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Abstract

This paper deals with the antiplane wave propagation in a 2D heterogeneous dissipative medium with complex
layer interfaces and irregular topography. The initial boundary value problem which represents the viscoelastic
dynamics driving 2D antiplane wave propagation is formulated. The discretization scheme is based on the fi-
nite-difference technique. Our approach presents some innovative features. First, the introduction of the forc-
ing term into the equation of motion offers the advantage of an easier handling of different inputs such as gen-
eral functions of spatial coordinates and time. Second, in the case of a straight-line source, the symmetry of the
incident plane wave allows us to solve the problem of oblique incidence simply by rotating the 2D model.
This artifice reduces the oblique incidence to the vertical one. Third, the conventional theological model of the
generalized Maxwell body has been extended to include the stress-free boundary condition. For this reason we
solve explicitly the stress-free boundary condition, not following the most popular technique called vacuum
Jormalism. Finally, our numerical code has been constructed to model the seismic response of complex geo-
logical structures: real geological interfaces are automatically digitized and easily introduced in the input
model. Three numerical applications are discussed. To validate our numerical model, the first test compares
the results of our code with others shown in the literature. The second application rotates the input model to
simulate the oblique incidence. The third one deals with a real high-complexity 2D geological structure.

A

Key words seismic wave propagation — numerical et al., 1995) or finite-differences (e.g. Moczo,

method — dissipative media 1989; Zahradnik et al., 1993).
As far as the finite-difference technique is
1. Introduction . concerned, many computer codes are available
nowadays. Moczo (1989) first used a finite-dif-
The numerical approach is a necessary tool ference scheme with a variable grid, Moczo
to investigate wave propagation in heteroge- and Bard (1993) generalized the Emmerik and
neous media. The available numerical methods Korn (1987) rheological model to the heteroge-

are mainly based on boundary techniques or nous media, Zahradnik et al. (1993) tested four

domain_techniques (Bard, 1995). The former finite-difference schemes to better stabilize the
are such as boundary integrals (e.g. Sanchez- solution.

Sesma and Campillo, 1991) or discrete-wave-
number (e.g. Bard and Bouchon, 1980); the
latter are such as finite-elements (e.g. Padovani

The main goal of this paper is to set up a
numerical technique suited to deal with com-
plex geological interfaces necessary for appli-
cations to real structures, both for vertical and
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logical and engineering interest. The numerical
computation of ground motion for realistic 2D
nearsurface structures is performed for the
antiplane component of the wavefield. This
scheme is aimed to provide synthetic ground
motion for plane waves obliquely incident to
the bedrock. To reproduce realistic layered
structures, the input model is provided by digi-
tization of the real geological interfaces.

2. The model

The first step is to mathematically define
the heterogeneous medium. Let R? be the two
dimensional real space and x=(x, z) € R? a
generic vector. With reference to fig. 1, let f(x)
be a regular function defined for x € R and let

Q={(x,2) e R*|z>f(x), x € R}.
We denote with
0Q={(x,2) € R*|z=f(x), x ¢ R}

the boundary of Q. The medium is modelled

X
/}ir
20 " Z=f ()
WALNEY)
X €0Q
H&® P X Q (x)
Q

V4

Fig. 1. Sketch of the integration domain for the ini-
tial boundary value problem (2.9) through (2.12). It
represents the mathematical scheme of a heteroge-
neous unbounded medium Q with free surface 0Q.
The density p, the quality factor Q and the shear
modulus g, are functions of the spatial coordinates.
The free surface dQ is characterized by a function
of x such as dQ ={ze R|z=F(x)}.

618

through the domain Q, so that dQ is the curve
which separates the medium from the air. Let
0(x) be the angle between the outward vector
normal to dQ, in the point x € 0Q and the
positive real x axis. The medium is character-
ized by the following functions defined for
x € Q: p(x) the mass density per unit volume,
Uy (x) the unrelaxed shear modulus and Q (x)
the quality factor. The unknown functions are:
u(x, t) that is the y displacement component
and the auxiliary unknown functions &; (x, 7)
and ¥ (x, 1) j= 1, 2, -, p which take into ac-
count for absorption properties in Q and on 0Q
respectively.

The antiplane wave propagation is described
by the following equation of motion:

*u 00,
p? T ox

a0,
+—=+G(x, b

2.
0z @h

where o, and o,, are the two relevant compo-
nents of the stress tensor and G (x, r) is the
forcing term.

To incorporate an attenuation law into a
time-domain method, we adopt the rheological
model of generalized Maxwell body of Em-
merich and Korn (1987) as generalized by
Moczo and Bard (1993) for heterogeneous me-
dia. The auxiliary unknown functions éj (x, )
are solutions of the following system of equa-
tions (see Appendix):

% |2l au),
a7 T lox (1+X7_,Y) ox
P MY oy
A e 2.2
+az((1+2f=le) 32) @2)

j=1,2,-p
where @ are the relaxation frequencies and the
coefficients Y;j = 1, 2, -, p are the weight fac-
tors of the classical Maxwell bodies constitut-
ing the generalized Maxwell body; they are the
solutions of the linear system (A.3) in the Ap-
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pendix. Formal differences between the defini-
tion of &, in (2.2), and the corresponding one
in the paper by Moczo and Bard (1993) are
due to the different approaches in the construc-
tion of the two finite-difference schemes. The
relation between ¢ in (2.2) and the same quan-
tity & in Emmerich and Korn (1987) is

& =uy&t~ 2.3)

If the medium is homogeneous, replacing (2.3)
in (A.5), eq. (2.2) is equal to (28) of Emmerich
and Korn (1987).

The solutions of partial differential equa-
tions are not unique unless appropriate initial
and boundary conditions are specified. In our
problem the initial conditions are chosen to
be zero and the initial perturbation is given
by a forcing term, ie. the function G (x, ) in
eq. (2.1). On the surface dQ we apply the
stress-free boundary condition

Oy, n = Oy COs 0+ 0, sin 6=0 2.4)

where o, , is the projection of the tangential
stress on the normal outward direction on 0Q,
and 0 is the angle between the outward normal
vector to dQ2 in x € dQ and the positive x axis
(see fig. 1). The physical meaning of (2.4) is
that the surface can oscillate in order to main-
tain the normal projection of the tangential stress
equal to zero at each time. In terms of displace-
ment and in absence of absorption we have

al cos 9+% sin 0 =0. (2.5)
ox 0z

Equation (2.5) can be also interpreted as the
continuity of the traction across the interface
between the medium and the vacuum. This
point of view was recommended in the SH
case by Boore (1972) suggesting therefore no
need to explicitly approximate eq. (2.5). Zah-
radnik et al. (1993) refer to it as the vacuwm
Jormalism: the free-surface is formally manipu-
lated in the same way as the internal points.
Justification for this comes from the fact that
in the discretized equation of motion an addi-
tional body-force term automatically appears,
which guarantees the traction continuity. For

details see Zahradnik and Priolo (1995) and
Zahradnik (1995).

In order to mathematically represent the
wave propagation in dissipative media and to
include absorption on the free surface, it is bet-
ter to maintain the distinction between the ini-
tial conditions, boundary conditions and equa-
tions of motion. Thus, we will solve eq. (2.5)
explicitly.

We introduce absorption also in the stress-
free boundary condition. The stress-free bound-
ary conditions in absence of absorption are
expressed by eq. (2.4). In the viscoelastic
medium the components of tangential stress Oy
and o, are expressed by eq. (A.1). Therefore,
substituting (A.1) in (2.4) we get

ou u . &
— cos 0+ — sin 6-2 E .
ox 0z i=1

(2.6)
(&, yx cOs 0+ Gy sin ) = 0.

We define new auxiliary unknown functions as
W =2(g, yxcos 0+, sin 6),
and eq. (2.6) becomes

ou ou . &
—c0s O+ — sin 0 — E ¥, =0. 2.7
ox aZ j=1

The absorption tensors §; ,, and { ,, obey the
system of egs. (A.2). In order to find the equa-
tions for ¥;. we multiply the first equation of
(A.2) by cos 6 and the second one by 2 sin 6.
Summing them up we get

E‘— + 2a)]\P] =
w. Y.
= *’p’—(ﬁ’i cos 6+ % sin 9), (2.8)
1+37 7\ ox oz

V(x 1) e 0Qx(0, =) j=1,2, -, p.

The partial differential eq. (2.7) coupled with
the system of ordinary differential eq. (2.8) and
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with initial conditions for ‘Pj j=1,2, -, prep-
resents the stress-free dissipative boundary
conditions, i.e. the stress-free boundary condi-
tion in the viscoelastic medium.

To summarize, our initial boundary value
problem which mathematically represents the
viscoelastic dynamics of antiplane wave propa-
gation in 2D heterogeneous dissipative media is

o%u __a__ al i a_u ~
Pﬁ— ax('uyax)-'-az('ul] az)
p
—Zéj(;c, N+G(x, 0
j=1
Y (x, 1) € Qx(0, =) (2.9)
9 o WY@ g
E'{'(ojé’j_a’j a(ma +
L2 B © o
I\ 1+37,Y;(Q) oz

V(x,H)e Qx(0,0) j=1,2,-,p (2.10)
gj(lat=0)=07
u(x,t=0)=0,
du(x, t=0) Y (2.11)

ot o
Vxe Q
) P) <
—a—zcos 9+a—Zsin0—j§‘I’j=0
Y (x, 1) € 9% (0, =)

¥, oY

—4 o) j=+@(—aﬂcos()+%sin9)

ot 1+2j=1Yj(Q) ox 0z

V(x,0) e d0Qx(0,) j=1,2,,p
\‘Pj (x,t=0)=0 Vxe 0Q. 2.12)
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Our model consists of the partial differential
eq. (2.9) coupled with the system of ordinary
differential eqs. (2.10) as well as the initial
conditions (2.11) and the boundary conditions
(2.12). The coupling of (2.9) and (2.10) with
(2.12) represents the viscoelastic dynamics for
heterogeneous dissipative media.

3. The finite-difference solution

Our initial boundary value problem (egs.
(2.9) through (2.12)) has to be solved for
Vx € Q, where Q is an infinite domain because
our medium is a heterogeneous half-space (see
fig. 1). But because of the finite computer’s
core we can consider finite domains only; thus
it is necessary to replace Q by a finite domain,
in such a way we can simulate the wave propa-
gation in a heterogeneous half-space. For this
aim it is necessary to introduce artificial
boundaries into Q. Let L,, L, e R and L,,
L, > 0 be such that

L, > min f(x)

0<x<L,

and let
Q={x2eR|fx)<z<L,0<x<L}

be our finite domain with artificial bound-
aries

I ={02¢eR; f0)<z<L}
D ={(L.,2) e R f(L)<z<L}
Iy={(x, L) e R2; O<x<L,}.

These boundaries must be equipped with artifi-
cial boundary conditions so that the perimeter
of the computational grid becomes transparent
to outward-moving waves in order to avoid ar-
tificial reflections introduced by the edges.
The transparent boundary conditions prob-
lem has not been solved at present, although it
has been extensively studied (e.g., Smith,
1974; Clayton and Engquist, 1977; Engquist
and Majda, 1977; Reynolds, 1978; Sochacki

.
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et al., 1987; Collino, 1993; Mei et al., 1993).
We have adopted Reynolds (1978) transparent
boundary conditions which can be seen as a
first-order approximation of the Engquist and
Majda (1977) conditions.

To numerically solve our initial boundary
value problem, we use egs. (2.9) through (2.12)
and the Reynolds (1978) transparent boundary
conditions replacing Q by Q’. We use a finite-
difference technique with a uniform mesh
spacing in €’

h=Ax=Az.

The choice of h depends on the frequency up
to which the computation is required to be ac-
curate

Vmin

12 finax

where vy, is the minimum wave velocity in
. Let M and N be positive integers such that

. (L, . (L,
M = int 7 and N = int 7 and let

Xp=(m—-1)h m=1,2, -, M+1

and

Z,=m—-1h n=12 -, N+1.
The time step Ar must satisfy the Courant-
Friedrichs-Lewy stability condition which, for
the explicit finite-difference scheme that we
use, is (see Mitchel and Griffiths, 1980)

h
At = —
vmax Vz

where vy, is the maximum wave velocity in
the medium. Let
=IAt 1=1,2, - J.

Then the interior mesh points are given by
Q,={x,, 20, )12 <m < M,

2<n<N, 0<LI<JL.

Let ufn, n» é]l, m, ns pm n» ,uU, m, ns ‘{l]l, m, n and an n
denote the finite difference-approximation of
U X5 Zp, tl)’ ‘:—j (xrm Zns tl): p(-xm’ Zn)7 Hy (xm7 Zn)’
Y Xn» 205 1) and G (x,,, 2,, 1)), respectively.
The discretization of the self-adjoint deriva-
tives is written as

V' [)u‘U (xmt Zn)vu(xm’ Zns tl)] =

) 1
;uU,m,n um+1,n _um,n
=V- A ) =
Un n+1 U, n

!

= %[Em+lu£n+l,n_(Em+l +Em) ur]n,n+Emu£r1—l,n] +

+%[+Fn+1u£n,,,+1—<ﬂ,+1+Fn)u£ﬂ,n+F,,u’ ]

m, n—1

where

-1
mh
Em=l[J dx ]
hl m-nm py (x)

-1
F,,:l[J'nh dz ] -
h w-vn py ()

This approximation, first developed by Tikho-
nov and Samarskii (1961), allows us to
save the self-adjoint nature of the operator
V- [ty (x) Vu (x)] (see also Mitchell and Grif-
fiths, 1980).

The discretization of (2.10) yields

1 L

I+ =
éj 2=Af§j,m,2n+
a ‘uU,m,an,m,n au
R how B s e
ox\ 1+ 37 Y, , ox
3.1
a( :uU,m,an,m,n a_l/l

L e [ —
0z 1+2§’=1Yj,m,n 0z
t=IAt

j:—_ 1,2, P
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where
2 - wAt B 2 w;At
T 2r oA T 2v o
j=1L2, - p.

Finally, the discretization of the wave eq. (2.9)
gives

I+1 _

m,n — (Em+1um+1n+Emum ln)+
p ( +1”m n+1+Fumn 1)+
(3.2)
( +I+E +F+ n+1)]u£nn
1 (At)2 i(él-‘-% +(§,l_% )
I—-1 ! ), m, n ], M, n
~Up, n Gm,n_
o Ponn 1= 2
form=2,3,-,Mn=2,3, - Nl<l<J—-1,

and r= éh—t We adopted the leap frog tech-

nique to discretize (2.10) in the time domain
because it allows us to replace the value of
&' by the average of E-values at the time levels
[-1/2 and I+ 1/2. Other choices lead to nu-
merical instabilities as experienced in numeri-
cal experiments.

If we apply a stair-case on a regular grid,
the discretization of the stress-free dissipative
boundary condition (2.12) yields

Upyr, g, COS O+ ub ) sin O—ul,  (cos 6+ sin 6) -

f) =f, € 0Q

where the curve f(x) is the free surface of the
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medium (see fig. 1) and the auxiliary un-

known functions ‘P s, are the solutions of the
following system:

1+ Ju du

Yol C‘P mf+D P cos 6+ sing
ox 0z t=IAt
2-wAt
T2+l
3.4

- 20AtY,, .

" Q+aAn1+X0 Y, )
=12, p

with initial conditions
\Pomf_o j=1,2,"',P

Equations (3.1) through (3.4) are the finite-dif-
ference scheme for the vertical incidence.
Exactly the same scheme holds in the
oblique incidence case: to take into account
variations of the incident angle of the incoming
plane wave, we rotate the 2D model reducing
in such a way the oblique incidence to the ver-
tical one. Let o be the angle between the inci-
dent direction and the normal to the x-axis. Let
us introduce a coordinate system (x’, z”) in
such a way that the incoming wave front is
normal to the x” axis (see fig. 2a). If we rotate
both the coordinate sytems clockwise by the
angle o (see fig. 2b) we go back to the case of
a vertical incidence. Let R be the operator of
cos o

rotation defined as
sin o
R = ) .
—sino  cos Q,

) in the new coordinates x’ and 7z’

3.5)
is

Y . ) = (RT (’“)) V' 2') e Dy
Z
(3.6)

where R” is the transpose of R and the relations
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between new and old coordinates are

’ 4

(x)=R(x) v(x’ Z) € Q, V(x', Z,) € Q,mt‘
Z

3.7)

The initial boundary value problem 2.9
through (2.12) is now solved in the new do-
main Q' i.e. in the trapetium (a,, a,, as, a)
sketched in fig. 2c. The coordinates (x, z) do
not play any role in the numerical computation
for oblique incidence, we need them just to ro-
tate Q’ via relations (3.5), (3.6) and 3.7).

4. Numerical tests

In order to check the suitability of our nu-
merical code, we used the same 2D geological
structure modelled by Moczo et al. (1995).
Figure 3 shows the geological model including
elastic and anelastic parameters of the different
layers. A first test deals with the vertical inci-
dence.

The computational section is 982 m wide
and 117 m deep. We used the same time-step
(0.00039 s) as in Moczo et al. (1995), and the
smallest grid-step (0.5 m) employed by Moczo
et al. (1995) in his variable grid model. These
parameters guarantee the accuracy of the fi-
nite-difference computation up to 15 Hz. The
input radiation in this case is represented by a
vertically incident planewave. To realize such

Fig. 2a-c. Three steps are needed to realize the
oblique incidence. a) The wave front is incident
with an angle ¢ in the (x, z) frame. Note that in the
(¥, z’) frame the wave front has a vertical incidence
(= 0). b) Both coordinate frames and the Q’ do-
main are rotated clockwise by the angle a. c) The
rotated €', domain (the trapezium g, a, as, ag,)
is the new domain of integration for the same initial
boundary value problem (2.9) through (2.12).
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VELOCITY DENSITY Q FACTOR
[m/s] [kg/m’]

1 400 1900 40
2 100 1800 15
3 400 1900 40
4 800 2050 100

310 331 355 429 468 507 515 (m} 581

[ [ | | I I ]
0.0
18.0 L

1 3

35.0 NP4
44.6 3
(m)

Fig. 3. 2D vertical section with table of elastic and anelastic parameters used in the numerical tests. The en-
tire profile used in the computation is 982 m long and 117 m deep. Geometry and mechanical parameters are

the same as in Moczo et al. (1995).

an input radiation we use the Gabor impulse

o,—1)\
g(®) = exp|- — cos[m, (t—

where @, =2nfp, t,=0.45y/fp. fp is the
predominan frequency of the impulse. The pa-
rameter values in our modelling were equal to
those used in Moczo et al. (1995). Figure 4a,b
shows the comparison between the results of
our modelling and the previous one as pub-
lished in Moczo et al. (1995). The propagation
pattern does not show any significant differ-
ence between the two results. To evaluate the
size of differences in the spectral content, three
representative sites were selected within the
soft upper layer, one in the middle of the val-
ley and two close to the edges. For these sites

)+ ]
4.1)
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Fourier transfer functions were estimated
through the spectral ratios between the syn-
thetic seismograms at the surface and the
bedrock input (see fig. 5). The details of the
spectral content are precisely reproduced and
the maximum deviation at specific frequencies
does not exceed 5%. These satisfactory results
validate our numerical code.

The second test case deals with plane-wave
oblique-incidence. We rotated the structure
sketched in fig. 3 using the technique ex-
plained in the previous paragraph. Elastic and
anelastic parameters as well as grid and time
steps are the same as those used in the vertical
incidence case. Figure 6 shows synthetic dis-
placement on the free surface for an incoming
plane wave with an angle o =30° measured
from the x axis in the clockwice direction. It is
noteworthy that, compared to the vertical inci-
dence case, waves trapped inside the horizontal
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Fig. 4a,b. Comparison between synthetic displacement on the free surface derived from (a) our computation
and (b) Moczo et al. (1995). In (a), the same delta-like input of Moczo et al. (1995) was used.
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Fig. 5. Comparison between our Fourier transfer functions (right column) and the Moczo et al. (1995) ones
(left column) for three sites in the valley. The sites are at x = 438 m (top), x = 468 m (middle) and x = 480 m
(bottom), respectively. The x coordinates are according to fig. 3.

layer on the right hand-side of the profile pro-
vide the valley with energy. This generates
more complicated interference effects in the
valley.

When a real geological structure is taken
into account, the complex interfaces of the in-
put model are automatically digitized accord-
ing to the stability conditions of the numerical
scheme. Figure 7 shows an example of a real
2D vertical section of a geological profile in
Rome, Italy. Interfaces were digitized after
grouping different geological layers on the ba-
sis of similar mechanical properties (fig. 8).
The transient response of this real structure to
a vertically incident pulse is shown in fig. 8.
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The bedrock input was the Gabor function as
defined in (4.1). The time and grid steps are
those used in the test cases of figs. 4a,b and 6.

5. Conclusions

In this study we present a numerical model
to solve the viscoelastic dynamics of antiplane
wave propagation in a 2D heterogeneous dissi-
pative medium with nonplanar free surface
both for vertical and oblique incidence. Input
at the bedrock is an out-of-plane polarized
wave. An initial boundary value problem is
formulated to represent a dissipative dynamics
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Fig. 6. Transient response of the model for an obliquely incident wavefront with an angle of 30° degrees. The
input radiation is the same delta-like signal as in the vertical case. The entire profile used in the computation is
563 m long and 427 m deep.
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Geological S Velocity Densitgl Q
Units m/s glem factor

1: Antropic 100 1.85 10
Cover
2: Recent 200 1.85 10
Alluvium
3: Continental 400 1.95 20
Deposits
4: Pliocenic 800 2.0 50
“Bedrock”

3
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Fig. 8. A digitized geological profile is reconstructed after grouping different geological units on the basis of
their mechanical properties (1: manmade fillings; 2: recent alluvium; 3: continental and volcanic deposits;
4: Pliocenic bedrock). The site response to a vertically incident plane wave is shown together with the elastic
and anelastic parameters used in the modelling.
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in realistic 2D geological profiles. The mathe-
matical formulation of the wave propagation
problem includes the forcing term which pro-
vides the initial perturbation. Its discretization
numerical scheme is based on a finite-differ-
ence technique. We adopted the rheological
Maxwell body model to take into account ab-
sorption mainly for two reasons. First, it allows
us to directly compute the dissipated solution
in the time domain: this means that no arti-
fices, like low-pass filters, are needed in order
to simulate the absorption effects. Second, be-
cause of its superiority both in accuracy and
in computational efficency. The numerical
scheme is structured to model the vertical inci-
dence. A comparison with previously published
results guarantees the suitability of this code. Ro-
tating the 2D model we reduce the oblique inci-
dence to the vertical one. The advantage of this
technique is that no variations are needed in the
numerical scheme to account for angle variations
of the incident wave front. In this way we are
guaranteed that no errors are introduced with re-
spect to the vertical incidence case.
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Appendix

The stress-strain relations including dissipation are (Emmerich and Korn, 1987):

(A.1)

In (A.1), the tensors Q’] w (X, ©) and CJ v (X, 0 j=1,2, -, p are the anelastic terms of the stress-strain relation
and satisfy the system:

0%, yx 1 o Y; Ju
’ + =] — - | ZZ i = 1, 2’ R
ot 6= 3 1+37 Y ] ox ! P
(A2)
98y 1 w;Y; Jdu
=08 = [ e | 2 =12,
o + jCJs =2\ 14 27: SAE" J p

where @; are the relaxation frequencies and the coefficients Y, (j=1, 2, -, p) are the weight factors of the
classical Maxwell bodies constituting the generalized Maxwell body. They are the solution of the linear sys-
tem (Emmerich and Korn, 1987):

)4
j=1

& [0~ 07 (x, @) @]

V,=0"(x, &) k=1, K. (A.3)
cojz+ @?

Inserting (A.1) in (2.1), we have the partial differential equation of wave propagation:

Pu 9 Bu) 0 ( au) 4
CU =y @) L, ) - G A4
o ox (MU ox " 0z Hu 0z j; §+G(x 0 Aad
where the functions & (x, 1) are defined as
) ) .
§=2| gt e Lwg0] =12 e

In order to find the equations whose solutions are the auxiliary unknown functions &, we consider the system
(A.2). We multiply by 2 ;, the first and second equation, differentiating the first equation with respect to x and
the second one with respect to z, summing them up, and taking into account definition (A.5) we get the equa-
tions whose solutions are the auxiliary unknown functions éj, i.e. eq. (2.2) in the text.
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