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dielectric (and anelastic) media
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Abstract

Since the dispersion and attenuation properties of dielectric and anelastic media, in the frequency domain, are
expressed by similar formulae, as shown experimentally by Cole and Cole (1941) and Bagley and Torvik
(1983, 1986) respectively, we note that the same properties may be represented in the time domain by means of
an equation of the same form; this is obtained by introducing derivatives of fractional order into the system
functions of the media. The Laplace Transforms (LT) of such system functions contain fractional powers of
the imaginary frequency and are, therefore, multivalued functions defined in the Riemann Sheets (RS) of the
function. We determine the response of the medium (dielectric o anelastic) to a generic signal summing the
time domain representation due to the branches of the solutions in the RSs of the LT. It is found that, if the ini-
tial conditions are equal in all the RSs, the solution is a sum of two exponentials with complex exponents, if the
initial conditions are different in some of the RSs, then a transient for each of those RSs is added to the expo-
nentials. In all cases a monochromatic wave is split into a set of waves with the same frequency and slightly
different wavelengths which interfere and disperse. As a consequence a monochromatic electromagnetic wave
with frequency around 1 MHz in water has a relevant dispersion and beats generating a tunnel effect. In the at-
mosphere of the Earth the dispersion of a monochromatic wave with frequency around 1 GHz, like those used
in tracking artificial satellites, has a negligible effect on the accuracy of the determination of the position of the
satellites and the positioning of the bench marks on the Earth. We also find the split eigenfunctions of the free
modes of infinite plates and shells made of dielectric and anelastic media.

Key words set-valued — dielectric — anelastic — dielectrics (e.g., Heaviside, 1899; Cisotti, 1911;
wave — tunnel effect — fractional derivatives Cole and Cole, 1941; Bagley and Torvik,
1983).

Laboratory experiments (e.g., Cole and Cole,

1941; Hasted, 1973; Bagley and Torvik, 1983,

Physics and mathematics have long given 1986; Kornig and Miiller, 1989; Jacquelin,

great emphasis to the modelling of energy 1991) have confirmed that the introduction of

dissipation and dispersion in the propagation  memory mechanisms into the constitutive equa-

of elastic waves and perturbations in solid  tions of the propagation of the above mentioned

anelastic media and of electromagnetic waves waves and perturbations adequately presents

and perturbations in plasmas, liquids and solid  their phenomena of dispersion and energy dissi-

pation.

A Q power law for seismic waves, which
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di Fisica, Universita «La Sapienza», Piazzale Aldo Moro 2, also been observed by many authors listed in
00185 Roma, Italy; e-mail: mcaputo@axcasp.caspur.it table I of Caputo (1984).

1. Introduction
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The most successful memory mechanisms
used to represent dispersion and energy dissipa-
tion in anelastic media, in dielectrics and elec-
tric networks, are those of the derivatives of
fractional order (Caputo, 1969; Caputo and
Mainardi, 1971; Bagley and Torvik, 1983,
1986; Pelton et al., 1983; Jacquelin, 1991) de-
fined as follows

dw+zf(t)/dtw+z —
(1.1)

=(1—F(1—z))jf(‘“”(v)dv/(t—v)‘
0

where z = m/u (m, u positive integer and prime,
m < u) and w is a positive integer. In the fol-
lowing, in order to simplify the discussion
without altering the essence of the results we
shall assume w = 0; this assumption is also in
agreement with many experimental results on
dissipation and dispersion in anelastic and di-
electric media.

The Laplace Transform (LT) of (1.1) is
(Caputo, 1969)

LT[d"" f(r)/ dt"** ] =
(1.2)

= P LTLO1+p* Y o™ 7 0)
n=0

where p is th LT parameter.

The fractional order derivative defined in
(1.1) will be used extensively in this note to
solve initial value problems of anelastic and di-
electric media.

In this paper we first note that the index of
refraction n of anelastic and dielectric media,
whose constitutive equations include deriva-
tives of fractional order, contains a fractional
power of the imaginary frequency which gives
a set valued function for n defined in u RSs.
Then we find the response of the medium to a
generic input summing the responses due to the
eigenfunctions of the RSs corresponding to all
the values of n. In particular, we discuss the so-
lution depending on the initial conditions of the
different RS with specific attention to the case
of the propagation of monochromatic waves.
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2. The problem

If Yis the LT of induction (or strain) y and
X is the LT of the electric field (or stress) x ap-
plied to a dielectric (anelastic) medium (e.g.,
Cole and Cole, 1941; Caputo and Mainardi,
1971; Caputo, 1996) the relation

Y=le. +(gy —e.)/A+(p) )X = Z(p)X
2.1

where p = iQ, with Q, frequency, represents
well in the frequency domain the data of most
laboratory experiments (e.g., Cole and Cole,
1941; Hasted, 1973; Bagley and Torvik, 1983,
1986; Kornig and Miiller, 1989, Jacquelin,
1991) and of field observations (Pelton et al.,
1983; Caputo, 1984, 1997; Kérnig and Miiller,
1989). ¢, and ¢_ are the values of the system
function Z(p) at infinite and zero frequency re-
spectively, 7 is a relaxation time.

The time domain representation of (2.1) is
(Caputo and Mainardi, 1971)

(I+7°d* /dt*)y =(e, +e_t°d* I dt*)x. (2.2)

Given x, according to (1.1), relation (2.2) is an
integro-differential equation in y.

In the following we shall use the relations
(2.1) and (2.2) without specifying whether the
medium represented is dielectric or anelastic
because, depending on the dimensions of the
parameters &, and ¢_, they represent the dis-
persive and dissipative properties of both types
of media.

We shall here discuss the one dimensional
case of (2.1) and (2.2) since the two-dimen-
sional and the three-dimensional cases are more
complicated to discuss but yield the same quali-
tative results.

To study the propagation of electromagnetic
or elastic waves, or of the free modes or of the
propagation of perturbations in media whose
physical properties are represented by (2.1) one
may use the explicit time domain differential
representation (2.2) of the relation between x
and y or (2.1) (which is the LT of (2.2). Here
we will use (2.1).
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Since we assume that z = m/u is a rational
number, (2.1) is a set valued function of p =i
with u values which define u different values of
the system function and therefore of the index
of refraction n and of the velocity fields for the
medium. However Physically Acceptable (PA)
are only those values of the index of refraction
n(Q=n,(Q)—n,(Q) which give positive ve-
locity and positive Q, that is

n,(Q)=0, n,(Q)=0. (2.3)
In practice, it is common to select and use only
the principal value of n(Q), real or complex;
however there is no physical reason for this
choice nor for the selection of any other single
PA value of the set valued n(Q), since they are
a priori all acceptable provided

n(Q)z0, n,(Q)==0.
In this note we shall use all the PA values of
n(Q) and seck the sum of the LT "' of all the
branches of (2.1), which gives the time domain
representation of the sum of the waves, with the
same frequency but different velocities and
phases, obtained in the RSs branches resulting
from the PA values of the index of refraction.
The sum of all these waves includes the phe-
nomena of dispersion and dissipation of energy.

3. The LT ™' of the system function. Case when
the initial conditions are nil on all the RSs

This problem has already been discussed by
Caputo (1994a, 1996), however the important
effects of the initial values of each of the
set-valued functions in the different RSs was
not discussed in the previous work (Caputo,
1994a,b, 1995a,b), and will be tackled in this
and the next paragraph considering general ini-
tial conditions.

The LT ™ of each of the u Riemann branches
of (2.1) is found integrating it in all the u sheets
of the Riemann branches. In the Appendices A
and B it is shown that, when u and m have op-
posite parity, the integration is done along the
path shown in fig. 1 (where the branch cuts
along the negative real axis are required by the
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Fig. 1. Contour for the computation of the LT of
the set valued function Y =[e_ +(g,—e.)/(1+
+(zp))1X = Z(p)in all its Riemann sheets.

fact that the initial values of the solution may
be different in each RS), when u and m have
the same parity then the integration is made
along the path of fig. 2a-c.

To take into account that the different
branches may have different initial conditions,
we note that according to (1.2), the LT of (2.2)
also contains terms with the initial conditions
for x(r) and y(f) and rewrite it as follows

Y=[e, +(e, —e )/ A+1°pY)]X +
(3.1
+[Tz(y(0)—ewx(O))/pH]/[1+rzpz]

where p* =(iQ)*, with Q frequency, is a set
valued function with u values. 1

The solution in each RS will be indicated
with y,(h) where the index A = 0, 1} ..., u—1
identifies the A-th RS; as already stated the ini-
tial values y,(0) may be different in the u RSs.

In order to simplify the solution we shall
first assume that all y,(0) = 0 and x(0) = 0. We
shall later see the effect of non zero initial val-
ues y,(0).



Michele Caputo

IMAGINARY

IMAGINARY

IMAGINARY

Fig. 2a-c. Contour for the computation of the LT™
of the set valued function ¥ = [¢_ + (¢, —¢.)/ (1 +
+(tp)IX =Z(p): a) in the first Riemann sheet
(h = 0); b) in the last Riemann sheet (k= u — 1); ¢) in
the first Riemann sheet for closing the circuit after
running on all Riemann sheets from the first to the
last and back. See also the text.

The procedure used to find these LT ~'is
shown in Appendix A where one finds the tran-
sients in all the RSs and in Appendix B where
one finds that there is a total of m poles in the
set of the u RSs.
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The poles of
T8/ (p*+17%) 3.2)

then give the following contribution in the
LT of (3.1)

u

(! mo){exp(i(2k +D)a(u/m -1)} -

k

]
o

(3.3)
{exp((t/ 7) exp((i(2k +Drru/ m)))}

where the first two factors, independent of ¢, are
the residues (see formula (B.4) in Appendix B)
of the PA poles possibly present in the k-th RS
and the sum is extended to the RSs with PA
poles, that is the poles which imply positive Q
and positive velocity according to (2.3). Writing
(3.3) as

F@t, k)= uz—t (u/ mr){expli(t/1)-
k=0

-sin((2k +Duz / m) + 2k +Da(u/m —D]]}- (3.4)
{expl(t —7) cos((2k + Duz / m)] }

it is seen that the frequency Q «» the phase @,
and the Q;' resulting in (3.4) are

Q, =(1/7)sin((k +Dzu/m)

O, =2k+)am/m-1) 3.5)

0;' =(2/7) cos((3k +1)mwu/m).

Since the values of the index of refraction n(£2)
obtained from (2.1) repeat every u successive
value of k, while the value of Q" in (3.5) re-
peats every successive m value of k, in order to
have all the PA RSs (where both physically
acceptable poles and velocity fields are in
the same RS) one must give to k all values in
the range 0 <k <wum —1; as an example, when
mfu = 4/5, the PA values of the index of refraction
n are in the RSs and obtained for k = 0 and k = 6.

However, if one is interested in knowing
only the PA velocity fields and poles it is suffi-
cient to vary k from O to u — 1; in fact when
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varying k from u — 1 to mu — 1 one would al-
ways find the RSs where the PA poles and ve-
locity fields are coupled, but they have the
same residues and velocity fields already found
with one of the previous values of k.

Figure 3 shows the velocity of the waves of
a medium with index of refraction given by the

Z(p) defined in (2.1) and the values of k associ-
ated to PA velocity fields.

The modulus of 1/(1+(i Q7)?)), where p = iQ
with Q frequency, appearing in the system
function Z(p) defined in (2.1) is shown in fig. 4.
This modulus is the transfer function of the fil-
ter implied by the relation (2.1).

1.2 z2=0.2
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Fig. 3. Velocity of the waves as a function of the
frequency Q measured in units of the inverse of the
relaxation time 7, obtained for various values of
z = m/u and the values of k which give physically
acceptable velocity fields. The ordinate is in units
of e™2. Tt is also assumed, for similarity with water,
that e = 1.8 and ¢, = 81 (Hasted, 1973). The curves
with z = 0.2 and K = 0, K = 1 are almost identical at
low frequencies.
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Fig. 4. Modulus of 1/(1 + (i  7)°), or weight func-
tion of the filter representing the frequency depend-
ent part of the system function (1.2), as a function
of the frequency Q measured in units of the inverse
of the relaxation time 7, for various values of
z = m/u and the values of k which give velocity
fields physically acceptable. The abscissa shows the
frequency in units of the inverse of the relaxation
time 7.
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When m and u have opposite parity there is
no pole on the negative real axis of the RS.
When m and u are both odd there are poles on
the negative real axis of the RS which imply
residues with zero frequency and dissipation
0.' =2/t

Applying these results and using the formulae
of the Appendices A and B, one finds that the in-
tegrated time domain representation of (3.1) is

u-1
y=e xt+(e, —e.)x Y Ft,k)  (3.6)
k=0

where the poles considered for the residues are
obviously those within the loop of each PA RS.

It is seen that, assuming n = n, —in,, in order
to obtain n, =20 at all frequencies for a given
value of k, that is in order to have a velocity field
with Q;' = 0, the value of k must give

sin((2k + 0.5)zzm /u) = 0,
(3.7
cos((2k+0.5)mm [ u) = 0.

However, in order to have o, ''>01in (3.1) it
must also be

cos((2k +D)mu/m) = 0. 3.8)

Since n results from the two values of the square
root of the dielectric parameter, which are sym-
metric with respect to the origin, there is always
one value of n with a real part positive or nil at
all frequencies for a given value of k.

The arguments 6 of the poles are in 6 =
= ((1 + 2k)ywu/m) > 7 and there is no pole on the
RS associated to k = 0 where — < 6 < . How-
ever there is always a RS which contains
O0=mu/m >m since the upper limit of 6 is
(Qu—-1minthe RS h=u-1.

The residues are due to the poles of (2.1)
which, as shown in Appendix B, are m; there-
fore not all the u RSs have a pole and, as already
stated, not all of them are PA. For physical ap-
plications, the sum in (3.4) is extended only to
the terms with k& which satisfy (3.7) and (3.8),
which are about ©/2 and have frequency smaller
orequal to 1/t.
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4. Case when the initial conditions are
different in all the RSs

Sometimes, for physical reasons, the input
must be considered nil at ¢ = 0. Since the veloc-
ity of any signal must be finite, we may assume
that x'() be finite for 0 < 7 and, assuming cau-
sality, this implies that, when x() =0 for t<0,
at t = 01 the observed initial value must be

y(0) = z v, (0) = 0; one may therefore assume
h=0

that y, (0) = O for all k or, more in general, one

may assume that some y, (0) # 0 but that, in

any case, their sum be nil.

In the case when y, (0) and x(0) are not nil
then one must take into account the second
term in the right hand side of (3.1) in all RSs.
Moreover, we are not allowed to make the
simplifications due to the cancelling of the
integrals in dr in the sum of (A.3) and (A.4).

We note that according to the conclusions of
Appendix A, m and u should have opposite par-
ity and one integrates along the path of fig. 1; the
case when m and n have the same parity is more
complicated and postponed to another study.

Taking into account the initial conditions
and the integrals in dr of (A.3) it is seen that
the solution of (3.1)is

u=1
y=e x+(e, —e.)x" Y Ft,k)+
k=0

+ }i F(t,k)-[7""y, (0) =& .65, x(0)]-

k=0

L@ 1™ 1T —m  u)) exp(i2wkm [ u)]+

u—

[Tm/uyk (0) —&, 60k~x(0)]'

1
k=0

W@ /™ ITA~m [ u)) exp(i2km / u]-
) .1

-J(exp(—rt))dr [1/(rm™ exp(in(l+2k)m / u) +

0
T £ 1/ (r™" explim(—1+ 2km [ u) +77"")]

where F(t, k) is defined in (3.4) and the factor
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((e/D™" IT(A—m/u) exp (i2kmz/u) in the
lines 1 and 2 of (4.1) comes from the LT ™' of
p""" formula (2.2) in the k-th RS, which is
different in all RS (due to the presence of k in
the exponentials) and represents a transient.

The first term in (4.1) reproduces the signal
with amplitude ¢_; the term with £, —¢€_as
factor in the first line of (4.1) and that in the
second line are due to the residues of the poles
of (3.2); the term with (¢, —¢.,) as factor is the
contribution from the signal x(¢f), while the
terms with 7"y, (0)—e_d,,x(0) as factor are
the contributions from the initial values.

The terms in lines 3, 4 and 5 are the contri-
butions due to the integrals on the negative real
axis of the path of integration of fig. 1.

The sum is extended to the RSs which con-
tain PA poles and velocity fields; the integral
on the closed path of fig. 1 is nil when there are
no poles inside the closed path; the RSs which
contain unacceptable velocity fields or poles
are disregarded.

When a source injects a wave with given
frequency and direction in a medium with Sys-
tem function Z( p) defined in (2.1), the PA ve-
locity fields give rise to a set of waves repre-
sented by (3.4) with the same frequency but
slightly different wavelengths and different Q
represented by (3.5); fig. 5 shows the ampli-
tude of such a set of waves in water as a func-
tion of the distance from the source (Caputo,
1995a).

7 \
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Fig. 5. Amplitude of a set of waves travelling in water as a function of the distance travelled from the source

given in abscissa (from Caputo, 1995a). The ordinate is a

percent of the total amplitude at the source where the

single waves are assumed to have the same amplitude and phase. The solid line is the amplitude of the real set
of decaying waves. The dashed line is the theoretical amplitude of the set of waves without the effect of their
decay; note the apparent space decay of this amplitude due to the different phases of the single waves of the set
along the path caused by their different wavelength. The top scale of the abscissa is for f= 10 MHz, the inter-

mediate scale is for f = 50 MHz and the bottom scale is for f=100 MHz; in all cases

e.=18,7=152510" and z=0.965 (Hasted, 1973).
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it is assumed that ¢, = 81,
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In the atmosphere of the Earth, modelled
with an index of refraction resulting from (2.1)
and with the data of Liebe (1985), a wave emit-
ted with given frequency, phase and direction
from a source at the surface of the Earth, splits
into a set of waves with the same frequency and
slightly different velocities. When the wave is
emitted at 1 GHz frequency, which is about the
frequency used in the Global Positioning Sys-
tem (GPS), the phases of the waves of the set,
at about 60 km from the source, are spread in
a time window of less than 0.01 ns (Caputo,
1994b); this spreading would cause an uncer-
tainty of only 0.3 cm when locating positions
of artificial satellites in space and a similar er-
ror in the location of the benchmarks on the
ground.

5. The eigenfunctions

In this section we shall obtain the time do-
main representation of the free modes of
anelastic and dielectric media which are gov-
erned, in the frequency domain, by a constitutive
relation of the type (2.1). The splitting of the
eigenvalues has already been discussed in
Caputo (1996) in the cases when z is rational or
irrational, here we shall focus on the solutions
obtained considering the set of eigenfunctions in
all the RSs in the case when z is rational.

It is shown that in the time domain the equa-
tions governing the displacements in bodies with
shape of infinite plates or of spherical shells and
made of dielectric or anelastic media whose dis-
persion properties are described by a constitutive
equation of the type (2.2), may be separated
(Caputo, 1993, 1996) and that the time compo-
nent g(¢) of the eigenfunctions is a solution of the
following equation in g(¢)

e TH(d [ di? g e (dP 1 di)g +
(5.1)
+797(d* /dt)g+y*g=0

where y is a parameter identifying the eigen-
function.
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In eq. (5.1) the terms with € ; or ¢ should be
multiplied by the magnetic permittivity & in the
case of dielectric media and divided by density d
in the case of anelastic media; in both cases it is
here assumed u=d=1.

In practice eq. (5.1) is an integral differential
equation in the unknown g(#). In order to solve it
we may consider it in the LT domain and find
according to (1.2)

G — [(Swrzplu +80p+l’z’}/2p2_1 )g(0)+
+(e, +7e_p)g' () +e T p* g"(0)]/ (5.2)

Ne. . t°p** +e,p” +T°y  p* +y* 1.

A case of particular interest in applications is
that when we may assume ¢, =0 (Hasted,
1973) in which case equation (5.2) simplifies
to

G=[(e,p+7y* p*)g(0)+
(5.3)
+e,8"(0]/[e,p* +T°9  p* +77 1.

The right hand member of eq. (5.3) is a
set-valued function with u values defined
in u RSs each being identified by an integer
h(O<h<u-1).

We shall find here the sum of the set of u
eigenfunctions g, (), (h =0,l,...u—1), which
are associated to the same value of the param-
eter v, which is given by the sum of the LT ™
of the u Riemann branches G, (p) of G(p) in
the u RSs

u-l u-1
LT Y G, (p)= 5,0, -m<b<m
h=0 h=0

(5.4)
G, (p) = G(rexp(i2hm +6))

r is here the modulus of p and € its argument.
The computation of the LT ™ of (5.4) is
made using its poles and integrating along the
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path of fig. 1 since, as seen in Appendix B,
(5.3) has no poles on the negative real axis.

The poles are obtained from the roots of
the equation

mlu,, 2

e,q "+ Y q" vy =0 (5.5)
where ¢ stands for p'’

It has been seen (Caputo, 1994a) that when

(e 1ty) ™ >>1 (5.6)

which is the case in many dielectric and
anelastic media, then the roots of (5.5) are dis-
tributed in couples in each of the RSs, one in
the positive and the other in the negative
imaginary half plane; those in the positive
imaginary half plane are set on a small circle
around the point i(y/e;*), those in the nega-
tive imaginary half plane are set around a
small circle with centre in-i(y / e}?).

We may write

u-l1

G=3 I, p+7
Jj=0

mlu,, 2

Y p"" g, (0)+
(5.7)
+&,87(0)/[A, /(q—a,)+B, /(g p,)]

where each term of the summation is a function
with u values. The branch of G( p) in the A-th
RS will be indicated by

u-1
G, (p) =G(rexp2hm +0)) = Y [¢,g;(0) +
Jj=0

mlu,, 2

e p+7""y p

"), (0)]:
TA; 1" expRh+0) lu—a )+ (5.8)
+B; /(rexp(i(h +0))/u—f )]+

- <0<

The poles identified by the two fractions with
the same j in the summation of (5.8) however
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are only two. In fact the poles of

Aj/(q_aj)+Bj/(q_ﬁ¢)

a;=p, exp(ieaj), (5.9)
B, =pgyexplify), -m<6<am
are
P o expliud ,; + 2kiur)
(5.10)

P exp(iu 5 + 2kiurm).

When0<9j<aror0<01<nthepoles are
obtained for k = 0 which is the only value of &
in the range 0, u—1which gives the argument
of the pole in the range &, (2u—1)7; when
-m<6,<0or -z <6, <0 the two poles
for each j are obtained from the only one value
of k (k=0 or k = 1) which gives the argument
of the pole in the range —, (2u —1)7t. The poles
areinay, Y.
We seek here the sum of the LT of all the
G,(p), thatis

L

u-1
LT 'G(p) =

0 h

u— u-1

LT [[e,87,(0)+

=0 j-0

>
Il

miu,, 2

vp

+B, /(g )]

"‘(%P‘*‘T m/u_l)gh(o)][Aj/(q_aj)'}'
(5.11)

and changing the order of summation

u=l u-1

LT G(p)=Y,

Jj=0

u—

LT "[[e,g,(0)+

-0

>
I
o

miu,, 2

Hegp+t™yTp

it )gh(O)][A] /(C] _aj)+

+B, /(g P )]l

The computation of the right hand of (5.12) is
simpler if we assume that all the g, (0) are nil,
as we will do, without loosing much generality
in the results.

(5.12)
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Integrating over the path of fig. 1 in all the
RS we may then write

27ti (sum of the residues in all the RSs) =

u—1 Atico

=Y, [Gp exp(pndp+

h=0 ) e

=)

J exp(—rt)dr-

0

u-1 u—

+ Eog;(0)|:

1
=
[A; 1(r'" expRh+ D /u)—a )+ (5.13)
—A; 1 (r'"" exp(i(2h D /uwy—a,)+
+B; 1 (r'" exp(i(2h+ D /u)— B,) +

+B, [ (r'" exp(i2h )7 / u) —ﬂj)]:l.

The discussion of the problem is simpler if we
assume at first that g} (0) = g’(0) for all values
of h and therefore g’(0) may be factored out of
the summation in 4. We shall now discuss this
case.

Following the same procedure adopted in Ap-
pendix A for the functiont ™" /(p™'* —7 ™), it
may be shown that the sum over % of the integrals
in dr of (5.13) is identically nil for any fixed j.
Equation (5.13) reduces then to

27ti (sum of the residues in all the RSs) =

u—1
=2iny g, (5.14)
h=0
with
u=l u-1 u=1
£,0=Ye,8 0
h=0 h=0 Jj=0
(5.15)

(A0t exp(a 1)+ B, exp(B 1]

u=l
where Z indicates the sum over the PA RSs.
h=0
In the case considered here, (¢}* / 7y)
the poles a; and B are very near i(y /e

1/z >> 1’

12
o Or

662

—i(y /&%), remembering that in (5.1) we as-

sumed unity magnetic permittivity in the case
of dielectric media and unity density in the case
of anelastic media, indicating with v the phase
velocity of the medium, we see that the poles
are very near to the classic ones

(5.16)

and, when v approaches zero, the poles ap-
proach (5.16).

When the g} (0) are not equal then in (5.13)
the sum over % of the integrals in dr of (5.13) is
not nil and the double summation of the
integrals in dr appearing in (5.13), divided by
2mi, should be subtracted in the right hand
member of the solution (5.15). One obtains

-1

g,

h=0

u u-1

u-1
£,8,(0)3 -

h=0 j=0

[A;a™ expla,)+B,B4 exp(B 11—

oo

£,8 (O)D exp(—rt)dr-

0

u—
+
Jj=

1 u-1

0 h=0

[A; /(" exp2h+ D v —a )+ (5.17)
—A4; /(r'"" exp(i(2h -Dr/uw)-a;)+

+B; [ (r'" expi(2h+ D /u) - B,)+
~B; /(r'" exp(i2h — D)z / u) - ﬁj)]}/ 2ir

The presence of the terms ¢,g;(0) in (5.17)
gives a better perspective of the type of solution
reached because it contains explicitly the arbi-
trary initial conditions g;(0) on the PA RSs.
Which is an important aspect the nature of the
solution found here. The solution (5.17) also
shows the presence of the transients represented
by the integrals and the presence of the terms
exp(a'1), exp(B't) which imply that there are
as many acceptaf)le frequencies Ima, Im B’ as
there are negative Re o, Re 3.
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6. Conclusions

We have seen that the derivatives of frac-
tional order which appear in the constitutive
equations of anelastic and dielectric media give
a system functions Z( p), defined in (2.1), and,
therefore, an index of refraction with set-valued
properties.

This index of refraction implies that a
monochromatic wave will split into a set of
‘waves with slightly different velocities and
wavelengths which will therefore disperse and
interfere; the set of waves will also have beats.

The velocities of the waves of the set, result-
ing from 1/Re n are illustrated with an example
in fig. 3, for each value of k which satisfies
€gs. (3.7) and (3.8) which condition the selection
of the physically acceptable solutions. They are
decreasing functions of the frequency with as-
ymptotic value1/ [¢!/* ], the zero frequency value
of the velocity of these waves is 1/[¢}? ] Both
values are independent of z and k. In both cases
unity magnetic permittivity has been assumed
when the medium is dielectric or unity density
when the medium is anelastic respectively.

We found the responses arising from the
poles of the system function Z( p) defined in
(2.1) (or of the index of refraction), in the case
when the initial values of the responses of the
set are zero in all RSs.

When the initial conditions are different in
some RSs, then transient terms arising from
these RSs are present. However, these transients
become rapidly negligible when the relaxation
time 7 of the system function is large. The con-
tributions arising from the poles, which have
frequency Q,, given by (2.3), when the input
signal has frequency Q, have beats with fre-
quencies Q, £Q"; these beats are accompa-
nied with a signal with amplitude ¢_ and fre-
quency Q.

It is noted that (2.1) acts as a low pass filter
on the input signals, with a weight function
asymptotically decreasing with increasing fre-
quency; this is illustrated in fig. 4 where only
the curves whose k satisfies (3.7) and (3.8) are
considered.

In this note we also found the time domain
representation of the free modes of infinite
plates and spherical shells in the case when the
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initial values of the first order derivatives of the
eigenfunctions arising from the RSs are as-
signed. The time components of the eigen-
functions are represented by simple expo-
nentials with complex exponents, however the
solution verifies the presence of transients caused
by the different initial values of the first order de-
rivatives of the eigenfunctions of the RSs.

A wave originating in the medium with
given frequency and direction will split into a set
of waves with the same frequency and slightly
different wavelengths which interfere and dis-
perse. The dispersion of such waves in water has
been studied by simply considering the velocity
fields which have a positive 0" and assuming
zero initial values and zero phases for all the
waves of the monochromatic set finding that the
amplitude of the set of waves has beats along the
paths as shown in fig. 5.

The dispersion of such waves in the atmo-
sphere of the Earth has a negligible effect when
locating the artificial satellites in space or the
position of bench marks on the Earth by means
of electromagnetic waves with frequency around
1 GHz (Caputo, 1994b).

In all cases there are points along the path
of the set of waves, with the same frequency
and slightly different wavelength, where, be-
cause of the interference of the waves, the am-
plitude of their sum is nil. This phenomenon
may be taken as the tunnel effect of the classic
mechanics. This phenomenon is forecasted for
homogenous substances and may probably be
observed in the laboratory; for instance in water
where, extrapolating the computations summa-
rized in fig. 5, in a length of several meters and
with a frequency of the order of the GHz, one
should observe the locations of the beats and
null amplitude.
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Appendix A. Introduction to the inversion of the system function Z( p) defined in (2.1).

The function

T—m/u /(pm/u +T—m/u)

(A1)

since z = m/u (m, u, m < u, positive integer and prime), is a multivalued function with u values defined in u
Riemann sheets which will be identified by the integer 4(0 < & < u—1).
To solve the problems of the inversion it is necessary to find

u—1 u—1
S LT @™ /(p™  + ") =Y LT (x ™" / (™" exp(i(0 + 2hm)m [ u)+ 7" )) =

h=0 h=0

A +ico

u—1
=Y (1 2m) [T exp(pt)dp [ (p™"* +77"")
h=0 i

A—ioo

r=’p

(A2)

,2hm+6 =argp inthe h-thRSwith—- 7 <0< m

where 4 is chosen to be greater than the real part of the poles of (A.1).

(A.2) is obtained summing the integrals of (A.1) in each of the u RSs defined by A, along the path of fig. 1,
which is to be considered in all the RSs, and which contain all the poles of (A.1). In turn the sum of these
integrals is equal to the product of 27i times the sum of the residues of (A.1) inside the loop of the paths of in-
tegration in each of the Riemann sheets.

It is shown in Appendix B that, when m and u have opposite parity, (A.1) has no poles on the negative real axis
of the RS and one may integrate (A.1) along the path of fig. 1 in all the RSs.

According to Caputo (1969) it is seen that integrals of (A.1) along the path of fig. 1, in the generic RS identi-
fied by &, when the points A,B,D,H go to infinity in the radial direction and the radius of the smaller internal
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circle is reduced to a size as small as desired, reduce to
A+ioo
J'r"”’” exp(pt)dp I (p™"* + 17 )+
Ao
+ J.[r"”/” exp(=rt)dr /(r"™"" exp(izt(l + 2h)m [ w)+7~""* )+ (A.3)

0
—t"" exp(—rt)dr | (r""* exp(in(—1+ 2hym | u)+ 7" ).
In the RS identified by 4 + 1, the integral of (A.1) along the same path is

A +ioo
J.r‘"’/" exp(ptdp / (p™* + 77" )+
A—ico
+ j [z exp(—rt)dr I(r"™" exp(ine(3+ 2h)m | u)+ Ty 4 (A.4)
0

~77"" exp(—rt)dr | (r"" exp(in(—1+ 2h)m | u)+ 7" ).

We see that in the sum of (A.3) and (A.4) two of the four integrals in dr cancel out, while the two integrals in
dp are summed. When summing all the integrals in dr for all the RS we are left with the integral on the path
with 6 =~ of the RS 4 =0 and the integral on the path with @ = (2n — 1)z of the RS & = u — 1. We obtain

u—1A+ieo

z jr"”’“ exp(pt)dp | (p™™* + 77" )+

h=0 }_joo

oo

+ J.[r""/” exp(=rt)dr / (r™* exp(in(—1+ 2uym / u)+7~""* )+ (A.5)

0

—mlu

=T exp(=rt)dr / (r"'"* exp(—imm | u)+1t~"'")].

It is easily verified that the integrand of the last integral in dr in (A.5) is identically nil and (A.5) is simplified to
u—1A+ioo

> [ T exp(prydp 1 (p™ + 7, (A.6)

h=02_jeo

In the case when m and u are odd, as shown in Appendix B, there is a pole in the negative real axis of at least
one RS. In this case the method of integration used when m and u have opposite parity is not valid. We may
integrate instead on the new path indicated in fig. 2a-c, which begins in the RS % = 0, then proceeds to the RS
h =u— 1 passing over all of them and finally returns to the RS # = 0.

The path begins in F in the RS h = 0 (see fig. 2a), proceeds to D, from there it steps up in the RS h = 1 where it
repeats the same helicoidal path as in the RS / = 0.

After repeating successively the same helicoidal pathin all RS 2 =2, 3, ... u — 2 it reaches the point N with
Z=(2u-3)R inthe RS &= u -1 then it goes to M with 8 = (2u — 1) in the same RS & = u — 1 (see fig. 2b).
From M the path runs along the real axis towards the origin in the positive imaginary plane and it steps down to
the RS /= u — 2 following another helicoidal path backwards but on a helix with a small radius and internal to
that previously described.

Following the latter helix the path reaches again the point F in the RS / = 0 (see fig. 2¢).

The integral of (A.1) along the paths described in fig. 2a-c, gives the same result (A.6) as the integration along
the path of fig. 1 but it includes all the poles on the negative real axis of the RS.

However the paths of integration of fig. 2a-c may not be used when the initial values in the RSs differ. In fact
the discontinuity introduced by the different initial values in the RS, when passing from one RS to the next, re-
quires the branch cut along the negative real axis. When there are poles in the negative real axis (m and u odd)
and in the RS the initial values are different a more detailed discussion is required which we postpone to an-
other study.
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Appendix B. The poles of the system function Z( p) defined in (2.1).

In this appendix we show that, when m and u are odd there is a pole in the negative real axis of at least one
RS. The poles of (A.1) in the Riemann sheets are found through the roots of the equation

prt T = exp(i(9 + 2hm)m [ u+ T 0 =

(B.1)
h=0,1,2..,u-1
where r = | pg and 6 is the argument of p.
The poles of (A.1) are m and obtained from
rt =1
(B.2)
exp(i(6 + 2hm)m [ u) = exp(in(l + 2k)) = -1
with k positive integer, which give
r=1/t
(B.3)
0 =1+ 2k)um/ m—-2hm.
The corresponding residues are then
(u/ mr)exp(i(2k + Dum(u/ m —1))
(B.4)
k=0,1,2,..,k,
Where £, is the largest integer in k;
ki <m—(m+u)/2u (B.5)

obtained from the condition that 6 be limited in the range from zero to the maximum value (2u—1)7 in the
Riemann sheet corresponding to & = u—1. Since m + u < 2uwe have k, =m —1.
If u and m are odd, then the following equation, obtained from (B.3) with 6 = (2 + 1),

A+2k)u=21+1)m (B.6)

with k and [ integer has solutions. In fact the set (u, m, (m — u) / 2)), is prime since a divider of (u, (m —u)/ 2)
or of (m, (u—m)/ 2) would also be a divider (#, m) which is a prime set. Then eq. (B.6) has solutions &, / and
there will be at least one pole on the negative real axis, which implies a zero frequency residue.

If u and m have opposite parity, the eq. (B.6) has no solutions because one side of (B.6) is always even and
the other one is always odd. Then there will be no poles on the negative real axis.
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