri-
butions.

The two-parameter beta distribution was used
by Utsu (1969-1970) to calculate the average
encrgy of the rth largest earthquake in terms of
the energy of the largest aftershock. This im-
plies that £ must have a right endpoint which is
incompatible with the Pareto distribution, which
has a left endpoint but no right endpoint. And
since the GR law is related (o the Pareto law hy
the magnitude-energy relation (1.4}, it puts into
doubt the validity of the GR law in providing a
complete characterization of the entire after-
shock sequence. Hence, it is still an open ques-
tion what is the correct sampling distribution to
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use, and whether this distribution will be the
same for both upper and lower order-statistics
of the aftershock sequence,

2. Order-statistics and aftershock sequences

In this section we will show that in certain
aftershock sequences the distributions regard-
ing the top and the bottom order-statistics may
be different. The idea that aftershocks should
follow order-statistics is implicit in the work of
Utsu (1969-1970), who used the two-parameter
beta distribution to calculate the average energy
of the rth largest aftershock. Assuming the af-
tershocks were infinite in number, Utsu found
that the total energy released by the aftershocks
is proportional to the energy of the largest after-
shock. Specifically, Utsu set (¢, /¢,)" = 1/r, where
g, is the encrgy of the largest aftershock. and

i

expressed the sum

e=Ye =6, Y "7 =, 4pID)
=1 =l

3 . - 3 3
in terms of the Riemann C-function. For =5

and b= 1, £(2)=2.6 so that the total cnergy
released, €, in the aftershock sequence is 2.6
times the energy of the lurgest aftershock, €.
However, Utsu realized that il fluctuations were
taken into account, the average energy of the rth
aftershock should be determined from a two-
parameter beta distribution, with an a priori
probability given by (1.9) ("). The upper limit on
the aftershock energy, according to Utsu, is ex-
pressible in terms of the energy of the largest
aftershock, and not the main shock.

Consider an aftershock sequence of n dis-
tinct values which are arranged in ascending
order so that we can talk about the rth largest

(') The one-parameter beta distribution (1.9) can he
considered as a special case of the two-parameter beta dis-
tribution

1=t
Bla, b

namely for b = |, where B(a.h) is the beta function (Reiss
and Thomas. 1997).



value [rom the bottom (). If the number of after-
shocks in the sequence is sufficiently large so
that there is a statistical independence between
aftershocks at the top and bottom of the se-
quence, we will show that the aftershocks at the
top will be governed by the one-parameter beta
distribution, (1.9), while those at the bottom by
the Pareto distribution, (1.1).

Considering aftershocks at the top, let Fm) =
Nr(< m/n, where Nr(< m) is the number of
aftershocks having a magnitude m or less. If
the one-parameter beta distribution (1.9) ap-
plies to the distribution in energy then the re-
gression law, in terms of the magnitude, will be
given by Lavenda and Cipollone (2000)

logNr(<m) =a+ b (2.1)

where

a=logn — bm” (2.2)
and m”" is the magnitude of the main shock. We
will refer to (2.1) as the beta (B) regression law,
and compare it to the GR law (1.2).

Let £ denote the rth value of the energy
from the bottem. The probability g (e) de that
1 —r energics lic above ¢, and r— | lie below
it, while the remaining value falls between € and
& + de is given by the two-parameler beta distri-
bution

F"'(e)1- Fe)"' fle)de
B(r,n—r+l)

g (ede=
(2.3)

n-r =l
—n[ jL\J {I—l] di:g,(j‘)d‘.\-‘
n i n

where /7(g) is the one-parameter beta distribu-
tion, (1.9), [is the density of /7, and B is the beta
function. Utsu (1969-1970) considered the dis-
tribution (2.3) for r = n — 1, because he set the
energy of the largest aftershock as the upper

i —1

=1

() If there is more than one aftershock with the same
magnitude then any one of them can be considered as the
order-statistic of that magnitude.
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limit on the energy. In this case, the two-param-
eter beta distribution (2.3) reduces to

g, (v dy=nm— Dy(l=y)"dv

where y = (e/e™)" and £” is now to be regarded as
the energy of the largest aftershock. Using this
probability distribution, Utsu determined the
average energy of the nth aftershock as

E(E,)=¢"n(n —l)ﬁ y 2=y dy =

e P iy
P

I3
P
is then obtained by summing over all i, and
noting that 3, B(n + 1, 1/8) = B(l, ljp—1).

There are two important points concerning
Utsu’s derivation. Firstly, in order to use the
one-parameter beta distribution (1.9) in the two-
parameter beta distribution (2.3), Utsu had to
switch the distribution for its tail. That is, the
probability of finding n — r values above £ was
taken as v, and not (1 — )" (Cramer, 1946).
Although the one-parameter beta distribution
(1.9) 1s the initial distribution for the smallest
value (Reiss and Thomas, 1997), it is precisely
this distribution that enabled Utsu to express
the total energy released in an (infinite) after-
shock sequence in terms of the encregy of the
largest aftershock. Had the tail Pareto distribu-
tion (1.1) been used, it would have expressed
the total energy in terms of the minimum de-
tectable energy in the aftershock sequence (cf.
(2.16) below). Sccondly, the mequality g <1
will be seen in Section 5 to be precisely the
condition for the existence ol a concave entro-
py function.

Since we are considering the upper limit of
the encrey as the energy of the main shock, £,
the distribution in the energy of the largest after-
shock is obtained by setting »» = #. Then, in the
limit of a large sequence, the two-parameter

The total energy,

8=2E(E”): 5

u=i)

(1+,5



beta distribution (2.3) becomes the expenential
distribution

g (xXdyv=¢"dx. (2.4)
And because the initial distribution is the one-
parameter beta distribution, (1.9), the exponen-
tial distribution (2.4) is actually the Weibull
distribution:
1L * 0
e’ _ c wiele™ ) (i{:.
€ * /'

g eyde=np (2.5)

The Weibull distribution predicts that the mode
and mean of the energy of the largest aftershock

. Ligy . . .
will decrease as n ", while the variance will

decrease as n ™.
The Weibull energy distribution is converted

into the Gompertz magnitude distribution:

,Pﬁ'(m—m 25 dm

T3 *
bm—m") )

g, (mydm = n;’; exp(—ne

(2.6)
by the energy-magnitude relation (1.4}, where
b =b/loge. Itis the only distribution that has an
exponential hazard rate

finn)
[— F(m)

him) = =nh’e" " (2.7)

The Gompertz distribution (2.6) is the distribu-
tion of ages at death, and (2.7) gives the mortal-
ity rate. The mean magnitude of the largest
earthquake

EM)=m"-b" (y+lnny (2.8
bears a remarkable resemblance to Biith’s law
(1.5), where y = 0.577 is Euler’s constant. The
difference between (2.8) and Biith’s law (1.5) is
the dependence of the mean largest aftershock
on the logarithm ol the number of aftershocks in
the sequence. According to Bath’s law, the dif-
ference in the instrumental magnitudes of the
main shock and the largest aftershock in a se-
quence is 1.2, independent of both the magni-
tude of the main shock and the nature of the
sequence. Assuming that the magnitudes in an
aftershock sequence are distributed according
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to an exponential distribution, Vere-Jones (1969)
found that the number of aftershocks should
vary as the exponential of the magnitude of the
main shock, or. equivalently, that expected mag-
nitude of the main shock should vary as the
logarithm of the number of aftershocks. Also
there is some observational evidence that the
number of aftershocks varies as the square root
of the energy of the main shock (Solov’ev and
Solov’eva, 1962).

The probability distribution (1.9) gives the
average energy of the rth largest aftershock in
terms of the energy of the main shock as

E(E,)=
] =Tl T ’
=ne* & ]JI (XJ (1—)‘] di
r=1 0 \n it n
(2.9)
e Tir+1/py T+ .
I(ry [Cn+1+1/p)

For the Aleutian Islands 1957 aftershock se-
quence, to be discussed in the next section,
g =0.5. The average energy of the rth quake
from the bottom (2.9) becomes

Efn=—"0* 5

= 7 (2.10)
(n+){n+2)

The tetal energy € released in the aftershock
sequence is the sum of (2.10), namely,

n l
E=YN E(E )y=—ne*
Z . _%H

r=1 =

giving an average aftershock energy of £%/3.
Since m* = 8.3, the average magnitude would be
7.98 which is approximately 1.3 times greater
than the caleulated value, 6.19, obtained by par-
tial averaging of groups ol allershocks (Ranalli,
1969). Rather, if the energy of the largest after-
shock is used, the average magnitude becomes
6.98, which is sull 1.1 times larger than the
calculated value. The reason lor this discrepancy
is that the distribution used to determine the
expected energy value applies to order-statistics
for large values of r, and not to small values.
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The Pareto tail distribution (1.1) can be
thought of as the intensity of small jumps that
give rise to a compound Poisson distribution
{de Finetti, 1970). In this interpretation, the
exponent p must be less than 2 in order that
the variance of the small jumps be finite. If
p <1 only positive jumps occur, whereas for
p > 1 both positive and negative jumps take
place. According to the usual quoted value of
p=bip :% (Utsu, 1969-1970), it would appear
that only small positive jumps occur. The proc-
ess of energy decay entails a jump in the energy
to a lower value after each aftershock (Vere-
Jones, 1966). Each aftershock represents a jump
in the process, where both the size of the jumps
and their intensity are regulated by the Parcto
law (1.1).

We now turn our attention to the order-statis-
tics at the bottom. In the usual treatment, the
orderings are made from the top and the bottom
separately (Cramér, 1940). However, we still
keep the same ordering: r = n corresponds to
the largest order-statistic and » = 1, 1o the small-
est. The probability that i — r values lie above ¢,
having an a priori probability of |-y, r-1
values lie below e, with probability v, and the
remaining value lying between & and € + de¢ is

—1 i
g,(k\')c{v:n(iz 1})‘”(1}‘)" dy (2.1
s

where v = (g, /¢)”, and £, is the minimum detect-
able energy of the aftershock sequence. In the
limit of a large sequence, (2.11) becomes the
camma distribution

L

- -

g (x)dx = e
I

dx (2.12)

")

where x = ny, for the rth order-statistic from the
bottom. Unlike the asymptotic exponential dis-
tribution (2.4) of the two-parameter beta distri-
bution (2.3), which is valid for the largest after-
shock, (2.12) is an order-statistic distribution
for r> 1. This shows that the GR regression law
{1.2) should be valid for a greater number of
smaller aftershocks and the B law for a lesser
number of large ftershocks. In other words, there
will be many morc smaller shocks that will be
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attracted to the asymptotic distribution (2.12)
than larger shocks to the symptotic form of
(2.3). Strictly speaking, the only asymptotic dis-
tribution that coincides with an actual distribu-
tion is the exponential distribution (2.4), which
is the distribution of the cnergy of the largest
altershock.

Converting the gamma distribution (2.12) into
an energy distribution

5 Eﬂ —nfe, )"
g (e)de=np eV de  (2.13)
&

which is known as the Fréchet distribution.
According to (2.13), the most probable value of
energy increases as n'* with the number of af-
tershocks in any given sequence. This is to be
compared with the most probable value of the
energy of the Weibull distribution (2.5) which
decreases as n'7. Transforming [rom energy to
magnitude, the Fréchet distribution (2.13) be-
comes the double exponential, or Gumbel, dis-
tribution

RS A L

g,(m) dni = nbe’ “dm (2.14)
which has a mean value of
EM)Y=m, +b"" (y+Inn) (2.15)

A comparison of (2.8) and (2.15) will serve to
justify our choice of the a priori probabilities in
the two-parameter beta distributions, (2.3) and
(2.11). The location parameters in the former
and latter distributions are /" and m,. respec-
tively. Since they physically represent the mag-
nitude of the main shock and the minimum
detectable magnitude in the sequence, it would
hardly make sense to have a mean magnitude
greater than the magnitude of the main shock, or
a magnitude less than the minimum detectable
magnitude. And because the Gompertiz and
Gumbel distributions are ‘mirror” images of one
another (i.e., under the formal transformation
m — —ni), (2.8) predicts that the mean value of
the largest aftershock will decrease as the loga-
rithm of the number of aftershocks of different
magnitude, while (2.15) predicts that the mean
value of the smallest altershock will increase by
the same amount. Their affect on the mean val-
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ues is regulated by the size of the scale parame-
ters, &' and &7, in the two distributions.

Moreover, the Gumbel distribution (2.14) can
be thought of as a Poisson process

) _ (J—ui._,

with an exponential rate A, =¢ """ "+ (Aldous,
1989). This explains why the GB law works as
well as it does: for large m, the maximum M
behaves as if all the magnitudes of the after-
shocks were independent and identically dis-
tributed. That is, they are insensitive to the mag-
nitude of the main shock, having values which
are appreciably smaller than the main shock.

Another reason why the Fréchet distribution
(2.13) will not provide a global description of
the energetics of an aftershock sequence is that
it gives the average energy for the rth order-
statistic from the bottom in terms of the mini-
mum detectable energy, namely

Pr( max M, <m
J

“isn

['(n+1)
T +1-1/p)

I'ir=1/p)
I'(r

E(FE)=¢

1 . (2.16)
If we attempt to define the total encrgy release
as the sum of (2.16) we would be immediately
confronted by the fact that it would be given in
terms of the minimum detectable energy of an
aftershock. This is hardly a satisfactory account
of the total energy release since there is no
information on the energy of the main shock.
This is yel a further limitation on validity of the
GR law in the analysis of aftershock sequences.

The above conclusions can be formulated in
the testing of the hypothesis of whether the
aftershock sequence consists of a set of inde-
pendent and identically distributed random var-
iables against the alternative hypothesis of
whether they exhibit clustering. The general-
ized Omori law (1.6) and the rate of energy
release (1.7) can be considered as expressing
the dependence of each aftershock on the main
shock (Utsu, 1969-1970; Lomnitz and Hax,
1966). Clustering would imply that the depend-
ence between aftershocks is significant in terms
of the energy of the main shock, while their
independence would imply that the aftershocks
are so weak that the influence between two
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successive shocks on the energy of the main
shock is negligible. In the next section we ana-
lyze the Aleutian Islands 1957 aftershock se-
quence, where large magnitude aftershocks do
show a dependency on the magnitude ol the
main shock. Other analyses, like the 1957 San
Francisco aftershock sequence showed negligi-
ble dependence of on the magnitude of the main
shock. This is in agreement with the findings of
Lomnitz and Hax (1966). In the San Francisco
aftershock sequence the GR law was found to
apply to the entire sequence.

3. Analysis of an aftershock sequence

The reason why the GR law seems to work
so well is that aftershocks of small magnitude
have a preponderate effect on the sequence. Once
these aftershocks have been excluded from the
sample, a different picture may emerge: large
energy aftershocks may appear to follow the
one-parameter beta law (1.9), indicating that the
appropriate regression law is (2.1) and not (1.2)
for such high energy aftershocks. We base our
statistical analysis on:

Regression analysis — The R” statistic, or the
coefficient of determination, is a measure of the
dependent’s variability that is explained by the
independent variable {Abacus Concepts, 1994).
The closer R is to 1, the better the accountabil-
ity. Since the number of independent variables
is not included in the R statistic, its value is
bound to increase as more independent varia-
bles are added. The «adjusted» R* statistic is
used to remedy this situation.

Mean excess function — The mean excess
function is the mean of the magnitudes greater
than some prescribed threshold value m,. In
other words, it is the first moment of the distri-
bution of m given that st >m,. Only for the
generalized Pareto distribution is the mean ex-
cess, or mean residual life, function a straight
line. Tt is a linear increasing function for the
Pareto distribution (1.1) with shape parameters
p> 1. In contrast, it is a linearly decreasing
function for the one-parameter beta distribution
(1.9) (Reiss and Thomas, 1997).




Extreme value statistics and thermodynamics of earthquakes: aftershock sequences

Hazard function — The hazard function, or Aleutian Islands 1957
the mortality rate, is the derivative of the residual
life distribution at any given age. It is a decreas- The main shock had a magnitude m”™ = 8.3.
ing function for the Pareto distribution (1.1) for The minimum detectable magnitude was
shape parameters p > 1, whereas it is an increas- m, =5.85. The number ol aftershocks recorded
ing function for the one-parameter beta distri- in the first 100 days was 205, with n = 15 dis-
bution, (1.9) with shape parameters p > 1. tinct magnitudes ranging from 5.9 to 7.3.

— Figure 1: regressioin analysis (Abacus Con-

We now consider a case of an afltershock cepts, 1994). The GR law (1.2) (Ieft column) is
sequence taken from the catalogue in Ranalli compared with the regression law of the B law
(1969) in which the GR law does not provide an (2.1) (right column). The upper left-hand plot

has no events excluded, and the GR law has a

adequate regression law for large magnitude |
R™=0.962 and an adjusted R" = 0.959. The cal-

aftershocks.
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Fig. 1. The GR regression law shown in the left columm is compared to the B regression law in the right column
without (first row) and with (second row) the exclusion of shocks with magnitudes less than 6.5.
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culated value of the intercept, determined from
(1.3), is @ = 10.77 which is to within .5% of the
value 10.83. The B law, shown on the upper
right-hand side, has a R” = 0.574 and an adjust-
ed R’ = 0.542. There is no comparison between
the calculated intercept value and the value of
the linear regression curve. On the bottom left-
hand side, aftershocks wheose magnitude were
less than m = 0.5 were excluded. The GR law
now has a R°=0.826, while on the lower right-
hand side, the B law has a R” = (.97. The inter-
cept, determined from (2.2) is ¢ = —4.06 which
is to within 3% of the intercept value, —4.19.
— Figure 2: in the top figure, the sample
niean excess function shows two diametrically
opposing tendencies, separated by an energy
threshold which corresponds to a magnitude of
6.5. In the bottom figure, the sample hazard
Junction is plotted as a function of the energy.
For the full sample data the sample hazard fune-
tion decreases, while the exclusion of aftershocks

an
20

10

Sample Mean Excess Function

L 20 a0

0.7
0.6
L5

Hazard Function

Fig. 2. The sample mean excess function in the top
figure is plotted against the energy. The hazard function
shown in the bottom figure is also plotted as a function
of the energy. The increasing curve excludes those
encrgies corresponding to magnitudes less than 6.5.
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Fig. 3. Inthe top figure, the Fréchet density is fitted
to the full histogram, while excluding shocks whose
energies correspond to magnitudes less than 6.5 leads
to the fitting of a Weibull density with a right endpoint
to the histogram curve in the bottom of the [1gure.
The Pareto tail distribution is shown in both figures
for comparison,

whose energies correspond to magnitudes small-
er than m = 6.5 actually inverts its tendency and
the sample hazard function increases with ener-
gy. This indicates that there is a long-living
subpopulation that becomes visible beyond the
magnitude of 6.5.

— Figure 3: the top diagram is the histograni
of the entire aftershock sequence. A Fréchet
distribution, with positive shape parameter in
the terminology of Reiss and Thomas (1997), is
fitted to the histogram. The Pareto tail distribu-
tion is shown for comparison. The histogram in
the bottom diagram excludes aftershocks corre-
sponding to magnitudes less than 6.5. The shape
parameter, in the sense of Reiss and Thomas
(1997}, is negative enabling a Weibull density
with a right endpoint to be fitted to the histo-
oram. Again the Pareto tail distribution is shown
for comparison. The plots were obtained using
the statistical software XTREMES (Reiss and
Thomas, 1997).
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— Figure 4: the Fréchet and Pareto quantile
functions {smooth curves) are fitted to the sam-
ple quantile function (jagged curve) in the top
figure using the complete set of data. The quan-
tile functions for the Pareto and Fréchet distri-
butions are overlapping, having an exponent of
nearly one, location parameter almost zero, and
a scale parameter of 3. The sample quantile
function shows the same convex behavior as the
Fréchet quantile function. In the bottom figure,
the quantile function of the Weibull distribution
(smooth curve), with an exponent 3, and loca-
tion and scale parameters 10 and 7, respectively,
is fitted to the sample quantile function of the
excluded data set. The fit is quite good.

Afltershocks with magnitudes greater than
6.5 in the Aleutian Islands aftershock sequence
of 1957 manifest a dependency on the magni-
tude of the main shock and hence tend to clus-
ter, whereas altershocks below 6.5 do not, and

wn

Quantile Function

Quantile Function
w

Fig. 4. Inthe top figure, the sample quantile function
(jagged curve) is fitted to the overlapping Fréchet and
Pareta quantile functions (smooth curves) using all
the data from the Alecutian aftershock sequence. In
the bottom figure, events of magnitude of less than
6.5 are excluded and the quantile function of a Weibull
distribution (smooth curve) is fitted to the sample
quantile function ( jagged curve).
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consequently are independent. Other examples,
such as the San Francisco 1957 altershock se-
quence, showed no clustering at all. This has
been confirmed elsewhere (Lomnitz and Hax,
1966). Aftershocks were insensitive to the main
shock possibly due to the shallowness of the
main shock. The GR law gave a good regression
fit over the entire sequence.

4, Rates and returns

4.1. Nonstationary and inhomogeneous point
processes

Aftershocks are notoriously nonstationary
processes because their rates are an explicit
function of time. They can neither pretend to
be a set of independent and identical set of
random variables, discrete (M ; 1 > 1) or contin-
uous (M; 7> 0), so that their maximum values
need not coincide with M =max, . M, or
M =sup,. ., M.

A relation between these two descriptions of
aftershock sequences can be obtained by defin-
ing what is known as a «hitting time»

T =min {

n

t: M > )

or the first time that the process exceeds a given
magnitude m. Consequently, the probability that
the magnitude m will not be exceeded in time ¢
is equivalent to the probability that the hitting
time will exceed ¢
Pr (M, <m)=Pr (T, >1). 4.1)
Now, if s and 7 are sufficiently large, the prob-
ability that an aftershock is greater than m given
that a preceding one was greater than m tends to
zero, Hence, the maximum aftershock M, is
asymptotically the same as that ol an independ-
ent and identically distributed set of random
variables (Aldous, 1989).
A stationary process will have a probability
of survival that decays exponentially with time

Pr(T,>1) =exp (-A0) (4.2)

as in the case of a Poisson process, where the



Bernard H. Lavenda and Elvio Cipollone

rate A, is constant. Thus, the waiting time has
approximately an exponential distribution with
amean waiting time 1/A,. However, fig. 5 shows
that aftershocks in the Aleutian Islands sequence
follow Omori’s law (1.6) with an exponent p = 1.
The actual value p = 0.997 agrees exactly with
the least square estimate (Ranalli, 1969). We
thus have a nonstationary process so that (4.2)
must be replaced by

Pr(T, >1)= eXp(—J.I]N(S)dS) S

where M7) is the cumulative number of after-
shocks up to time ¢. The aftershocks occurring
during the first day have been excluded because
of their possible incompleteness with respect to
the number of shecks counted, due to the high
frequency of aftershocks (Ranalli, 1969).

For non-homogeneous «space-time» point
processes, the probability of the magnitude of
the largest aftershock M, being less than some
fixed value mi can be expressed in terms of the
initial distribution of the largest value (Aldous,
1989). It ¢ is the intensity function, such that
@(m)dm dr is the chance of a point falling in
[, m + dm] X [t, 1 + dr], then

(4.1) = exp(—r Jm qb(,\')ci_r)

is the probability of there being no points in the
interval (1, eo) in the time interval (0, r). The
intensity function ¢ is the derivative of the ex-
ponential tail density, #’e¢ "™ "', Equating the
rates ol the non-homogeneous and nonstation-
ary process in (4.3) results in Omori’s law re-
written in probability terms

(4.3)

N(1) = Pr (> m) (4.4)
where Pr(> m) is the initial exponential tail dis-
tribution. In the case where clustering occurs,
the right-hand side of (4.4) has to be multiplied
by the probability that. in the short term, there is
only one magnitude exceeding sn. This has been
referred to as the «extremal index» of the proc-
ess (Leadbetter and Rootzen, 1988). This is yet
another indication that the GR law has built into
it the property that the aftershocks behave as a
set of independent and identically distributed
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random variables. Expression (4.4) is explicitly
given as

m—m,=b : log (t/A)

which is comparable to (2.15) with time interval
t replacing the size of the aftershock sequence,
. Furthermore, it is entirely compatible with
the GR law; introducing GR law on the left-
hand side gives Pr(> m) = A%, which is (4.4).
Now let M, =min,_ _ M be the minimum of
a set of independent and identically distributed
random variables. Instead of (4.3) we now have

(4J)z1—exp(-rﬂ”$pndxj

for the probability of a point falling inside the
interval (0, m) in the time interval (0, r). The
process has intensity, ¢ = b%¢"" ™", and rate

My

N(1) = Pr (< mp). (4.5)

With the rate given by Omori’s law, (4.5) be-
comes

m*—m=0"log (1A)
which is comparable to (2.8) with the time inter-

val replacing the number of aftershocks in the
sequence. The former asserts that the dillerence
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between the magnitude of the main shock and
the mean of the largest aftershock increases as
the logarithm ol the number of altershocks in
the sequence. The latter says that the difference
increases as the logarithim of the time elapsed
since the main shock occurred. Introducing the
B law (2.1) into the left-hand side gives back the
rate (4.5).

4.2, Return periods

The mean return period, or the mean interval
in days, between aftershocks having a magni-
tude greater than m is

KT,

nr

=.|An tdPr(T, <t)=n/Nr{>m)=

(4.6)

explb’im—m )]
[1—(3 b ® ml] 1

according to the Gumbel (2.14), and Gompertz
(2.6) distributions, respectively. In words, (4.6)
states that if an event has probability p ol occur-
ring, it will take, on the average, 1/p trials be-
fore that event will happen once (Guimbel, 1958).
Both the GR and B [aws confirm that the mean
return time ol aftershocks occur like main
shocks: the greater the magnitude the longer is
the mean return period. However, the B law
attributes a much shorter return period for larger
aftershocks and a larger return period for after-
shocks of smaller magnitude, as can be seen
from table I of return periods from the Aleu-
tian Islands aftershock sequence. The slope of
the GB and B laws were taken to be b= 1.434
and & = 0.768, respectively, as calculated from
the non-excluded and excluded data sets, re-
spectively. The value ol b= 1.434 is to within
12% of the maximum likelihood estimate
b = 1.277 (Ranalli, 1969). The return period for
the B law appears quite sensitive to whether the
magnitude of the main shock or the magnitude
of the largest aftershock is used. Opting for the
latter has the effect of increasing the return pe-
riod of both smaller and larger aftershocks con-
siderably, as can be seen from a comparison of
the last two columns in table L. Since the in-
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Table 1. Return periods calculated from the Aleu-
tian aftershock sequence.

m  Nrizm) T (GB) T.-B) T. (B)
7 10 35.03 6.62 26.96
6.6 23 9.601 5.19 11.85
6.5 33 6.96 4.93 10.42
6.3 55 3.64 4,49 8.45
6.2 89 2.64 4,13 7.73

crease in the return period of smaller aftershocks
does not conform to observation, the return pe-
riod should be calculated using the magnitude
of the main shock.

Stability in time is retlected in small oscilla-
tions about the mean magnitude. In order to
eliminate large (luctuations, the mean magni-
tude of each group of 10 aftershocks was calcu-
lated by Ranalli (1969). In the case of the Aleu-
tian Islands afiershock sequence, the oscilla-
tions occurred about a mean magnitude of
E(M) =6.19, and there was no sign of decay in
time for a period of 100 days. The number of
partial mean magnitudes was 29, and 100% of
the oscillations occurred within E(M) £0.20.
The reason why the GR average return period
seems to be closer to the calculated value is that
the partial averaging. by grouping of 10 succes-
sive aftershocks, tends to decrease the impor-
tance of large values of the magnitudes of the
aftershocks, especially in the first few days after
the main shock.

5. Thermodynamics of aftershocks

Like the particle number of degenerate gas-
es, the number of aftershocks is not a conserved
quantity, but, rather, varies with energy or len-
perature. A photon gas, obeying the statistics of
black-body radiation, is a good example ol a
degenerate gas. And like a photon gas. the en-
tropy of an aftershock sequence will be propor-
tional to the number of aftershocks (Lavenda,
[991)

il
c ) =57 NG (5.1)



where N(z) is the integral of Omori’s law (1.6).
In order that the entropy be a concave function
of the energy, p <1 (Lavenda. 1993), which
confirms Utsu’s result. In comparison to black-
body radiation, where p =(.75, the Aleutian
Islands earthquake sequence has an energy ex-
ponent of p = b/3=0.768/1.5=0.512.

The entropy production produced by the
decaying process of aftershocks is

|
s=2(L] -2
£ &

== (

pt
where Omori’s law (1.6), with p = [, has been
used, since it applies to the Aleutian Island af-
tershock sequence. Whereas the entropy pro-
duction decays hyperbolically in time (Lom-
nitz, 1994), the rate ol energy release of an
aftershock decays as

N
12
——

f)(—IInF* ]
dr tlnf’ (

o
[
[t

Since p < 1, the energy released increases as
(Inn", which is faster than that predicted by
Omori’s law. which increascs as Inr (Lomnitz,
1994). Hence, the rate of energy release in an
aftershock will be given by
é~(np) " " (5.4)
in contrast to Utsu’s relation (1.7) with expo-
nent of ¢ = 2. The rate of energy release in the
Aleutian Islands aftershock sequence, Int/t,
would tend to zero not ncarly so rapidly as
Utsu’s law (1.7) predicts. All powers of Int vary
slowly al 1 =0 and 1 = meaning that scaling
does not affect the function at these extremes.
According to the second law of thermody-
namics, the inverse temperature is defined as
T™' = 85/de, and this gives the thermal equation
ol state

e(T)=(aT)"" 7 g*" (5.5)
Kinetic theory equates the temperature with the
average kinetic energy with which the mole-
cules in a system move about. The fact that the
energy increases at a faster rate than the average
kinetic energy means that there is additional
energy available for particle creation. In the
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present context this means that there is addition-
al cnergy available that can be released in the
form of seismic waves in excess to the energy
which is converted into heat and displacement
work.

In Section 1 we mentioned that aftershocks
have the property that the ratio of the volume
affected by an aftershock, V. to the earthquake
volume of the main shock, V™, should have the
same distribution as the ratio of the energy of an
altershock, € to the energy of the main shock,
&*. Consequently, we may use the definition
of the pressure £ as d5/dV = P/T to derive the
mechanical equation of state

] B nT.

This mechanical equation of state relates the
positive definiteness of the isothermal compress-
ibility, & = —(1/V) (dV/OP), = {(1-p)P} ' to the
criterion of the concavity of the entropy, (5.1).
At the extremes, p =0 and g = 1, (5.6) would
reduce to the mechanical equation of state of an
ideal gas for the volume affected by an after-
shock of cnergy € and the earthquake volume of
the main shock of energy &”, respectively. That
a power of the volume [ess than one appears in
the mechanical equation of state may be indic-
ative of a [ractal structure, of either dimension
3(1-p) or 3p embedded in an ambient dimen-
sion of 3, for the effective volume affected by an
aftershock, or the main shock, respectively. Fur-
thermore, (5.6) predicts that the two volumes
behave in a complementary manner to onc an-
other.

Finally, when the temperature is eliminated
between the thermal, (5.5), and mechanical,
{5.06), equations of state there results the equa-
tion of state

UJ
i

i

PY* ylp —[ (5.6)

P=mn

[t states that the radiation pressure developed by
the seismic waves of aftershocks is determined
uniquely by the energy density, . Likewise, the
; . . * * ..
pressure of the main shock is P* =»". This is
analogous to the radiation pressure of electro-
magnetic radiation which is determined by the
encrgy density in the black-body cavity.
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Glossary

— Extreme value distribution — The limiting
distribution for the largest or smallest element
of a set of independent and identically distribut-
ed variables. If this distribution is of the expo-
nential type then the distribution of largest val-
ue is the Gumbel distribution. If the distribution
is an inverse power law then the distribution of
the largest value is the Fréchet distribution, while
if the distribution is a positive power law then
the distribution of the smallest value is a Weibull
distribution.

— Hazard rate — The hazard, or failure, rate
is a nondecreasing convex function that is used
in life testing; the conditional probability densi-
ty of the lifetime of an item given that it has
survived to a specific time, The hazard function
of a Weibull distribution with exponent 2 is a
straight line. The reciprocal of the hazard func-
tion of a Pareto distribution is also a straight
line. The reciprocal hazard and mean excess
functions are proportional to one another.

— Mean excess function — The mean excess
function, or the mean residual life function, is
the conditional expectation X —x given that
X > x. The mean excess function ol an inverse
power law, or Pareto, distribution is a straight
line provided the exponent is greater than unity.

— Order statistics — Order statistics results
when the random variables are arranged in or-
der from the smallest to the largest, or vice
versa. Notwithstanding the fact that the values
so derived are no longer independent nor iden-
tically distributed, even though the original were,
order statistics has some remarkably simple prop-
ertics. In particular, the sampling distribution of
the transformed order statistic is a beta distribu-
tion, and the joint distribution is a product of
beta distributions, just as in the case of inde-
pendent and identically distributed random var-
iables.

— Quantile function — For strictly increasing
and continuous distributions, the quantile {unc-
tion is the usual inverse of the distribution. The
g-quantile x is a value along the measurement
scale with the property that the fraction ¢ of the
distribution is left of x. The quantile function
provides visual discrimination between distri-
butions. Whereas both quantile functions of the
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Fréchet, (=In(g)) ", and Weibull, —(—In(g))"",
distributions are increasing over the entire inter-
val ¢ € [0.1] for a >0, the Fréchet quantile
function is convex while the Weibull guantile
function has an inflexion point which separates
a concave function for small values of g and a
convex function for large values of ¢.

— Return period — If an event has probability
p then, on the average, l/p trials will have to be
made in order that the event will happen once.
The inverse of the probability 1s the return peri-
od, or the mean of the first exceedance time.
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