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Abstract

A porous flow model for magma migration from a deep source within a volcanic edifice is developed. The
model is based on the assumption that an isotropic and homogeneous system of fractures allows magma mi-
gration from one localized feeding dyke up to the surface of the volcano. The maximum level that magma can
reach within the volcano (i.e., the «free surface» of magma, where fluid pressure equals the atmospheric pres-
sure) is reproduced through a second-order perturbation approach to the non-linear equations governing the
migration of incompressible fluids through a porous medium. The perturbation parameter is found to depend
on the ratio of the volumic discharge rate at the source (m?s) divided by the product of the hydraulic conduc-
tivity of the medium (m/s) times the square of the source depth. The second-order corrections for the free sur-
face of Mt. Etna are found to be small but not negligible; from the comparison between first-order and sec-
ond-order free surfaces it appears that the former is higher near the summit, slightly lower at intermediate alti-
tudes and slightly higher far away from the axis of the volcano. Flank eruptions in the southern sector are
found to be located in regions where the topography is actually lower than the theoretical free surface of
magma. In this sector, modulations in the eruption site density correlate well with even minor differences be-
tween free surface and topography. In the northern and western sectors similar good fits are found, while the
NE rift and the eastern sector seem to require mechanisms or structures respectively favouring and inhibiting
magma migration.
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medium. Bonafede and Boschi (1992) reformu-
lated the porous flow model in order to cir-
cumvent objections raised by Wadge and Fran-
cis (1982); they employed a different scheme
of solution (perturbation approach) and pro-
posed a probabilistic interpretation for the
porous flow model and the free surface of
magma. According to Bonafede and Boschi
(1992) it is not the shape of a volcano that can
be reproduced by the free surface of magma,
since several factors (other than lava field em-
placements) control the topography (e.g.,
Williams and McBirney, 1979). The free sur-
face can be rather employed to describe the al-
titude reached, on the average, by magma pen-
etrating along different paths, for a given out-
put rate at the source.

The porous flow model emphasizes the role
of fluid pressure which drives the flow against
viscous friction and gravity, thus determining
the maximum level attainable from the fluid
within an isotropic and homogeneous perme-
able medium.

According to the previous considerations,
modeling magma dynamics within large volca-
noes in terms of a porous flow model does not
seem inappropriate, if the dimension and spac-
ing of fractures are small compared with the
characteristic dimension of the volcano, if the
fluid is Newtonian and the flow is laminar. In
such cases, fluid flow is directly proportional
to the pressure gradient along a dyke and in-
versely proportional to fluid viscosity, as pro-
vided by Darcy’s law in fluid saturated perme-
able media. Furthermore, different flank erup-
tions may be interpreted, in the context of
magma-driven crack propagation, as the result
of magma penetrating along several possible
paths starting from a main source. If we aver-
age the magma migration over several flank
eruptions, we expect the resulting behaviour to
be similar to that provided by Darcy’s flow
through a permeable rock matrix (this assump-
tion is equivalent to assessing that an average
over time may be statistically equivalent to an
average over all admissible system configura-
tions).

On Mt. Etna the assumptions made above
seem to be generally acceptable; several de-
tailed morpho-tectonic studies (e.g., Cristo-

folini et al., 1978, 1981; Lo Giudice et al.,
1982; Rasa, 1982) show that eruptive fractures
are widespread and generally related to a ten-
sional stress field inside the volcano. There are
however regions characterized by an anoma-
lous density of fractures, the most notable be-
ing the NE rift, coinciding with an ancient
buried caldera rim.

In the following we shall assume that a
point source of magma is buried within the
crust. This source simulates a location from
which several interconnected channels are as-
sumed to permit magma migration to the sur-
face when a sufficient over-pressure is avail-
able. We shall derive the solution governing
the transient evolution of the free surface of
magma, to second order in a perturbation ap-
proach.

2. Equations

The flow of a homogeneous and incom-
pressible fluid with density d and viscosity U,
subject to gravity g, through a solid (incom-
pressible) matrix characterized by permeability
k, is governed by Darcy’s law:

f=-KV®, 2.1)

where f is the volumetric flow rate, @ is the
piezometric head, and K is the hydraulic con-
ductivity, respectively defined as

K=—2 (2.2)

(p is the fluid pressure and z is the vertical co-
ordinate, positive upwards). The locus where
the fluid pressure equals the atmospheric pres-
sure within the porous matrix is called «free
surface» (phreatic surface, in hydrology). We
shall take the atmospheric pressure as the ref-
erence for fluid pressure, so that fluid pressure
is assumed to vanish at the free surface. The
depth of the free surface is then characterized
by the implicit equation:

O y,z,0)=2z = z=Z(xy, 0. (2.3)

1034



A porous flow model of flank eruptions on Mt. Etna: second-order perturbation theory

Mass conservation for an uncompressible fluid
furthermore requires that, away from sorces or
sinks of fluid,

VO = 0. 24

In order to complete the specification of the
problem, boundary conditions must be speci-
fied. The free surface condition can be stated
as a non-linear equation for ® over the surface
2=2Z(x,y, 1) (eg., Bear, 1976, case without
accretion):

od 00 \2 (90 \2 (302 0P
=K 2] (L) [ L2)] - 92

"o [(8x)+(8y)+(az)J 0z
on z=Z(x,y, 1), 2.5)

where n, is the effective porosity (total poros-
ity minus unconnected porosity). This condi-
tion is assigned over the free surface z=
=Z(x, y, t), which is unknown g priori. Once a
solution is known for the potential @, the free
surface z = Z(x, y, f) can be obtained from the
condition (2.3).

The unconfined flow problem is character-
ized by redundant boundary conditions — eq.
(2.3) and the non-linear condition (2.5) - to
be imposed on a surface which is a priori
unknown. Accordingly, the flow domain is a
priori unknown and the problem cannot be
tackled employing standard numerical meth-
ods. Exact analytical solutions are generally
unavailable and resort must be made to meth-
ods of approximations.

Bonafede and Boschi (1992) assume that a
point-source of fluid is present for time ¢ > 0,
at depth z=~z, in x = ¥ =0, emitting a con-
stant upward flow rate of 2 £g cubic meters of
fluid per unit time, across an otherwise imper-
vious basement: this last condition imposes the
additional boundary condition
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The following non-dimensional quantities can
be profitably employed

(x Y z _ Nx? + 2 _ 2

r= Z_O’Z_O’Z_O s R 7 77—2—0,
(2.6)

Kt q ()] VA

T—nezo, Q—Fzg, (D—Z—O, C_Z‘o

to denote, respectively, the position vector,
horizontal distance, vertical coordinate, time,
non-dimensional emission rate, hydraulic po-
tential and free surface.

The mass conservation eq. (2.4) can be
rewritten (taking the source in r = ¥, into ac-
count), as

V2o=—4r08@ -r,).

As described in Bear (1976), the perturbation
approach of Polubarinova-Kochina (1962) is
employed in the following, expanding ¢ and {
with respect to a perturbation parameter, which
in the present case can be identified as 0 (see
also Bonafede and Boschi, 1992):

POy, D)= (x, ., 2, D+ Q@ (x, y, 7, 1) +

+Q2<02 (xa Vs 2, t)+ O(Q3)7
2.7

g(xa VA CO (x’ D+ le (x, Y, t)+
+Q2§2 (-xv Y, t)+ O(Q3),

where o (Q*) denotes terms of order greater
than 2, which will be neglected. Inserting (2.7)
into (2.4) and (2.5) and equating equal powers
of O, we obtain a sequence of «sub-problems»,
in which the equations at order » require the
knowledge of solutions at order n—1 (e.g.,
Bear, 1976).

As in Bonafede and Boschi (1992), we im-
pose the initial condition {=0 at 7=0; this
will be assumed also as the zero-order free sur-
face {, = 0. Accordingly, @ also vanishes, and
the zero-order equations are identically satis-
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fied. The first-order «sub-problem» is then
Vi, =—4n8(r—ry),
in -1<n<0, pz0 if n=-1,

%:-9& n:O’
ot an
(2.8)
a4 2% 0 on ne-i,
on
0=0 at 7=0,
C1=(p1 on 77=0»

where 8(r —r,) is Dirac’s delta function and r
is the source non-dimensional position r; =
= (0, 0, —1). The second-order corrections are
governed by:

Vi, =0, -1<n<0,
0 0
92 %% _ipm D on =0,
T  dn

0
and 22 -0 on n=-1 2.9)

on
¢,=0 at 7=0

0
C2=(018—(P1+(P2 on n=0,

n
where
0 0Q a(P1> 2

( ’ ) = -\ = " = V
(P, n, D=0 an( an 37 +(Vo)

The first-order correction was obtained by
Bonafede and Boschi (1992) as:

0. D= [ Jo o)
0 (2.10)

[ e a6 55 e

where J, is the Bessel function and

e’ 2 _
A 5,7 = 1— e sTtanh s .
D 1—e™ [ l+e™

This solution is employed in the next section to
compute second-order corrections.

3. Second-order corrections to the free
surface

In Bonafede and Boschi (1992) the free
surface of magma for Mt. Etna was computed
employing a first-order perturbation approach.
In the present section the first-order solution
will be employed in an iterative scheme of so-
lution to obtain second-order corrections
& (p, 7) to the free surface.

The solution of the second-order problem
(2.9) above can be obtained employing the
Green function technique (Dagan, 1966). The
cumbersome computational details are omitted
(see Cenni, 1996). The formal solution for
& (p, 7) under the initial and boundary condi-
tions specified above, is

oo +oo

0 (p, 0, D) = Ids [ ap _[:)dr'-
0 0

Ao (sp)Jo (sp) e 0 0, T- )

The function £ (p, 7) is given after eq. (2.9) in
terms of the first-order integral solution for ¢;.
Accordingly, the formal solution is given in
terms of a five-dimensional integral. Only two
integrations can be performed analytically; the
three remaining ones were performed numeri-
cally, after removing analytically the singular
terms, employing suitable integrations by parts.

The first- and second-order terms §; and {,
in the perturbation solution for the free surface
are shown in fig. 1a,b for a few values of the
non-dimensional time 7. The dimensional
height of the free surface, corrected to second
order, is given by

Z(p, T) =2 (Q5 + Q* &). (3.1

Clearly, the perturbation approach is justified
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First order correction

T=5 T=10_ =25 =50

Fig. 1a,b. Non-dimensional first-order (a) and sec-
ond-order (b) contributions to the free surface of a
fluid in the presence of a unit point source at depth.
The non-dimensional time 7 noted next to each
curve is defined in (2.6).
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Fig. 2. Comparison between the first-order (dashed)
and second-order (solid) free surfaces which provide
the best-fit to Mt. Etna topography along the erup-
tive segment of the SSE section. For the first-order
surface 7= 19, Q = 0.32, 7, = 4500 m, ho =400 m.
For the second-order surface 7 = 10, 0 = 0.22,
Zo = 5150 m, Ay = 200 m.
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only if Q < 1, when second-order corrections
are much less than first-order contributions.

4. Discussion of results

The free parameters Q, z, and 7 appearing in
the first-order approximation to the free sur-
face, Z =~ 0z, were determined by Bonafede
and Boschi (1992) through a least-squares fit
with the topography of Mt. Etna along the
S-SE sector, where eruptive activity is present
from the summit down to 500 m altitude. The
same technique is employed here for the sec-
ond-order approximation (3.1).

We searched for parameter values that mini-
mize the misfit function F2 along the S-SE
section of Mt. Etna:

N
F=y

i=1

w; (h;—[Z,— hol)
N

>

where w; is the weight associated with the j-th
point along the S-SE section, Z; is the height of
the free surface as given by the second-order
approximation (3.1), A; is the topographical al-
titude and Ay is the depth of the zero-order free
surface (z=0) below sea level. We assume
w; = 1 for points inside areas affected by erup-
tive activity (taken from Guest and Murray,
1979), w; = 0, otherwise.

Figure 2 shows the best-fit free surfaces as
computed from the first-order (dashed) and the
second-order (solid) solutions. Slight differ-
ences between the two solutions are limited to
the summit and to distal areas, where the first-
order free surface is higher than the second-
order one.

A remarkably good fit between the free sur-
face and the topography of the S-SE sector
(fig. 3a) is obtained for the following parame-
ter values:

7=10, 0=0.22, z,=5150 m, hy=200 m.

The comparison between the theoretical free
surface and several radial sections of M.
Etna is shown in fig. 3a-f. Along most sec-
tions, the comparison between the second-or-
der free surface and the topography generally
confirms the results obtained from the first-or-
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Fig. 3a-f. Comparison between the altitudes of best-fit second-order free surface (smooth line) and several
topographic sections of Mt. Etna. The density distribution (per 4 km?) of eruptive sites along the abscissas is
taken from Guest and Murray (1979) (scale on the right).
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der solution. It is worthwhile mentioning that
the best-fit value obtained for the source depth
(29 +hy=5350 m) fits remarkably well with
the depth of the Iblean platform below M.
Etna, inferred as ~ 5000 m from seismic and
structural studies (e.g., Borgia et al., 1992).
Figure 4a,b shows the detailed fracture pat-
terns for two recent eruptions (in 1981 and
1928) characterized by extended fractures and
large lava flows that threatened or destroyed
villages at the base of the volcanic edifice
(e.g., Romano, 1982; Romano and Sturiale,

4000

1982; Chester et al., 1985). Figure 4a displays
the 1981 fracture system which threatened the
city of Randazzo. The lowest eruptive fissure
outpoured a large flow of low-viscosity lava
which in a few days reached the base of the
volcanic edifice. When the lowest fracture seg-
ment became active, the flow from the upper
segments ceased: this agrees with the present
model, since in this way magma found an eas-
ier path to the surface, against gravity and vis-
cous forces. It is to be mentioned that the pre-
vious lava flow in this area took place in 1536,
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Fig. 4a,b. The 1981 (a) and the 1928 (b) fracture systems are shown in connection with the altitude of the

free surface and the topography.
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Fig. 5. The difference between the best-fit second-order free surface (computed along the SSE section) and
Mt. Etna topography is shown in false colours. Over red and orange areas the free surface is higher than

topography; over green and blue areas, it is lower.

showing that hazard estimates based on histori-
cal data spanning over the last 300-400 years
(as they currently are) must be considered un-
reliable. Figure 4b shows the 1928 fracture
system whose lava flow destroyed the town of
Mascali and nearly reached the coast in the

eastern sector. Similar lava flows took place in
the low eastern flank several centuries ago, but
recent flows cover the older ones hindering the
identification of their feeder dyke.

It is to be noted that parameter values ob-
tained from the second-order best-fit differ sig-
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nificantly from values which would be ob-
tained from the first-order solution (7= 19,
0=0.32, zp=4500 m, hy=400 m). Accord-
ingly, the lower value obtained for Q in the
second-order evaluation reinforces the applica-
bility of the present perturbation approach. In
spite of the differences between first-order and
second-order estimates, the free surfaces ap-
pear very similar to each other and both indi-
cate a source depth coinciding with the top of
the Iblean basement plateau.

Figure 5 plots the difference (in metres) be-
tween the second-order free surface (obtained
from the best fit along the SSE section) and
the topography of Mt. Etna (positive values in
red, negative values in blue). According to
model assumptions, red areas can be inter-
preted as areas where magma can reach the
surface if a fracture develops which connects
the source region to the surface. A marked
asymmetry is present between the NS and the
EW sections, which is clearly related to the NS
trending (approximately) rift zone. While high-
altitude regions involved by eruptions are gen-
erally red (apart from the already mentioned
NE rift), wide red areas are present at low alti-
tudes in sectors where flank eruptions did not
take place in the last few centuries (e.g., in the
eastern sector, where eruptive activity is
mostly confined above 1750 m altitude).

The map shows that the actual distribution
of flank eruptions is mostly governed by the
heterogeneous distribution of fracture Zones,
more than by magma flow dynamics. How-
ever, if a fracture event, (determined, e.g., by
tectonic forces or by gravity instability) were
to open in orange-red areas, magma pressure at
the source is predicted to be sufficient to pro-
duce significant lava flows.

In particular, the map confirms that the SE
sector of Mt. Etna is particularly dangerous,
the free surface being always very close to the
topography down to low altitudes: accordingly,
if a fracture opens which connects the plumb-
ing system to the surface, magma has enough
pressure to reach the surface. Lateral eruptions
on the western sector can be similarly inter-
preted above altitude 1200 m. Similarly, the
map confirms that low-altitude flank eruptions
are possible in the northern sector, as proved
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by the 1981 eruption discussed above. A region
of major concern is however the eastern sector
where the topography is systematically lower
than the free surface, yet eruptions in recent
centuries were mostly confined above altitude
1750 m, within the Valle del Bove caldera.

5. Conclusions

Admittedly, the model presented above
is highly speculative: Mt. Etna is considered
an isotropic homogeneous medium in which
the complex geological setting is mostly ig-
nored and attention is focussed on magma flow
dynamics. This is not a drawback, however,
since the discrepancy between model predic-
tion and observations can lead us to better dis-
criminate between structures that drive volcano
evolution, which may disagree with model pre-
diction (e.g., the NE rift) from structures that
are induced by volcano dynamics, which are
compatible with the model (such as the frac-
ture system of the 1981 eruption).

The role of the large-scale (regional) stress
field has been similarly ignored: for instance,
standard solutions in the framework of fracture
mechanics show that dyke opening is governed
by the excess of magma pressure (inside) with
respect to the normal stress acting in the host
rock before dyke emplacement; accordingly, a
vertical dyke striking in the direction of the
compressive local stress is acted on by greater
overpressure than a dyke striking in the ortho-
gonal direction. The NS elongated rift zone on
Mt. Etna is in accordance with these consid-
erations since several morphotectonic and seis-
mic studies show that the regional stress axes
in North-Eastern Sicily are oriented NS (com-
pression) and EW (tension) (e.g., Caccamo et
al., 1997; Cocina er al., 1997).

Two further assumptions built in the model
are that the source is point-like and has a fixed
location in time. The latter restriction is taken
into account since some authors find evidence
of a slow westward migration of magmatic ac-
tivity on Mt. Etna (e.g., Gresta et al., 1990;
Borgia et al., 1992). Both restrictions might be
easily overcome, at least in principle, by build-
ing an extended or a moving source through
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the superposition of several, suitably located,
point sources.

From the present speculative model how-
ever, we were able to explain many features
of Mt. Etna topography and eruption distribu-
tion in the southern and northern sectors with-
out invoking any discontinuity in local struc-
tural properties (faults, rifts, rock inhomo-
geneities etc.) or any pre-established path for
magma migration (local fracture zones, multi-
ple open conduits, secondary magma chambers
etc.). The role of the regional stress field and
the presence of extended sources will be con-
sidered in a separate paper.
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