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Physical modelling of lava flows
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Abstract
Lava flows are not only a fascinating scientific problem, involving many branches of continuum mechanics
and thermodynamics, but are natural events having a strong social impact. A reliable evaluation of volcanic

tails a characteristic, non-Newtonian behaviour of lava flows, which is emphasized by the fact that the rheo-
logical parameters are strongly temperature dependent and are therefore affected by the progressive cooling of

Key words lava flows — rheology — non-Newto- flow, most danger derives from radiant heat
nian fluids — volcanic hazard due to high lava temperatures, from degassing
of lava and from transient processes, such
as channel overflows, levée instability and

1. Introduction avalanching of surface debris (Kilburn and
Guest, 1993).

Aetnaeos apices solo cognoscere visu, / non Since lava flows may have a remarkable so-
aditu temptare licet. Pars cetera Jrondet / ar- cial and economic impact, they have recently
boribus, teritur nullo cultore cacumen. So ad- stimulated a strong demand for mitigation of
monished the Latin poet Claudianus, with ref- e connected risk. This need has to face with
erence to the volcanic hazard of Mt. Etna the fact that, up to recent times, lava flows
and the difficulty of land use for cultivation or were mainly studied from the morphological
pasture. Apart from seismic activity, the major and petrological points of view, and much less
threat to human life and property is brought by from the physical one. This has implied on
lava flows. Even if flows are relatively slow, one hand a scarcity of data on the physical
they may be fed long enough to threaten towns quantities characterizing moving lava flows: on
and property by direct invasion and engulf-  (he other, the absence of theoretical models al-
ment. Phenomena such as the formation of lava lowing predictions of the dynamics of lava
tubes and the opening of secondary vents allow flows and a more effective defence against
the flows to cover much longer distances than them. Up to ten years ago, the scientific litera-
it would be pOSSible OtherWise, thus increasing ture Concerning lava flow modeuing was lim-

volcanic hazard. In the proximity of a lava ited to very few contributions (Johnson, 1970;
Danes, 1972; Hulme, 1974, 1982: Huppert,

. o ' 1982; Park and Iversen, 1984; Dragoni et al.,
Mailing address: Prof. Michele Dragoni, Dipartimento 1986: Pieri and Baloga 1986).

di Geologia e Geofisica, Universita di Bari, Via E. X K .
Orabona 4, 70125 Bari, Italy; e-mail: dragoni@ibogfs. Lava is a multiphase and chemically hetero-
cineca.it geneous system, which behaves as a non-New-

1179




Michele Dragoni

tonian fluid and, during its effusion, is subject
to a cooling process which continuously
changes its physical properties. The most im-
portant factors controlling the area likely to be
covered by a given flow are topography, lava
rheology and total erupted volume. Topogra-
phy can be known in advance, while rheology
requires in situ measurements during the erup-
tion. As to the total erupted volume, it can be
by no means predicted at present, due to our
relative ignorance of the feeding mechanisms
of volcanoes. Moreover, estimating how fast
the threatened area will be inundated requires
information about the effusion rate. In spite of
these limits, it would be a great achievement if
we could predict the evolution of a lava flow
assuming a constant effusion rate and evaluate
the connected risk as a function of the duration
of eruption. This requires the solution of the
appropriate thermal, rheological and dynamical
equations and is the aim of physical modelling.
A good knowledge of the behaviour of lava is
also crucial when attempts to halt or divert a
flow are necessary for civil defence purposes
(e.g., Barberi et al., 1992).

2. Rheology of lava

The rheological properties of lava are of
major importance in determining the dynamics
of lava flows. Lava flows show great variations
in size, shape and surface features, but in all
cases they have a characteristic behaviour
which is a consequence of the rheological
properties of lava at the high temperatures at
which effusion takes place. It is observed that
lava flows construct their own levées and come
to rest on a slope when the supply of fresh lava
ceases. Flow fronts are often high and steep,
although unconfined by topographic features.
In spite of the fluid-like aspect of flowing lava,
objects thrown onto the flow surface do not al-
ways sink nor remain buoyant, even if their
density is greater than the density of lava, but
can be supported as if they were on a rigid sur-
face. This behaviour cannot be ascribed to so-
lidification of lava due to cooling, which can
limit the motion of the flow front to a certain
distance from the effusion vent, but cannot pre-

vent either lateral or downhill movement up-
stream.

The transition from liquid to solid lava oc-
curs within a temperature interval delimited by
the liquidus and the solidus temperatures,
which depend on the lava’s chemical composi-
tion. Since lavas erupt at temperatures close to
the liquidus and cool during emplacement, the
temperatures of active flows usually lie in the
range between liquidus and solidus. Laboratory
experiments show that igneous melts behave as
Newtonian fluids above their liquidus tempera-
ture. Below the liquidus, lavas are instead non-
Newtonian (Shaw et al., 1968; Pinkerton and
Sparks, 1978; McBirney and Murase, 1984;
Dingwell et al., 1993). Many complex fluids,
such as suspensions and emulsions, are non-
Newtonian. The reason for this change in lava
behaviour below the liquidus is the presence of
dispersed crystals and gas bubbles, as well as
some polymerization in the silicate melt. The
non-Newtonian behaviour has many implica-
tions both on flow dynamics and morphology.

3. Constitutive equations

A constitutive equation is an equation relat-
ing stress and its time derivatives with strain
and its time derivatives. For a viscous fluid,
the constitutive equation is a relation between
viscous stress ¢ and strain rate é:

i =1ij (€) (3.1
where f;; denotes a generic tensorial function.

If the components of ¢ are linear functions of
the components of ¢, (3.1) can be written as

0;; = Vijko €xs (3.2)
where V;;;, is the viscosity tensor: in this case
the fluid is called Newtonian. If the fluid is
isotropic and incompressible, V;;,, reduces to a

single coefficient, the viscosity 7, and (3.2)
can be written as

0, =21 éy). (3.3)

If f;; is instead a generic function, the fluid is
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called non-Newtonian and a unique viscosity
cannot be defined (Skelland, 1967; Bohme,
1987). If a viscosity estimate is made on a non-
Newtonian fluid, as if it were Newtonian, an
apparent viscosity is obtained, depending on
the strain rate involved. Many non-Newtonian
fluids can be described by a constitutive equa-
tion of the form

o=7+2n¢" (34

where o denotes any component of viscous
stress and ¢ the corresponding component of
strain rate, while 7, 7 and » are constants. If
7=0and 7 < 1, the fluid is called pseudoplastic.
The majority of non-Newtonian fluids are
pseudoplastic. In a pseudoplastic fluid, the ap-
parent viscosity decreases with increasing
strain rate. The opposite behaviour is found in
dilatant fluids, where the apparent viscosity in-
creases with increasing strain rate. These fluids
can be again described by (3.4) with 7= 0 and
n > 1. A further possibility is that a fluid has a
yield stress, i.e. it is deformed only if a mini-
mum shear stress is exceeded. Such a be-
haviour is described by (3.4) with 7 # 0. The
existence of a yield stress can be ascribed to an
internal structure which is capable of prevent-
ing movement for values of shear stress less
than the yield value. Above this value, the in-
ternal structure collapses, allowing shearing
movement to occur. There are many examples
of fluids with a yield stress: sand in water, oil
well drilling muds, coal, cement, margarine,
grease, toothpaste, soap slurries and others.
The simplest fluid with a yield stress is the
Bingham fluid, which is characterized by two
parameters, a yield stress T and a (plastic) vis-
cosity 7). Its constitutive equation is given by
(3.4) with 7# 0 and n = 1. The Bingham fluid
can be considered as an approximation to a
pseudoplastic fluid characterized by a high vis-
cosity at very small shear rates. Robson (1967)
first proposed that lava has an approximately
Bingham rheological behaviour, in order to ex-
plain a relation found by Walker (1967) be-
tween flow thickness and ground slope among
Etnean lavas. Since lavas are subject to a cool-
ing process after effusion, the fact that viscos-
ity and yield stress are strongly temperature

dependent has a remarkable effect on lava rhe-
ology and dynamics. The constitutive equation
of the Bingham fluid can be better written as

. 170, lol<t
6= — (3.5)
2n lo-1, |o|>r1.

A consequence of (3.5) is that regions of the
fluid may exist where the maximum shear
StIess Op,x is smaller than T and no deforma-
tion takes place. These regions are called rhe
plug and are defined by the condition

Oax < T (3.6)

Since 7 increases with decreasing temperature,
the size of the plug increases as the flow ad-
vances. If this region is in contact with the
ground, it cannot move and forms the levées of
the flow. If instead it is surrounded by flowing
lava, the plug is carried passively by the lava,
as if it were solid. The plug may become a sig-
nificant fraction of the flow thickness at distal
parts of the flow and may finally completely
stop the flow itself.

The assumption of Bingham rheology has
proven to be useful for the interpretation of
field observations and has been extensively
used in flow modelling. The great advantage of
using the Bingham fluid in modelling lava
flows is that the stress-strain rate relation is
linear when shear stress is greater than 7.
Therefore the equations of motion for a New-
tonian fluid can still be used, with a great sim-
plification of mathematics.

4. Equations of motion
Let us consider a viscous liquid in the grav-
ity field. The equation of motion can be written

as (e.g., Batchelor, 1967; Landau and LifSits,
1971)

POi+vivj)==p ;+ Cij,j+ P8 (4.1)

where p is the density, v, is the velocity, p is
the pressure, g; is the acceleration of gravity
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and 0}, is the viscous stress. The dot indicates a
partial derivative with respect to time. Some
simplifying assumptions can be introduced in
(4.1). If the liquid is Newtonian, isotropic and
incompressible, the viscous stress is given by
(3.3), where the strain rate can be expressed in
terms of velocity as

L itV - 4.2)

Under the assumption of homogeneity and in-
compressibility (p = const), the continuity
equation reads

Viij

=0. 4.3)
Introducing (3.3) into (4.1) and using (4.2) and
(4.3), one obtains

pUi+viv ;)=
==p i+ j+v,)+Nv ;;+pg. (“44)

If the liquid is homogeneous and isothermal,
viscosity is uniform (17 = const) and (4.4) re-
duces to the well-known Navier-Stokes equa-
tion

POi+vvij)=—p i+ Nvj+pg. ((45)

5. Heat equations

Thermal processes have a primary role in
the dynamics of lava flows. From the time
when lava effusion starts, a complex thermal
interaction begins with the environment, pro-
ducing the gradual cooling of lava. Thermal
exchange processes include conduction toward
the ground and the atmosphere, radiation into
the atmosphere and convection in the atmo-
sphere above the flow. Heat is produced in the
flow as a result of viscous dissipation and la-
tent heat of crystallization. Thermal and rheo-
logical boundary layers are formed progres-
sively and thermically insulate an inner core of
fluid lava, slowing down the cooling process.
The temperature distribution in the lava has a
fundamental effect on the rheology of lava

which, in turn, has an effect on the dynamics,
determining the duration and length of a lava
flow.

If temperature is not uniform, viscosity and
yield stress cannot be considered uniform ei-
ther, because they are strongly temperature de-
pendent. If viscosity is not uniform, the equa-
tion of motion is no longer the Navier-Stokes
equation, but the more general equation (4.4)
including the viscosity gradient 7 ;. If the lig-
uid is incompressible, the equation governing
heat transfer is the following:

pc, (T+ViT,i)=“]i,i+ o;vi;+H (5.1)

where ¢, is the specific heat at constant pres-
sure, T is the absolute temperature, g; is the
heat flow density and H is a volumetric heat
production. The terms on the left hand side of
(5.1) are the total derivative of temperature,
multiplied by pc,, while the first and the sec-
ond term on the right hand side are respec-
tively the heat flow and the viscous dissipation
per unit volume. The heat production indicated
by H includes the thermal effect of progressive
crystallization in the liquid phase:

H=pL ¢ (5.2)

where L is the latent heat of solidification per
unit mass and ¢ is the crystallization degree.
The heat flow due to conduction is given by
Fourier’s law

gi=—kT,; (5.3)

where x is the thermal conductivity, while ra-
diation involves a heat flow normal to the free
surface of the lava flow, which has a magni-
tude given by Stefan’s law:

q = esT* (5.4)

where € is the emissivity of lava and s is the
Stefan’s constant. In a lava flow, the dominant
process of heat exchange is radiation into the
atmosphere, owing to the dependence on T,
at least as long as T is sufficiently high. Heat
production by viscous dissipation and release
of latent heat are usually negligible. Under
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these assumptions, if one considers a steady-
state motion (7 = 0), (5.1) reduces to

peviT i =~gq; ;. (5.5)
Solutions of (5.5) can be found for a thermally
homogeneous or stratified liquid layer flowing
dowslope (Park and Iversen, 1984; Pieri and
Baloga, 1986, Crisp and Baloga, 1990; Drago-
ni and Tallarico, 1994).

6. Model assumptions

An objective of models is to disentangle the
close net of relations linking the many physical
quantities controlling the dynamics of lava
flows. Considering the complexity of the prob-
lem, single aspects of lava flows have been
studied separately, allowing simplifying as-
sumptions to be introduced in the models. The
evolution of a typical lava flow on Etna can be
divided into the following stages. Lava erupt-
ing from a fissure initially spreads widely as a
thin sheet and soon develops marginal levées,
concentrating into a channel. The channel al-
lows lava to flow for progressively greater dis-
tances from the vent and forms most of the
flow extent. Distinct levée structures disappear
in the frontal zone, where a relatively thick and
cool crust encloses a hot core of fluid lava.

Let us consider a flow model made of a
Bingham liquid flowing on a solid surface in
the gravity field and introduce a rectangular
coordinate system with the x-axis directed
downslope and the z-axis directed upward per-
pendicularly to the surface. A series of com-
mon assumptions are now examined.

1) Newtonian, isotropic, incompressible
liguid — The liquid can be assumed as Newto-
nian, in view of using the equation of motion
(4.5) in connection with Bingham rheology.
Isotropy is a common assumption for most
liquids. Incompressibility is a reasonable ap-
proximation, unless great thicknesses of lava
are considered, as in lava domes, in which case
lava may show a small effective compressibil-
ity due to the presence of gas bubbles (Jaupart,
1991).
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2) Homogeneous liquid — Liquid lava con-
tains a variable quantity of solid crystals and
gas bubbles. This complication is usually ne-
glected as concerns its effect on density, vis-
cosity and thermal conductivity, for which av-
erage values are considered.

3) Isothermal liquid — In a homogeneous
fluid, a viscosity gradient N, ; may derive from
a nonuniform temperature distribution. How-
ever, the temperature gradient along a lava
flow is small: once the crust has formed, the
heat loss is minimal owing to the insulating ef-
fect of the crust itself. Therefore, the change in
viscosity 77, is also slow. The vertical viscos-
ity gradient 1 . may reach significant values
within the flow, but they are mainly confined
to the thermal boundary layer which develops
at the surface of the flow, where the tempera-
ture gradient is highest; deeper in the flow,
temperature can be considered constant to a
good approximation (e.g., Archambault and
Tanguy, 1976). Since the thermal boundary
layer is always much thinner than the velocity
boundary layer (the plug), the highest values of
1. . take place within the plug: therefore, ne-
glecting 71 . does not have a large effect on
flow dynamics. Isothermal models of lava
flows may be a reasonable approximation in
describing a limited segment of the flow,
where the temperature of the inner flowing
lava can be considered uniform. This approxi-
mation can be also employed for locally
isothermal models, where a slow temperature
variation is allowed along the flow under the
assumption of thermal equilibrium (Dragoni,
1989). In this case one can neglect 1 ., but
not the dependence of n on x through tem-
perature.

Under assumptions 1 to 3, the equation of
motion is the Navier-Stokes equation (4.5).

4) Channel flow — Flow is assumed to oc-
cur between solid levées. This assumption can
be applied when considering flow well behind
the front, where levées are cooler and have a
higher yield stress than fresh lava flowing be-
tween them. Of course levée formation and
processes at the flow front cannot be consid-
ered.
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5) Steady-state motion — This assumption,
implying v; in the equation of motion, excludes
the description of any transient phenomena,
due to changes in conditions at the eruption
vent or along the flow.

6) Small Reynolds number — Since lavas are
very viscous liquids and flow velocities are rel-
atively small, in many cases the condition R <« 1
holds, where R is the Reynolds number. It fol-
lows that the nonlinear term pv; v; ; in (4.5) is
negligible wih respect to the viscous term nv;
and can be omitted. The motion is laminar.

Under assumptions 1 to 6, the Navier-Stokes
equation reduces to

\Ji

—p,,-+1”]vi’jj+pg,-=0. (6'1)

7) Constant flow rate — Flow rate at any
given point of a lava flow is strictly linked to
the effusion rate at the vent, which can be

fairly constant for relatively long time spans.

The mass flow rate m at a given cross section S
of a flow is calculated as

m=p va (v, 2)dydz. (6.2)

8) Uniform slope angle — The liquid flows
on an inclined plane with slope ¢ = const.

9) Uniform velocity — The flow is confined
in a straight channel with fixed, parallel levées.
Velocity has only one nonvanishing compo-
nent v,, having uniform magnitude. No lateral
spreading (v, = 0) and no thickness changes
(v, = 0) are allowed. If z = h(x, y) is the free
surface of the flow, this assumption implies
h =0 and h , = 0. Of course the assumption
is not valid at the flow front, where v, can be
of the same order as v, and the rapid decrease
of flow thickness produces a pressure gradi-
ent

p,x=pPgh « (6.3)

which is responsible for the advance of the

front, in addition to the gravity body force.
Assumptions 7 to 9 are closely linked to-

gether, since a change in flow thickness can be

produced by changes in flow rate or slope an-
gle, as well as in viscosity or yield stress. Such
assumptions can be dropped without compli-
cating the equations of motion if one assumes
that downstream changes in flow thickness are
very slow, as usually happens. In this case,
v, < v, with

v, = v h L. (6.4)

At the same time, v, can be assumed to change
very slowly along the flow, so that v, , can be
neglected with respect to v, ,, and v, ,.

Under assumptions 1 to 10, the Navier-Stokes
equation, separated in its components, reads

NV yy+ Vy, ;) +pg sin 00 =0 (6.5a)

p.;+pg cos a=0. (6.5b)

10) Infinitely wide liquid layer — This as-
sumption leads to a two-dimensional model,
where velocity depends only on one coordi-
nate: depth z within the flow. The liquid flows
in the x-direction, while no changes in the flow
are considered in the y-direction. This model
neglects friction at the levées and may be ap-
propriate to low aspect ratio flows. Equation
(6.5a) reduces to

NVy .+ pg sin a=0. (6.6)

This is an extremely simplified model, which
can however reproduce some gross features of
observed lava flows. If one assumes a flow rate
and an initial temperature of the liquid at the
eruption vent, the temperature decrease due to
heat radiation and the consequent change in the
rheological parameters can be computed along
the flow. The equations of motion can be
solved in the approximation of slow downslope
change in the flow parameters, yielding flow
thickness and velocity as functions of the dis-
tance from the eruption vent. Such models al-
lowed a first estimate of the sensitivity of flow
dynamics to changes in the initial conditions,
ground slope and rheological parameters (Park
and Iversen, 1984; Dragoni, 1989; Ishihara
et al., 1989).
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A crucial role in the solution of the equa-
tions is played by boundary conditions. At the
free surface of the flow z = h, boundary condi-
tions prescribe the vanishing of shear stress,
while normal stress is equal to — Do, Where p; is
the atmospheric pressure. The boundary condi-
tion at the contact with solid surfaces (ground
and levées) is vanishing of velocity. The bound-
ary condition at the interface with the plug is
Omax = 7. A complication is that the continuous
change in the size of the plug introduces a
moving boundary in the problem.

7. Flow models

In this framework, some aspects of lava
flow behaviour have been investigated. A re-
view was given in Dragoni (1993). Recent con-
tributions have regarded a better definition of
lava rheology and a study of the physical pro-
cesses producing the formation of lava tubes
and the opening of secondary vents.

Since the effusion temperatures of lavas are
usually close to the liquidus, the cooling of
lava is accompanied by progressive crystalliza-
tion of the different mineral components.
Therefore lava can be considered a suspension
of solid crystals in a liquid phase. In a study of
lava rheology, the presence of crystals cannot
be neglected, because it is responsible for the
non-Newtonian behaviour. Both lava viscosity
and yield stress can be expressed as functions
of the crystallization degree ¢, which is in turn
a function of temperature (Dragoni and Tal-
larico, 1994). Experimental data and theoreti-
cal considerations indicate that the yield stress
is zero at the liquidus temperature and reaches
a limit value when crystallization saturates
(Chester er al., 1985). It is interesting that the
increasing crystallization has two opposing ef-
fects: it produces an increase in viscosity and
yield stress at the same time. But the increase
in yield stress controls the cooling of the flow,
because it produces a thicker plug, makes the
heat loss slower and keeps the internal temper-
ature high, thus opposing the viscosity in-
crease. Thus lava flows are remarkably af-
fected by the dependence of yield stress on
temperature.
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The establishment of a channel is the
premise for the development of a lava tube
(Peterson et al., 1994). Due to the heat loss
into the atmosphere, a crust is gradually
formed on the upper surface of the flow and
may eventually weld to the channel levées. A
model for tube formation has been proposed
under the assumption that the tube is formed
when such a crust is sufficiently thick to resist
the drag of the underlying flow and to sustain
itself under its own weight (Dragoni et al.,
1995). The minimum thickness of the crust sat-
isfying such conditions depends on the tensile
strength and shear strength of the crust itself. If
one assumes that the growth of the crust pro-
duces a downflow linear increase in the shear
stress at the interface between flowing lava and
the crust, the distance can be evaluated be-
tween the eruption vent and the point where
the tube is formed. If the flow rate is constant,
the thickness of the flow increases as the crust
fragments grow and weld to each other, and
the velocity of the crust decreases to zero.
Once the lava tube is formed, the initial flow
rate can be achieved by a flow thickness
smaller than the vertical size of the tube, with
the same viscous dissipation: this may explain
why, under steady-state conditions, the lava
level inside a tube is frequently lower than the
roof of the tube itself.

During eruptions on Etna, it has often been
observed that the front of a stationary lava
flow breaks and the inner fluid lava pours out
giving rise to a new flow (e. 8., Pinkerton and
Sparks, 1976). This phenomenon is often con-
nected with lava tubes. The opening in the
front is commonly called an ephemeral vent,
since the flow originating from it often has a
reduced duration and length. Such vents may
form silently in a few minutes and the rela-
tively high velocity of escaping lava may be a
danger for people in the neighbourhood. The
opening of ephemeral vents in the solid front
of a lava flow has been studied considering the
front as a viscoelastic shell which is deformed
by the pressure exerted on it by the inner fluid
lava (Dragoni and Tallarico, 1996). The vent
opens when normal stress in the front over-
comes the tensile strength of solid lava. As the
front cools, the isothermal surface at the



Michele Dragoni

solidus temperature deepens into the lava body
and the crust thickness increases. However the
thermal effect is negligible, if the timescale for
the opening of ephemeral vents is in the order
of a few days after the front has stopped, as is
often observed.

8. Final remarks

In principle, a physical model should pro-
vide the evolution of a lava flow as a function
of time on the basis of initial and boundary
conditions. Initial conditions include effusion
rate, temperature and chemical composition at
the vent. Since lava is a multi-phase system,
the concentrations of different phases and their
chemical compositions should be known. Time
variations of conditions at the vent should be
taken into account. Boundary conditions in-
clude the physical properties and state of the
environment (ground and atmosphere). The
evolution of a flow is given by a set of coupled
equations, including continuity, dynamic, con-
stitutive, thermal and chemical equations. Den-
sity, rheological and thermal parameters must
be known in order to use the governing equa-
tions. Further equations relate such quantities
to temperature and chemical composition,
which change as functions of time and posi-
tion.

In spite of approximations, theoretical mod-
els already highlight some important aspects of
lava flow behaviour and many others are wait-
ing to be studied. The data collected so far on
active lavas appear to be broadly consistent
with model predictions, but the amount of data
is at present insufficient for a complete check
of theoretical predictions. Simultaneous mea-
surements of several quantities, such as flow
dimensions and velocity, temperature, viscosity
and yield stress, taken at different points in the
flow, are necessary for a comparison with
models.

On the basis of sound physical models, de-
terministic predictions of lava flows may be
feasible in the near future. This objective will
be achieved provided a coordinated research
on lava flows is carried out along three parallel
lines: 1) development of theoretical models;

2) in situ measurements during eruptions; 3)
laboratory experiments on lava samples at field
conditions. This strategy will make it possible
to develop numerical models allowing a real
time evaluation of volcanic hazard connected
with specific lava flows during an eruption and
the adoption of possible countermeasures. A
pre-eruption evaluation of volcanic hazard
from lava invasion requires the additional in-
formation on possible vent locations and
erupted volumes.
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