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The effect of arbitrarily
small rigidity on the free oscillations
of the Earth
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Abstract

The system of propagator equations for an elastic solid becomes singular as the shear modulus becomes van-
ishingly small. In computational applications there is severe loss of precision as the limit of zero shear modu-
lus is approached. The use of perturbation theory to address the effect of very small shear modulus, using the
fluid state as a basis, is unsatisfactory because certain phenomena, e.g., Rayleigh waves, cannot be repre-
sented. Two approximate methods are presented to account for the singular perturbation. Since most of the
Earth is nearly neutrally stratified, in which case the motion is nearly irrotational, one can impose the irrota-

as an infinitesimally thin, Massive, Elastic Interface (MEI). The boundary conditions across the MEI are dis-
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1. Introduction

There is some reason to believe that the top
of the inner core might be a «mushy zone»
with very low shear modulus and high attenua-
tion (Loper and Roberts, 1983; Tromp, 1995).
Also, there is recent evidence that the base of
the mantle, region D”, has regions of very low
shear modulus (Wen and Helmberger, 1998).
The presence of a low shear modulus poses a
challenging computational problem, for, as is
well known, the system of governing ODE be-
comes singular as the shear modulus vanishes.

In the following theoretical development the
notation of Dahlen and Tromp (1998, here-
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inafter referenced as DT) is used with only mi-
nor variations. According to DT (8.9.2) the
sixth order system of governing ODE is

U==2CT"Fr' U+ {CT'Frivs CIR
V=-0U+r'veLls
P=—4nGpU-(1+1)r'P+B
R=[-0’p—4pgr' + A-N-C'F)) 2 U +
+[8pgr™ —20(A-N-C'F?) 2 v
20-C'F)r'R+ & 's—(1+ 1)pr-1P+,(olél)
S=1Lpgr' ~2{(A-N-CF2 21—
—@’p+2Nr 2~ L2 (A= C'FY) 2y —
~{CFr'R-3r'S+ {prtp
B=-47G(+ Dpr'U+4nGlor' v+ (1-1)r'B

where *=1(I+1) (DT use k*= /(I + ).
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In (1.1) the two moduli of rigidity are L
and N. They are equal in an isotropic solid
(L=N=u). The system (1.1) is unaffected
by the limit N — 0 but it becomes singular as
L — 0. In this case it is customary to consider
that the solid has become an isotropic fluid
(L=N=u=0, A=C=F=x). The sixth-
order system (1.1) is replaced by a fourth-order
system for the fluid.

In order to retain the effect of finite but very
small rigidity one can use the fourth-order sys-
tem for a fluid and resort to perturbation theory
for the effect of the rigidity. Alternatively, one
can approximate (1.1) directly and avoid the
use of perturbation theory. In the subsequent
development two approximate methods are
presented; in the first, a transitional solid, one
in which Vxs =0, is introduced; in the sec-
ond, boundary conditions are derived for a
massive, elastic interface in which the rigidity
can become arbitrarily small.

2. The irrotational constraint

The equation for V in (1.1) is the site of
the singularity as L — 0. Given that the limit
L — 0 will almost always be attributed to a
fluid, one can consider imposing the conditions
V xs =0 on the displacement s. For spheroidal
motion the symbolic representation

s=UrY, (6, 9+ V'V, Y, (6,0 (2.1)
is used. Then

Vos=[Var (V={UNI T F % V)) Y, (6, ).
(2.2)

In a radially stratified fluid with bulk modulus
Kk the relation

2
Ves=-L K ¢xv)ves  @3)
w* pgr

shows that Vxs#0 unless N2= 0, where N?is
the squared Brunt-Viisild frequency. However
in most of the fluid earth it is true that N?is

very small. In addition, where N*>0 the pres-
ence of ®?in the denominator of (2.3) ensures
that | Vxs| < |V -5]| in the fluid earth. Conse-
quently, it is reasonable to impose the con-
straint Vxs =0 as L — 0. In this case the ex-
pression for V in (1.1) is replaced by

V=(rtu-rtv (2.4)

and the equation for S is omitted. The expres-
sion for S is (DT, 8.196)

S=L(V-r'v+&'U) (2.5)
which, with (2.4), becomes
S=2Lr" (LU-V). (2.6)

Thus, the sixth order system (1.1) becomes a
fifth order system. The equations for U, P and
B are unchanged. The term ('S in the equa-
tion for R becomes

&S =2LL (LU-V) 2.7)

and V is given by (2.4).

A solid in which L is much smaller than A,
C and F and which is governed by the five,
coupled, first order ODE for U, V, P, R and B,
is called a transitional solid.

3. Boundary conditions and minors

The boundary between a transitional solid
and a normal solid, governed by (1.1), has the
usual conditions of continuity for the six
scalars for displacement, traction and potential.
The irrotational constraint in the transitional
solid, which leads to the condition (2.6) for S,
requires that the three independent solutions of
(1.1) be combined to form two independent so-
lutions of the fifth order system. That is, the
condition

S—2Lr' (U-V)=0 (3.1)

which must be met on both sides of the bound-
ary, requires that the (6Xx3) system in the
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normal solid become a (5x2) system in the
transitional solid. In terms of minors the 20
third order minors of the normal solid are
translated into 10 second order minors of the
transitional solid. See Gomberg and Masters
(1988) and Woodhouse (1988) for discussion
of minor.

Let UVS denote a third-order minor of the
(6 x 3) system in which rows 1, 2, 3 are occu-
pied by the scalars U, V, § respectively, and let
UV be the like notation for the (5 x 2) system.
Then propagation of the solution from the nor-
mal solid to the transitional solid leads to the
following expressions at the boundary

UV = UVS, UP = UPS — AUVP,
UR = URS - AUVR, UB =-USB— AUVB,
VP = VPS— A{UVP, VR = VRS - ALUVR,
VB = -VSB - ALUVB, (3.2)
PR = PRS- A(UPR + AVPR,
PB = —PSB - A{UPB + AVPB,

RB = RSB — A{URB + AVRB

where A = 2Lr 7L

The conditions (3.2) would apply, for exam-
ple, in the inner core with a transitional solid
beneath the ICB.

Propagation of the solution from the transi-
tional solid to the normal solid requires that the
(5% 2) system become a (6 x 3) system as the
boundary is crossed. Since S=A({U-V) in
the transitional solid one cannot require conti-
nuity of all six scalars. One of them must be
discontinuous. Since the transitional solid is
nearly a fluid, it is reasonable to choose V
to be discontinuous, as it is at a fluid-solid
boundary. In this case the (5x 2) system is

augmented to become a (6 x 3) system as
follows

A U, 0
v, v, 1
P P 0
! : (3.3)
R, R, 0
AU -V AU,-V,) -4
. B, 0]

The 20 third order minors of the (6 x 3) system
(3.3) are related to the 10 second order minors
of the (5 x 2) system as follows

UVP = —UP, UVT = -UR, UVS = 0,

UVB = -UB, UPR =0,

UPS = —AUP, UPB = -0, URS = —AUR,
URB =0, USB = AUB,

VPR = PR, VPS = ~)\{UP, VPB = PB, (3.4)

VRS = —ALUR,
VRB = RB, VSB = A{UB, PRS = —APR,
PRB =0,
PSB = APB, RSB = JRB.

The conditions (3.4) would apply, for example,
at the base of the mantle with a transitional
solid above the CMB.

Equations (3.2) and (3.4) permit the solution
in terms of minors to be propagated in either
direction across the boundary between a nor-
mal solid and a transitional solid.

Assume that L =0 (A =0) in (3.2) and (3.4)
denotes a fluid. Then the second order minors
in (3.2), excluding those containing V, are the
correct ones for a fluid, and the third order mi-
nors in (3.4) are those derived from a fluid.
Note that in (3.4) the second order minors con-
taining V are absent.
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It remains to consider the boundary between
a fluid and a transitional solid. If the condition
S =0 is imposed, then (2.6) shows that {U =V
in the transitional solid at the boundary. To
propagate the solution from the fluid to the
transitional solid the minors are related as fol-
lows: minors in the transitional solid not con-
taining V are equal to those in the fluid. Those
containing V are related to the fluid minors:

UV=0, VP = (UP, VR = (UR, VB = {UB.
(3.5)

These conditions are valid, for example, at the
CMB with a transitional solid above it.

For the final case, propagation from the
transitional solid to the fluid, the V-minors are
ignored and the rest are continuous. This
would be the case, for example, at the ICB
with a transitional solid below it.

4. The massive, elastic interface

If the thickness of the region where L <
(A, C,F) is small compared to wavelengths
outside the region, then one can approximate
the region as a very thin interface with surface
mass density and surface elasticity. A very thin
interface is one within which U, V and P are
constant and across which there are jump dis-
continuities in R, S and B. In the case of
toroidal motion W is constant through the in-
terface and there is a jump in 7.

The jump conditions are easily derived via
Rayleigh’s principle (DT, 8.6.4 and 8.9). Let £
be the Lagrangian density. For a displacement
or potential scalar X the radial Euler-Lagrange
equation can be written

PALIIX — % (PALPX) = 0.

The traction or potential gradient scalars are
represented by —9L/0 X. The jump condition in
0L/0X is

. ro+ &2 .
[729.L/0 XTj= j PILRX dr.  (4.1)
ro— &2

In performing the integration in (4.1) X is con-

sidered to be constant within the very thin in-
terface.

For toroidal modes the Lagrangian density
for the interface is (DT, 8.191)

L= % (@p—Lr = (C= )N W (4.2)

Let
p=pe, L=Le N =Ne. 4.3)

The overbar thus denotes parameters of the inter-
face (mass per unit area, force per unit length).

In (4.1) for toroidal modes 0L/OW =-T
(DT, 8.99) and the jump in T is

ITT=[({*=2) N +Lry> — 0*p1W.  (4.4)

The interpretation of (4.4) is that the external
traction scalar 7 has a jump discontinuity across
the massive, elastic interface (MEI) at ry; the
MEI has displacement scalar W, surface density
p and surface elastic parameters L and N.

The virtue of using (4.4) as a boundary con-
dition for toroidal modes (along with [W]] =0
at an internal boundary) is that (4.4) is well be-
haved as either L — 0 or N — 0. In the limit
of a plane interface, {ry' =k, the horizontal
wave number. As ry — oo (4.4) becomes

7T =Nk - w?*p) W. (4.5)

Equation (4.5) shows that very short waves can
propagate on the massive, elastic interface
when external tractions are absent. The speed
of propagation is YN/p, which is the speed of
shear waves.

For spheroidal modes the Lagrangian den-
sity for the interface is obtained from (DT,
8.198) by setting U=V=P=0

Ii= % (0% (U V?) = (& ~N) 1y QU= L VY-
LG U=-r VP = (C= )N V= (4.6)

—47G(p*) U= 2p (&' VP)).

In deriving (4.6) terms involving g have been
discarded since g = d¢/dr and [[¢]] = 0. In addi-

1214



The effect of arbitrarily small rigidity on the free oscillations of the Earth

tion, terms not involving p or the elastic pa-
rameters have been discarded since they vanish
as € = 0. The external tractions (DT, 8.99)
and the generalized potential gradient, Q =
= (4nG)' P+pU, (DT, p. 257) are

R=0L/0U,S=-3L/0V, Q=-3L,/dP.

From (4.1) and (4.6) these scalars have the
jump conditions

RN=[L 52 +4 (A = N) ri? + 470G (p?) —
~0’plU~[L +2(A - N)] &>V
IST=[ACrg* + (L -2N) ri®— 0*p ] V- 4.7
—[L+2A -NNG?U+p L' P
[Ql=pr5'v.

Since B=47GQ+(I+1)r'P and [P]] = 0
[BN4nGpry' V. (4.8)

Note that (4.7) is well behaved as the rigidities
L and N become arbitrarily small. Again, in
the limit of a plane interface &ry' = k, the hori-
zontal wave number. As r, — oo 4.7) be-
comes

[R] = (Lk*~ w*p) U
B (4.9)
[ST = (Ak*- w*p) V.

Gravitational terms have been omitted in 4.9).
Very short, high frequency waves can propa-
gate on the MEI for vanishing external trac-
tions. There are flexural waves that travel at

the speed \/E/ﬁ , which is the speed of shear
waves, and there are areal waves that travel at
the speed \A/p, which is the speed of com-
pressional waves.

The jump conditions (4.7)-(4.8) lead to
jump conditions for the second order minors
and third order minors at a boundary. For ap-
plications to the CMB and the ICB the MEI
would be located at a fluid-solid boundary.

At the ICB it is assumed that the solution is
propagated from the solid inner core across the
MEI to the fluid outer core.

In an obvious notation the jump conditions
can be written

[RI=c,U+c,V,
[S=c3U+c,V+csP, (4.10)
[Bll= cgU +c, V.

On the fluid side of the MEI S = 0 so (4.10)
becomes

Rf=Rs+C1U+C2VY
0=S,+csU+e,V, 40P (411
Bf=Bs+c6U+c7‘/s'

In (4.11) the subscripts f and s refer to fluid
and solid, respectively. The conditions 4.11)
lead to the following expressions for the sec-
ond order minors in the fluid in terms of the
third order minors in the solid

UP = UPS - c,UVP
UR = URS - c,UVR - ¢, UPR + ¢, UVS + cy¢cs UVP
UB = USB —c,UVB ~csUPB + ¢c;UVS + csc, UVP
PR = PRS + c;UPR + ¢, VPR — cUPS +
+¢1cUVP -, VPS — ¢, ¢, UVP
PB =~PSB + c;UPB + ¢, VPB — cs UPS +
+¢4¢g UVP — ¢, VPS + ¢3¢, UVP 4.12)
RB =-RSB + c;URB + ¢, VRB + ¢sPRB —
—cUSB~c¢,c,UVB - c¢,csUPB —
=, VSB + c,c; UVB — ¢,¢5VPB — ¢ URS +
+¢4¢6UVR + ¢5¢4 UPR —
—C¢gUVS —cy¢5¢4 UVP — ¢, VRS — c;¢c;UVR +
+¢5¢; VPR + ¢ c;UVS + ¢ c5¢; UVP.

At the CMB it is assumed that the solution is
propagated from the fluid outer core across the
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METI to the solid mantle. In this case (4.10) can
be written

R,=Ri+cU+c,V
S;=c3U+c,V+csP 4.13)
B, =B+ csU+c;V
which leads to the following expressions for
the third order minors in the solid in terms of

the second order minors in the fluid
UVP = -UP, UVR =—-UR, UVS = —csUP,
UVB =-UB,
UPR = ¢, UP, UPS = ¢,UP, UPB = ¢, UP,
URS = c,UR — c,c5 UP,
URB = ¢;UR — ¢, UB, USB = cs¢,UP — ¢, UB,
VPR = PR—c,UP,
VPS = —c,UP, VPB = PB — c;UP,
VRS = c,csUP + csRP —c3;UR, (4.14)
VRB = RB—c4UR + ¢, UB,
VSB = c3UB + ¢s PB — c5¢cg UP,
PRS = c4PR + (cyc3— ¢ c4) UP,
PRB = c7PR — ¢, PB + (cyc6— ¢y c7) UP,
PSB = (c4c6—c3¢7) UP — ¢, PB,
RSB = c5 (cic7—cy¢6) UP + (c4c6—c307) UR +

+(cyc3—c1cq) UB—C2PR + cycs PB — ¢4 RB.

5. Discussion

Arbitrarily small rigidity can be incorpo-
rated into the computational methods used for
elastic wave and vibration problems in two
ways. The constraint, Vxs =0, can be im-
posed and placed into the propagator equa-
tions. As the rigidity, L, becomes very small
the equations and boundary conditions ap-
proach those of a neutrally stratified fluid. Al-
ternatively, the zone of very small rigidity can
be treated as a very thin, Massive, Elastic In-
terface (MEI) across which there are disconti-
nuities, or jump conditions, in the tractions and
the potential gradient. The MEI boundary con-
ditions are well behaved as the rigidity be-
comes very small.
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