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Seismic transmission tomography:
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Abstract

This paper is a general review on scismic transmission tomography considering data acquisition and processing.
Some questions on linear and non linear inversions are tackled, and advice given on the choice of the best
damping factor, Taking into account prediction matrices we show that it is possible to point out the best distribution
of sensors and shot points in terms of resolution and stability of system. Then two examples in which seismic
tomography was used are described concerning the determination of elastic characteristics of building structures.
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1. Introduction

The prefix romo is Greek for sfice and there-
fore implies a 2D reconstruction of the field of
an elastic characteristic (velocity and/or attenu-
ation) of a material (natural ground or strue-
tures) using elastic waves that cross it.

Seismic tomography. depending on the type
of used wave, can be divided in reflection. dif-
fraction, transmission and refraction tomogra-
phy. It is known that seismic tomography shows
different aspects and problems depending on
the types of survey carried out. For this reason,
seismic tomography can be divided into deep
and shallow tomography, depending on the depth
of investigation,

This paper deals with transmission tomogra-
phy because this is usually used in shallow sur-

Muailing address: Prol. Ettore Cardarelli. Dipartimen-
to Idraulica Trasporti e Strade. Universita di Roma «La
Sapienza», Via Fudossiana 18, 00184 Roma. [taly;
e-mail: ettore.cardarelli@uniroma l.it

1075

veys that are mainly targets of engineering ap-
plied geophysics.

Shallow high resolution tomography is gen-
erally employed as a tool for determining the
elastic properties of rock masses involved in
large civil engineering projects and as a partic-
ular application for detecting and characterising
mechanical discontinuities in the main struc-
tures of ancient monuments and important build-
ings. These surveys generally investigate zones
having dimensions ranging from one meter up
to a few tens of meters and velocities that may
change from 300 m/s to 30004000 m/s.

In these surveys measurement errors play an
important role with respect to deeper surveys
because the absolute value error is always inde-
pendent of travel-time value. Furthermore, we
have to consider that dealing with smaller trav-
el-time values, a high percentage errors occurs,
which are the errors related to the ill positions of
shots and geophones, and the reading errors of
the picking of the first breaks. The reading er-
rors are due to the attenuation of the signal
because of the high frequency loss that can
depend. in the case of building structures, on
bad coupling between the investigated structure
and the sensors and the noise that may be elec-
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tric random noise due to recording device and
electric coupling in seismic cables. or external
noise caused by wind, rain and factors that de-
pend on human activities.

2. Background

Suppose we have a set of observed travel
times, 1, ...., t,, from m sources-receivers pairs
in a medium of slowness s(x) = 1/v(x) where
v(x) is the wave velocity. Let P, be the Fermat
ray path connecting the ith source-receiver pair.
Neglecting the errors, we can write

J-S(.l') Al =i, i=1I...m. 2.1)
'";

Given a model of slowness, let /, be the length
of the ith ray path through the jth cell and given
a model with 5 cells (fig. 1) above equation can
be discretized and written as:

n
Z/U..r[ =1 S - . (2.2)
i=1

I now we write the previous equation in matrix
notation by defining the celumn vectors s and ¢
and the matrix M as follows:

i L h 12 L,

5, la Iy 1y Ly,
5= t= M=

Su K'rn le [m: T nn

The previous equation becomes the basic equa-
tion of forward modelling for ray analysis

Ms =t (2.3)
The formal solution follows:
s=M't. (2.4)

Since generally M is not square we have to find
some type of solution.

/
cell

lij L
/

_/

Fig. 1. Seismic transmission tomography. ¢ is the
travel time that the ray-path spends travelling from
shot point to sensor. s is slowness of jth cell. [ is the
length of the fthray-path in the jth cell.

At this moment we have to define the mean-
ing of the forward and inverse problem.

The forward problem delermines the pre-
dicted data (#™) when model parameters (s™)
are defined using M whilst the inverse problem
evaluates model parameters (s™') starting from a
data set that consltitutes the

"= Ms" (2.5)

observational data (#™) by using the inverse
M 1

sU=M 't (2.6)

3. Inversion

All inversions can be divided on a relation-
ship between a small perturbation to the model
and its effects on observations (data) and from
the relationship that links the unknowns with
the data set. Under this hypothesis the inversion
may be linear or non linear.

In our case, we are dealing with a lincar
problem so that the (2.4) or a derivation from
(2.4) is used.



Seismic transmission tomography: determination of the elastic properties of building structures (some examples)

e

In the case in which the problem is not linear
put can be linearized around a reference model
it is not possible to solve the problem by (2.4) or
its derivation but the non linear operator must
be linearized by using a first order expansion
Taylor series in which if G(x) is the non linear
operator and x, 1s the reference model we can
write G(x) = G(x, ) + B(x —x,) where B is the
derivative operator with

oG

B, =< .
" ax ]

Linear Inversion

Considering a non negative functional de-
fined as

W(s) = (t—Ms) (t-Ms) (3.1
it can be regarded as the sum of the squares of
the residuals, If W = (0 we solved our problem,
il W = 0 then we did not solve our problem, but
for small W we are close o solving it. Taking
the derivative of W with respect to s, we find s
that gives the minimum value ol the squared
error

MMs =M't. (3.2)
This is known as the normal equation for least-
squares, and the matrix M'M the normal matrix.
If we are dealing with an overdetermined prob-
lem and this is generally the case. i.e. m > n, and
we may assume that the inverse exists, also if
this usually is not true, a formal solution can be
given from
s=|IMM)'"Mt=M 't (3.3)
Where M
inversion.
If|[M'M| 'is singular the previous equation
cannot be solved and a new functional ¥(s)
has to be considered

" is the generalised inverse of our

Wlis) = Wis) +As's (3.4)

where the weighting factor 4 determines the
relative importance given to the prediction error
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W(s) and solution length L = s's. If 4 is made
large enough, this procedure will minimise the
undetermined part of the solution. If A is set to
zero, the prediction error will be minimised but
no a priori condition will be provided to single
out the undetermined model parameters.

It is, however, possible to find some value
for 4 that will minimise W(s) while will mini-
mising the length of the undetermined part of
the solution.

4, How can we solve the problem?

There is no simple method of determining
what kind of compromise we have to choose to
detect A. If we minimise with respect to the
model parameters in the same way as the least
squares derivation, we can write

s=[MM+] 'M't (4.1)
This solution is called the damped least squares
solution and 4 the damping value. It may be
determined by a trial and error process which
weighs the relative merits of having a solution
with small variunce against those of having one
that fits the data and is well resolved.

In some cases, it is possible to detect the best
damping factor analysing the trend of mean
square deviation g, between the ficld travel times
and the theoretical ones. It can be demonstrated
that the best 4 will be detected when the first
significant increase in the diagram o, (the knee
of the curve) (Bernabini and Cardarelli, 1987) is
obtained (tig. 2).

A

Fig. 2. Trend of ¢, depending on the damping value 4.
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Further considerations can be made about
the damping factor.

It is possible to demonstrate that the lower
velocity cells are more robust and react to the
damping factor by introducing perturbations in
the velocity field of the investigated area. To
avoid this. the damping factor should be relaxed
in the low velocity zones and boosted in the
high velocity ones. For this reason, instead of
considering constant damping factors, variable
ones can be introduced and lower coefficients
may be assigned to lower velocity cells (Berna-
bini and Cardarelli, 1997). Under this hypothe-
sis eq. (4.1) was moditied as

s=[MM+A] 'M't (4.2)
where the matrix A is a diagonal matrix in
which damping factors are the diagonal ele-
ments.

There are many cases where the solution
length L = 's is not a good measure of solution
simplicity. If the more probuable value of the
investigated slowness is s, the solution length
can be written as

L=(s—-5) (s —u8).

In this case, taking advantage of & priori infor-
mation (3.4) can be modified as

Wis) = Wis) +As =) (s—5).  (4.3)

If we minimise W'(s) with respect to the model
parameters in the same way as the least squares
derivation, we can write

s=[MM+M] 'M't+ MM+ 1s. (4.4)

This is the equation where the information a
privri s is considered. It may be utilised if mean
elastic characteristics of the investigated materi-
al are known. If s is set Lo zero, the above
equation coincides with (4.1).

If variable dampings are considered (4.4)
can be modified as

s=IMM+ A 'Mt+ [ MM+A"| 'Als.
(4.5)

This equation gives best results in those cases
where low velocity cells exist (high slowness).

1078

4.1. Algorithms used

In general, there is no optimum algorithm
for any problem, every survey is a new problem
where the choice of the best algorithm has to be
determined considering the characteristics of
inversion with respect to those of the survey.

The algorithms can be divided depending on
the operative way to process data: direct, itera-
tive, quasi-iterative and stochastic.

In direct methods we can include. Gauss-
Jordan elimination and Singular Value Decom-
position (SVD), these algorithms are generally
used for linear problems with few equations and
few parameters (unknowns).

In the iterative methods we may consider the
Algebraic Reconstruction Technique {(ART),
Simultaneous Iterative Reconstruction Technique
(SIRT) and Conjugate Gradient (CG) methods:
these algorithms are vsually utilised for prob-
lems with a large number of equations and un-
knowns where large sparse matrices occur, be-
cause the direct methods take too much compu-
ler memory space, these algorithms are general-
ly utilised although they are more time consum-
ing. Iterative methods are also used for non
linear problems where a set of linearised steps is
necessary to reach the minimum of error criteri-
on function.

In the quasi-iterative methods. the least QR
factorisation (LSQR) and Lanczos methods can
be considered. these algorithms can be used for
both linear and non linear inversions depending
on the properties of the algorithms that we are
dealing with.

Finally, in the stochastic methods all the
Monte Carlo methods may be included. mainly
Simulated Annealing. These methods are gener-
ally used to solve the highly non linear prob-
lems when it is not possible to linearise them.

Because, in general, shallow seismic tomog-
raphy deals with few parameters and faces lin-
car problems, principally direct methods are
utilised such as the Gauss-Jordan elimination
and the SVD. The SVD is generally used to
perform analysis of the system in order to deter-
mine if it is well or ill conditioned by using the
ratio between the higher and the lower eigenval-
ue (condition number) and spectra analysis of
eigenvalues and eigenvectors of the generalised
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inverse of the system. Equation (4.4) written in
the SVD formalism is

i Wy T
s=Vdiag| —— U"t +
wi +4
(4.6)

; A ¥
+ Vdiag| —— V' s
Wi+ A4

where U is the eigenvector matrix that spans
data space, Vis the eigenvector matrix that spans
the space of unknowns and w, are the eigenval-
ues of generalised inverse of the systen.

In the case in which some singular values are
zero, the W matrix of singular values can be
rearranged in a diagonal submatrix W, of p non
zero singular values. This operation is equiva-
lent to decreasing the number of unknowns until
the p value is reached. In such a way, the system
becomes overdetermined and can normally be
solved.

In the 3D case and when the system is ill-
conditioned, we generally use the LSQR algo-
rithm (Paige and Saunders, 1982) because with
respect to the iterative methods it gives a small-
er residual for the same number of iterations and
is more robust. The explanation for this might
be that with CG we deal with normal matrix
(M'M) whereas in the LSQR approach we deal
only with the matrix M (Van der Sluis and Van
der Vost, 1987)

For non linear problems the Biconjugate
Gradient is generally used, this being a special
version of conjugate gradient. The ordinary CG
method works well for matrices that are well
conditioned, 7.e. «close» to the identity matrix.
The strategy of these algorithms consists in
multiplying matrix M with a preconditioner M
close to M in which case M™'M = | allowing the
algorithm to converge in fewer iterations he-
cause it is necessary to avoid ‘many’ CG itera-
tions in order not to increase noise.

4.2. Resolution

In shallow seismic tomography, one impor-
tant target is the resolution of the field velocity
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that we need. The resolution depends on two
important parameters: the number of unknowns
and the dimensions of cells in which the inves-
tigated area is divided. The first parameter is
directly linked to the number of equations i.e.
the number of unknowns cannot overcome the
number of equations, in the least squares sense,
the second parameter is linked to the fundamen-
tal frequency of the seismic wave that travels in
the investigated area. In fact, the Fresnel ray
theory (Cerveny and Soares, 1992) suggests the
minimum dimension of the object that we can
detect by

R, =L [4¥ (4.7)
2N/

where d is the distance between shot point and
sensors v is the mean velocity of the investigated
area and f is the fundamental frequency of the
recorded seismic wave and R, is the ray Fresnel.
For this reason the minimum dimension of cell
that we can consider will be equal to R,.

Considering that the elastic characteristics
of the medium are affected by mean character-
istics of the elements of volume having dimen-
sions = A/2 if R, < Af2, for short distances, the
minimum dimension to consider will be A4/2,
where A is the wavelength.

4.3. Is it possible to plan a survey?

There are many possibilities to arrange the
position of sources and sensors with respect to
the distribution cell but it is necessary to predict
which is the best disposition to avoid amplify-
ing measurement errors.

To face such a question prediction matrices
can be used. Because these matrices depend
only on distribution of shot, sensor points and
arrangement of grid cells, in the straight ray-
path approximation, they can be analysed and
studied before performing the survey.

Model resolution matirix MRM

The MRM defined as (M “M) (Menke, 1989)
indicates if « model can be independently pre-
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dicted or resolved. In fact if we consider that

st= MY T = Ms™ (4.8)
Substituting in the first of (4.8) the second we

obtain

s =M "M1s™. (4.9)
(4.9) suggests that the estimated parameters are
equal to the true ones when (M "M) is equal to
the identity matrix.

Dara resolution matrix DRM

The DRM defined as (MM ") (Menke, 1989)
indicates if data can be independently predicted
or resolved, considering

sU=M YT ™ = Ms©. (4.10)
Substituting in the second of (4.10) the first we
obtain

"= (MM e (4.11)
Also in this case (4.11) suggests that the pre-
dicted data are equal to the observed data if
DRM is equal to the identity matrix.

Unit covariance matrix UCM

The unit covariance matrix is defined as

UCM =M'M) ". (4.12)
This matrix, under the hypothesis of uncorrelat-
ed data, by the analysis of its main diagonal
provides the degree of error amplification that
occurs in the inversion and analysing the ele-
ments off the main diagonal gives the correla-
tion degree between each cell with respect to all
the others.

4.4, Acquisition device
In shallow seismic tomography the high res-

olution is one of the most important factors
determining the quality of the results. In this
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[rame the acquisition device plays an important
role because a good choice of recording sample
rate, cut-off frequency of sensors and interdis-
tance between the sensors and shot points can
determine the success of a survey.

In the survey that we are describing data ac-
quisition was carried out with a sample rate of
100 ges and piezoelectric sensors with a cut-off
frequency of 4 kHz. As a source a hammer of
about 2 kg was utilised. Because of the short re-
cording times we used the technique that, in ad-
dition to the trigger of the seismograph, uses the
shot time (Bernabini et al., 1990). The trigger of
seismograph is activated by the hammer that in-
terrupts an electrical circuit during its course to-
ward the shot point. The shot time is recorded
through a piezoelectric sensor assembled within
the hammer, which is then connected to a chan-
nel of the seismograph. In this manner, we are
able to read travel times as the diflerence be-
tween the shot instant recorded on the channel
connected to the piezoelectric sensor of the ham-
mer and the first breaks of each channel (fig. 3).

5. Two case histories

In order to summarise and for a better under-
standing of the previous sections two examples
of high resolution seismic transmission toniog-
raphy for determination of elastic characteris-
tics of building structures will be shown.

5.1. Application of 3D and 2D seismic tomo-
graphy on some samples of building
panels (1st example)

This survey (Cardarelli and de Nardis, [998)
was carried out to verify if seismic tomography
can be a valid tool to acquire of knowledge of
the elastic properties of brick walls and their var-
iations when walls are subjected to different loads.

The survey was performed on building pan-
els that were expressly erected with the tech-
niques of ancient Roman buildings. We execul-
ed the experiment subjecting panels to different
loads.

During these tests we carried out seismic
tomography to reveal elastic variations that arose
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Fig. 3. Seismic tomography record. Shot instant is indicated and the picking is performed.

from different loads and to predict possible
cracks or fractures,

The experiment, that surveyed the wall, was
divided into four load phases, each one using a
different load.

The building panels measured | x 1 x0.45 m’,
The inversion was performed in 3D and 2D
projection, We divided the panel into 18 voxels
(3D cells) and used 345 ray-paths for 3D survey
and 12 pixels (2D cells) and 120 ray-paths in 2D
case. The LSQR algorithm for 3D and the SVD
for the 2D inversion were used. The 21} inver-
sion was performed only taking into account the
ray-paths with the same z co-ordinates i.e. con-
sidering seismic waves Lhat travelled on the same
plane that coincides with the plane where sen-
sors and shot points were located,

Figures 4a-d and 5a-d show the results of 3D
and 2D inversion, in these figures it is possible
to distinguish elastic differences between differ-
ent load phases. Observing fig. 4b, in the 2nd
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phase when the load increases to 45 kg/em® an
improvement of elastic characteristics with re-
spect to the Ist phase (fig. 4a) is shown, proba-
bly because the load increases the stiffness of
the wall. When the load decreases to zero in the
3rd phase (fig. 4¢), it is possible to note that the
elastic characteristics decrease with respect to
the 1st phase because first permanent deforma-
tions arose. In the 4th phase (fig. 4d) when the
load increases to 60 kg/em” the elastic charac-
teristics of the wall improve but do not reach
the mean values that the wall showed in the st
phase to demonstrate that permanent deforma-
tions have arisen. Increasing the load to 62
ke/em’ the wall was disrupted and open frac-
tures were visible on the right bottom side of the
wall where the lower velocities were detected.

Considering that the fractures were parallel
to the load, we performed 2D inversion because
the rays travelling perpendicularly to the frac-
tures could enhance the elastic differences dur-
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Fig. 4a-d. 3D inversion results (after Cardarelli and de Nardis, 1999).

ing the different phases. In fig. 5c in the 3rd
phase the low velocities are better detected with
respect to 3D representation.

From the results we can conclude that it is
possible to use seismic tomography as a tool to
detect different elastic characteristics in brick
walls that are subjected to different loads.

3.2, Seismic refraction, isotropic and anisotropic
seismic tomography on an ancient
monument (2nd example)

This survey was performed on three columns
of the pronao ol Antonino and Faustina Temple
(141 A.D.) (Cardarelli and de Nardis, 1998).
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The columns are formed of cipollino marble
that is made up of mica and calcite beds. The
columns are 15 m long and have a diameter of
about 1.5 m The goal of the survey was to
determine the decay degree of the columns
of the Temple in order to give information to the
restorer to plan the restoration. To test a meth-
odology that takes into account different geo-
physical techniques to integrate the results,
two seismic techniques were performed. At first,
the survey was carried out by seismic refraction
and seismic tomography on two columns. In
fig. 6 the arrays of seismic refraction and seis-
mic tomography are shown. [n each column two
lines of seismic refraction were performed in
opposite sites for each spread of 12 geophones,
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Fig. 5a-d. 2D inversion results (after Cardarelli and de Nardis, 1999).

having an interdistance of 25 cm between
one another, 5 shots were located as is shown
in fig. 6. Seismic tomography was performed
dividing the columns into four parts. In each
part, 23 sensors were located distributed as
shown in the figure, between the sensors shot
points were located. Seismic refraction was
processed using the delay times method (Gard-
ner, 1939) and then adapted as suggested by
Bernabini (1965). Seismic tomography was proc-
essed by the LSQR algorithm (Paige and Saun-
ders, 1982) both 3D and 2D inversion. Since
the 3D tomography did not give significant re-
sults a 2D inversion was performed. Figures 7
and 8 show the results of seismic refraction and
2D tomography. Both surveys indicate that the
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columns, considering velocity values, may be
divided into three zones: in the tomographic
survey a weathered zone, where the velocities
range from 0.4-0.6 km/s, an intermediate zone
characterised by velocities ranging from 0.8-1.2
km/s, an inner zone where the velocities reach
the values 2-2.5 km/s. In the refraction survey
the weathered zone is characterised by veloci-
ties that are more or less the same as those
detected by tomography, in the intermediate zone
the velocities range from 1.5-2.5 km/s and final-
ly the inner zone shows the highest velocities
from 3.5 to 5 km/s. The different elastic behav-
iour detected between the two techniques was
interpreted as anisotropic behaviour of the ci-
pollino marble. The reason for this is that in
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Fig. 6. Seismic refraction and seismic tomography array (after Cardarelli and de Nardis, 2001).
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Fig. 7. Seismic refraction results of Column A. Velocities are in km/s (afier Cardarelli and de Nardis, 2001).
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seismic tomography, in 2D projection, the wave
travels perpendicularly to the mica and calcite
beds and because the mica is weathered the
wave is slower with respect to the head wave
of seismic refraction that travels parallel to
the calcite beds and gives back the velocity of
calcite.
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For this reason and because the investigated
columns were restored. the survey was repeated
on a third column performing a seismic aniso-
tropic tomography,

The survey was carried out locating 13 sen-
sors and 13 shot-points around a section of the
column at a distance of 30 c¢m one from each

12° et
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Fig. 9. Seismic tomography array. Points indicate the
sensors the stars indicate shot point. The distribution
of straight ray-paths is indicated (after Cardarelli and
de Nardis, 2001).

other for a total of 169 ray-paths (fig. 9). We
increased the number of paths to improve the
angular coverage because we had to simultane-
ously invert the two slowness field s and s, that
corresponded to the main direction of the ani-
sotropy. We increased the number of cells to 25,
with variable dimensions to take into account
the ray Fresnel theory considering the funda-
mental frequency of acoustic waves.

At first we faced the question of detecting
the main directions of anisotropy (Cardarelli
and de Nardis, 1998).

The second question that we faced was the
choice of the algorithm to invert the data. We
chose the algorithm proposed by Michelena
et al. (1993). Michelena writes the travel-time
equation as

N
fis)=Y JAx? ST 1Ayl 82,

i=l

where S, are the slownesses in the main direc-
tion of the anisotropy, §,, , are the slownesses
in the perpendicular direction and Ax and Ay

are the components of the ray-path in the corre-
sponding directions. This equation is not linear
and can be linearised by a first order Taylor
series expansion centred in an initial model s,
Because in this case the Jacobian matrix de-
pends explicitly on the slowness of the refer-
ence model, and we computed the perturbation
As = (5 — 5,), the estimation of the slowness was
a non-linear problem. For this reason we ap-
plied an iterative method using a sequence of
linear steps. The algorithm that we used to in-
vert the data was the Biconjugate Gradient BCG
(Press er al., 1992). The system was precondi-
tioned using variable damping factors. The
damping values were defined by identifying the
low velocity zones detected during the first iter-
ation of the BCG algorithm (Bernabini and Car-
darelli, 1997)

J'J+W)As = JTAt (5.1)

where W is the diagonal matrix of damping
factors; J is the Jacobian solution matrix; and
As = (s—s,) is the perturbation to the initial
model s, and At =#(s) — #(s,) is the correction to
the calculated travel time of the initial model.

In order to compare the results of the as-
sumed anisotropic model. we performed iso-
tropic tomography using the same data. We used
the straight ray-path approximation again. In
both models we used the same number and
dimensions of cells.

The velocity fields of the two main direc-
tions are shown in fig. 10ab. In fig. 10a, the
high velocity field (v ) shows a marked variation
of velocities from 0.8 to 4.8 kim/s. In this case,
the section of the column was divided into three
zones. In the first zone where the velocities are
lower (0.8 km/s), it is possible to locate these
values in front of and behind the column where
aligned cracks are present perpendicular to the
schistosity. In the second zone, the velocity is
between 1.2 and 2.4 km/s and in the third zone,
the velocity reaches 4.8 km/s. The trend of ve-
locity field is parallel to the schistosity of the
material. In this case, the highest velocity value
that we obtained is the same as that obtained
using the seismic refraction method. It confirms
the hypothesis on the anisotropic behaviour of
the marble.
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Figure 10b shows the low velocity field (v,)
as fairly uniform, the velocity values range be-
tween 0.8 and 2.0 km/s, with an average of 1.5
km/s. The low value of the velocity is due main-
ly to cracks parallel to the planes of the schis-
tosity. In order to detect the differences between
the isotropic and anisotropic results, we also
performed isotropic tomography (fig. 11). In
this case we obtained a velocity field that rep-
resents an average between the two velocity
fields of the anisotropic case. The velocity val-
ues range from 0.6 to 2.8 km/s. These values are
quite similar to those obtained in columns A and
B. The trend of the field is the same as the v
field because it shows the highest variation.

To compare the two results we considered
the difference between the field data and the
calculated data for both the isotropic and aniso-

04 |

tropic tomographic inversion (fig. 12a,b). In the
case of the isotropic model (fig. 12a). the trend
of the difference shows a dependence on the
direction in which the ray travelled (i.e. in some
cases we underestimated the velocity and in
others we overvalued the velocity). It explains
the trend of the curve that interpolates the differ-
ences between the model and field data. In the
case of the anisotropic model, the dependence
on the direction of the ray-path is missing
(fig. 12b) and a better approximation is there-
fore obtained. The data distance o (d.d.) be-
tween the field data and the calculated data was
calculated in both cases. It is defined as
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Fig. 12a,b. Data distance analysis: a} isotropic tomography: b) anisotropic tomography (after Cardarelli and de

Nardis, 2001).
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e

where the 7, are the measured travel times and ¢
qre the calculated travel times.

In the case of an isotropic model, g, = 0.17
ms. In the anisotropic model, in the case of
constant damping, ¢, = .07 ms; in the case of
yariable damping, o, = 0.054 ms (this value
corresponds to a mean error of about 7% of the
mean value of the reading times). This was a
new confirmation that the transversal isotropic
model under the hypothesis of elliptical approx-
imation, was accurate and the variable damping
factor could reduce the errors and increase the
stability (Bernabini and Cardarelli, 1997) with-
out reducing resolution.

In conclusion, seismic tomography was a
useful tool for restorers because it was able to
determine the main elastic anomaly as location
and dimensions of the weathered zones and the
degree of degradation of the investigated col-
umns. Furthermore, the anisotropic behaviour
of the cipollino marble was detected. In the
third column such hypothesis was confirmed
and the main directions of anisotropy were de-
tected with two main fields of velocities. Some
considerations could be made about zones where
low values of the velocities were singled out.

6. General conclusions

This short review on seismic high resolution
transmission tomography aimed to highlight the
main parameters and characteristics of the tech-
nique and describe some particular uses of this
geophysics method.

At first, in order to obtain a well conditioned
system it is necessary to plan the distribution of
sensors and shot points and the division of the
investigated area into cells. For this purpose and
to obtain a good resolution, the dimensions of
cells have to be considered taking into account
the wave length of the recorded signal and the
number of equations of the solution systeni.

The choice of the algorithm to process data
is an important question that has to be tackled
because as mentioned, for each problem it is
possible to detect the fit algorithm that gives the
best results. For this purpose the choice of the
best damping factor is a question that has to be
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faced during processing to reach a good com-
promise between resolution and stability of the
system.

As shown in the two case histories, seismic
transmission tomography can be a valid tool to
detect mechanical discontinuities in building
structures (fractures, little cracks) and the decay
degree of important monuments in order to redi-
rect the restorer during restoration.
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