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Abstract

Ambiguity of depth estimation of magnetic sources via spectral analysis can be reduced representing its field
via a set of space-frequency atoms. This is obtained throughout a continuous wavelet transform using a Morlet
analyzing wavelet. In the phase-plane representation even a weak contribution related to deep-seated sources is
clearly distinguished with respect a more intense effect of a shallow source, also in the presence of a strong
noise. Furthermore, a new concept of local power spectrum allows the depth to both the sources to be correctly
interpreted. Neither result can be provided by standard Fourier analysis. Another method is proposed to reduce
ambiguity by inversion of potential field data lying along the vertical axis. This method allows a depth resolu-
tion to gravity or the magnetic methods and below some conditions helps to reduce their inherent ambiguity.
Unlike the case of monopoles, inversion of a vertical profile of gravity data above a cubic source gives correct
results for the cube side and density.

Key words potential field — wavelet — interpreta- be shown that when the sources may be rea-
tion sonably assumed as shallow vertical prisms,
boundary detection is very accurate. Since
most geological sources consist in contacts and
faults, the b'oundary estimations are therefore
generally affected by a small degree of ambi-
guity.

Other magnetic prospection methods (Nabi-
ghian, 1984) are based on the analytic signal,
which does not present any anomaly shape am-
biguity, since it is only slightly depending on
the Earth’s magnetic field and magnetization
directions. Source boundaries and approximate
depths are efficiently computed from the ana-
lytic signal, with the only a priori assumption
that the source is represented by a set of verti-
cal contacts.

Other methods are based on the Euler de-
convolution (Thompson, 1982; Marson and
Klingelé, 1993), which is again not dependent
on the Earth’s magnetic field and magnetiza-
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1. Introduction

Interpretation of potential field anomalies
has considerably improved in the last ten years.
New instruments and survey methods together
with powerful data processing, display and
modelling methods have consistently enhanced
the quality of the interpretation. In modelling
methods, a common feature is the attempt to
invert data with a reduced amount of ambigu-
ity. Among them, we mention those using the
high resolution properties of the derivatives of
the gravity and magnetic field for estimating
the source boundaries (Cordell and Grauch,
1985); Blakely and Simpson, 1986). It can

di Napoli «Federico II», Largo S. Marcellino 10, 80133 ~ Poundaries are obtained by a priori assuming
Napoli, Italy; e-mail: rapolla@dgvna.dgv.unina.it — fedi@ for the source the so-called structural index,
axposf.dgv.unina.it i.e., some kind of shape factor.
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Data processing and interpretation has also
improved due to the recent developments in
the field of non-stationary and fractal signals.
It has recently been pointed out that fractal
magnetization distributions allow the corre-
sponding field power spectra to have a power
law exponent of about —2.9 (Pilkington and
Todoeschuck, 1993). But, Fedi er al. (1997)
also showed that the same exponent arises
from an ensemble of magnetized blocks uni-
formly distributed. Correction for this power
law spectral factor will improve the classical
method of Spector and Grant allowing more
accurate depth estimations.

As regards non-stationary signals, the
discrete wavelet transform (Meyer, 1993) has
proved more appropriate than Fourier Trans-
form to deal with them and was also superior
in residuation of potential field anomalies with
respect to long period signals (Fedi and Quarta,
1997).

A different kind of a priori information is
that the source-space is parametrized in a set of
homogeneous blocks (a tomographic scheme).
Li and Oldenburg (1996) assumed an empirical
depth weighting function to counteract the de-
cay of the kernel function together with posi-
tivity susceptibility constraints and a reference
model. By this type of inversion, they obtained
rather realistic models for the block magnetiza-
tions. By also assuming a tomographic scheme,
Fedi and Rapolla (1995, 1997) and Fedi et al.
(1997), were able to show that information on
the field along the vertical direction is enough
to give a depth resolution to the magnetic and
gravity methods. Obviously this is not true for
spheres or monopolar sources.

In this paper, we describe two approaches to
reduce the interpretative ambiguity of potential
fields. The first is related to the inversion of
potential field data along a vertical direction.
Our aim is to show that the inherent ambiguity
of potential fields is not so serious as com-
monly believed. The second is based on a con-
tinuous wavelet transform analysis of magnetic
anomalies. We will define the new concept of
local spectrum and will propose a local version
of the classical Spector and Grant method of
depth estimations.

2. Inherent ambiguity and depth resolution
of potential fields

The most typical example of inherent ambi-
guity is that of the fields generated at some
fixed level by the infinite number of equal-
mass homogeneous spheres centred at some
point P. The ambiguity follows from the
monopolar form of each potential:

3
¢(r)=%7ryp7“ @.1)

since the two source parameters, p and the ra-
dius a, cannot be determined independently.
Note also that external data along the radial di-
rection, as well as along any other direction, do
not reduce ambiguity since they invariably
give redundant information.

Spheres or monopoles are widely used to il-
lustrate nonuniqueness (¢f. Menke and Abbott,
1990; Parasnis, 1979; Sharma, 1986). Instead,
monopolar ambiguity is rather unrepresentative
for most practical cases, as already observed
by Al Chalaby (1971). For example, monopo-
lar ambiguity obviously implies that the hori-
zontal extent (diameter) of a sphere cannot be
estimated from its field, unless its density is
known. Nevertheless, many successful inter-
pretation techniques assume exactly the oppo-
site, i.e. the horizontal extent of a source is in
principle detectable from its own field, with no
a priori information about density. See, for
instance, the above mentioned boundary analy-
sis (Blakely and Simpson, 1984). Thus, since
sources other than monopoles are used in prac-
tical applications, it is important to study them
with respect to inherent ambiguity.

The class of concentric homogeneous cubes
is particularly interesting, because cubes are
multipolar sources very close to spheres. Kel-
log (1979) gives the first two terms of the
multi-polar expansion of the gravity potential
of a homogeneous cube:

3 /4_5 " "4 "
¢(r,)=y%+7yMa[r (leytent)

60 B
(2.2)

where M = pa® and Rs is the remainder. A ref-
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erence system with axes parallel to the cube
sides and the origin at the (known) mass center
are taken. By vertical derivation of ® and as-
suming that the truncation error is negligible,
the gravity field is approximately:

_ Mz,

) =
g r,3

(2.3)
" (1407727 +105 77" = 3157 (x"* 4y 4 2]

r/ll

_ya

If the coefficients of the above expression were
known, the density and the side of the cube
could easily be evaluated. They may be com-
puted, within some error induced by trunca-
tion, from a set of measured data. For example,
let us examine a homogeneous cube, of which
only the center is known, having a 1 g/cm?
density and a 3 km side. Also consider an
N =100 data set along the vertical axis, the
altitudes ranging from 1.5 to 5.5 km. Using
€q. (2.3), the inverse problem is to solve for a
and M an overdetermined linear system of
equations of the form:

g,»=Mk,~1+Mak,-2, i=1,...,N,
where:
ki =—ylz?;
kia=77/628.

Using the svd method (Menke, 1984) we first
note that the approximation (2.2) is acceptable,
since the condition number ¢ of the system ma-
trix is fairly low (c = 10); then we compute
the least square solution giving 0.984 g/cm’ for
density and 2.97 km for a. This example shows
that inherent ambiguity for concentric cubes is
completely different from that of concentric
spheres. In fact, it results that: a) both density
and volume can be determined, within some
truncation error, from the gravity field at exter-
nal points, and b) data along the vertical axis
do not provide redundant information.

The property (b) is remarkable, since it
leads to identification of an inherent depth res-
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olution for the gravity and magnetic methods.
To this end, let us consider that for shallow
sources the gravity field is normally expected
to have most of the energy in the high order
multipole terms and the converse for the deep-
est ones. Consequently, since the high order
multipoles decay rapidly with distance, the
shallowest sources are better interpreted by
near-ground data, while the deepest ones need
relatively distant data. We therefore conclude
that, unless property (b) does not hold, the best
way of interpreting gravity or magnetic data is
to jointly invert a set of data lying along all the
coordinate axes. In this way, the information
relative to data at different altitudes will pro-
vide an inherent depth resolution for the grav-
ity and magnetic methods.

3. Space-frequency wavelet analysis

Most geophysical signals consist of tran-
sients and local oscillations superimposed on
more regular and flat components. The gravity
and magnetic anomaly fields may be clearly
represented in such a way, due to the presence
of intense and local effects of shallow sources
and to the weaker and regular effects due to
deep and extended sources. Fourier Analysis
has provided significant insights into the field
structure and the separation and interpretation
of both local or regional effects. However,
there is an inherent drawback in the Fourier
Transform methods: the kernel of Fourier
Transform is a sinusoidal function extended on
the whole measurement interval, so that it uses
global oscillations to analyze local ones. In
other words, Fourier analysis has its best per-
formance in analyzing stationary or quasi-sta-
tionary signals, i.e., when its probabilistic be-
haviour is space-invariant up to the second or-
der. Due to its global approach of analysis,
Fourier-based spectral descriptions, like the
power spectral density, are inherently non-lo-
calized in space. Instead, when rapid and un-
predictable oscillations appear, the signal can
no longer be considered stationary and differ-
ent representations have to be tried, which may
disclose the space variations of the spectral
properties. Such techniques, which are specific
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to the nonstationarity of the signal, are here
referred to as space-frequency analysis. From
a mathematical point of view such analysis
does not use global-space sinusoidal functions
but space-frequency localized functions called
space-frequency atoms. Wavelets, wavelet pack-
ets, local trigonometric functions or matching
pursuit waveforms are different examples of
such atoms, whose features have been increas-
ingly applied to various physical and numerical
fields such as coding speech, music (Mallat
and Zhang, 1993), seismology (Chakraborty
and Okaya, 1995), fractal signals, sea-floor
bathymetry, climate changes, ocean wind
waves, nonlinear denoising, signal compres-
sion (among others: Goupillaud et al., 1984;
Donoho, 1993; Jawerth and Sweldens, 1994).
A wavelet analysis may be either continuous or
discrete. Differentely from the Fourier analy-
sis, owing to a fixed kernel, different wavelets
may be used and the success of the analysis of-
ten depends on the appropriate choice of the
analyzing wavelet. For example, Fedi and
Quarta (1977) used discrete wavelet transform
analysis and the triangle bi-orthogonal analyz-
ing wavelet, to effectively separate the regional
field from the localized anomalies of the aero-
magnetic field of Sicily.

4. The continuous wavelet transform

In this paper we utilize a continuous space-
frequency analysis of potential fields to define
a new method of depth to source estimation,
which acts in a local sense.

An admissible wavelet is a L? (R) function,
w(x) satisfying the following admissibility cri-
teria:

a) zero mean: I w(x)dx =0;

b) compact support, or sufficient fast decay.
Other additional properties may be required
such as integrability of the first moment
Xy (x).

Within such criteria, the continuous wavelet
transform of a function f(x) € L?(R) is defined

as

F, (s, b) =
4.1

~tfwis by = [ (25 ax

where b indicates the location, s # O the scale

and (s, b) = i_y/(x;b).
s

The (s, b) plane is called the phase plane of
the wavelet transform. The phase plane is lay-
ered with resolution cells of varying dimen-
sions, but of constant area. In such a way the
wavelet transform acts as a mathematical mi-
croscope of magnification inversely propor-
tional to the scale. In contrast, for the win-
dowed Fourier transform (Gabor, 1946), the
phase plane is layered with resolution cells of
fixed dimensions and area, so that it is applica-
ble only when all the signal features have ap-
proximately the same scale.

Equation (4.1) indicates that the wavelet
transform may be interpreted as a specific
band-pass filtering of f through the chosen
wavelet at a given scale and location. The re-
construction formula for the wavelet transform
is given by

Fl) = CLW IR fm 52 F (s, b) w(s, b)dbds,

~ 2
0)

where Cw= J Mda) <
0}

In the Fourier context, the scale s is analogous
to the wavelength, while the scale number
p=1/s is analogous to the wave number. If
F, is the wavelet transform of f with the
wavelet W, an analogue of the Fourier power
spectrum can be defined as

P, (s) = IR | F, (s, b2 db. 42)

Note that since the power at a given scale is
determined from averaging many squared
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Fig. 1a-d. The wavelet and Fourier power spectra of a shallow magnetic source. The source shown in (a)
generates the field in (b). Vertical polarization is assumed. According to the Spector and Grant theory (1970),
the logarithm of its Fourier power spectrum (c) has a slope which is proportional to depth to the top of the
source, apart from an overestimation error. The wavelet power spectrum (d) also gives a good depth estimate
and is a smoothed version of the Fourier one, according to eq. (4.3). '

wavelet coefficients, the wavelet power spec- The smoothing effect may easily be shown by
trum is expected to be a smoothed version of comparing Fourier and wavelet power spectra.
the Fourier power spectrum. In fact, it can be We considered the magnetic anomalies due to
shown (Hudgins et al., 1993) that the follow- two different prisms, measuring 8 X 8 x 3 km?
ing relationship exists between wavelet (P, 7) (fig. 1a,b) and 8x8x5 km? (fig. 2a,b) re-
and and Fourier (Pr,s) power spectra of | spectively, with a 1 km step and an N = 128

data number. Their respective depths to the top

P, +(s) = f Pr ¢ (w) Pr. v, (W) do, 4.3) were 2 and 6 km, so that we expect to see dif-

R ferent slopes in the logarithm of their Fourier

where Pj. y, (@) is the spectrum of the wavelet spectra. In fact, according to the Spector and
at the scale s. In other words, the wavelet Grant theory (Spector and Grant, 1970) the
power spectrum at a given scale is the Fourier slope of the logarithm of the magnetic anomaly

power spectrum averaged by the power spec- power spectrum is essentially proportional to
trum of the specific analyzing wavelet at the twice the depth to the source top. This be-
same scale. haviour may be observed in figs. lc and 2c,
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Fig. 2a-d. The wavelet and Fourier power spectra of a deep magnetic source. The source shown in (a) gener-
ates the field in (b). Vertical polarization is assumed. Similar to the case of fig. la-d, the logarithm of the
Fourier power spectrum (c) has a slope which is proportional to depth to the top of the source, apart from an
overestimation error. The wavelet power spectrum (d) again gives a good depth estimate and is a smoothed

version of the Fourier one, according to eq. (4.3).

where the above depths are well estimated,
apart from an overestimation error which is in-
herent to the method (Fedi er al., 1997). The
wavelet spectra may be computed by discre-
tization of eq. (4.2) so that b= {1, ..., 128};
the wave number p was chosen according to
the equispaced frequency set of the Fourier
{1, ..., N2}
N
puted wavelet spectra are shown in figs. 1d and
2d, respectively, and effectively they result as
smoothed versions of the Fourier spectra. The
slopes of the wavelet spectra may also be uti-
lized to estimate the source depths correctly,
with only a slight underestimation error due to
the smoothing process.

analysis, that is: p = . The com-

However, note that using either the wavelet
or the Fourier power spectrum leads to a can-
cellation of any local information. This is not
what is really desired when space-frequency
analysis is performed instead of Fourier analy-
sis. Therefore, something like a local power
spectrum has to be defined, which may allow us
to fully take advantage of the local frequency-
space properties of the wavelet transform.

5. Local power spectrum
The simplest way of performing local spec-

tral estimations is to compute the discrete form
of eq. (4.2) in some prefixed subinterval of the
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Fig. 3a-c. The phase plane of the two-source case. Considering the source in (b) and the signal in (a), the
continuous wavelet transform (c) points out well the presence of the two effects, but unlike Fourier analysis
they lie in two well separated parts of the phase-plane, with respect to both the plane axes. In particular, it may
be split into two parts, with respect the v-axis (indicated by A and B respectively}.
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space variable. This is not a rigorous definition
of local spectrum, but appears as the wavelet
analogue of the traditional Fourier frequency
filtering technique. In other words, the repre-
sentation of f in terms of space-frequency
atoms (eq. (4.1)) allows not only filtering in a
frequency sense, i.e., suppressing the coeffi-
cients related to some set of scales, but even
filtering in a space sense, i.e. suppressing the
coefficients relative to some space subintervals.

In this section we apply this concept to the
signal shown in fig. 3a, composed of superpo-
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sition of both the effects shown in figs. la-d
and 2a-d, whose sources are sketched in fig. 3b.
The continuous wavelet transform, com-
puted with respect to the already mentioned
discrete sets of p and b, is shown in fig. 3c.
The transform was computed using the Morlet
wavelet:

: 2
W(-x) — 71.—1/4 (€~1w0x e /2).

The space-frequency analysis is very meaning-
ful: the right part of the phase plane is domi-
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Fig. 4a-d. Local wavelet power spectral analysis. The Fourier power specrum (a) and the wavelet power
spectrum (b) of the signal in fig. 3a, are mainly affected by the stronger contribution of the shallow source, so
giving a depth corresponding to the case in fig. 2a-d. However, local wavelet spectral analysis allows to oper-
ate independently in the A and B zones of the phase plane (fig. 3c) and their respective power spectra to be
computed. The depth results (¢ and d) are very meaningful for both A and B zones.
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Fig. Sa-c. The phase piane of the two-source case adding o Gaussian random white noise. We now consider
the same sources (b) as in tig. 3b, but corrupt the signal {a) throughout an intense white Gaussian random
noise, which tends to hide the weuk deep-seated source anomaly. The continuous wavelet transform {c) now
shows a number of oscillations all over the plane (due to the noise), but the two source effects are again evi-

dent. Note that the presence of the deepest source anomaly is clearer in the phase plane than in the anomaly
profile.

1197



Maurizio Fedi and Antonio Rapolla

nated by the strong effect of the shallower
source, which takes place along most of the
considered scales. Instead, the weaker anomaly
of the deepest source is limited to the left part
of the phase plane and, as expected, regards
just the low frequencies. Since the right effect
is considerably more intense than the other,
both Fourier and wavelet spectra (fig. 4a,b) re-
sult very similar to the spectra of the shallow
source by itself (figs. 1c,d). In order to point
out the two effects separately, we considered
two local wavelet power spectra-(LWPS) using
eq. (4.2) with respect to just the half right
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(called A in fig. 3¢) part of the phase plane and
then considering only the left part (called B in
fig. 3c). In both cases, no frequency filtering
was performed. The corresponding wavelet
power spectra are respectively shown in figs.
4c,d. It is evident that both the LWPS refer
now correctly to the two considered sources. In
particular, the very weak effect of the deepest
source is well recovered by LWPS and the
depth to the source is correctly estimated.
Finally, in order to consider a more realistic
case, we added to the former signal an intense
white Gaussian random noise (fig. 5a) and
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Fig. 6a-d. Local wavelet power spectral analysis with a low signal-to-noise ratio. The Fourier power spec-
trum (a) and the wavelet power spectrum (b) of the signal in fig. 5a, are now affected again by the contribution
of the shallow source, but also by the intense noise at higher frequencies. As in the case of fig. 4a-d, local
wavelet spectral analysis allows independent operation in the A and B zones of the phase plane (fig. 3¢) and
meaningful computation of depth results (¢ and d) from the local power spectra from A and B zones.
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computed again the corresponding continuous
wavelet transform. The phase plane (fig. 5c) is
nevertheless meaningful: the space-frequency
atoms related to the two sources are clearly
discernible apart of some distortion related to
the noise. Note that the intense noise tends to
hide the deep source effect in the anomaly
field, while the same effect appears sufficiently
clear in the space-plane. Fourier and wavelet
power spectra (figs. 6a,b) are now character-
ized by the shallow source at just the low fre-
quencies, while a high frequency noise-related
effect is also evident. Passing to the LWPS
spectra, the shallow and deep source effects are
well separated and the depths are again cor-
rectly estimated.

6. Conclusions

Ambiguity in interpretation of potential
fields may be reduced using new techniques of
data analysis and interpretation. Use of poten-
tial field data along the vertical direction com-
pletes the field information related to the
sources and may help to solve some ambigu-
ous cases. The considered case of a prismatic
source indicates that the ambiguity of monopo-
lar sources cannot be assumed as a general rule
for the potential field methods. Theoretical pa-
pers (Brodsky, 1986) confirm our reasoning.
On the other hand, new techniques of space-
frequency wavelet analysis may help to point
out the effects of weak sources, practically hid-
den by noise, and to isolate their spectral con-
tent via a local spectral analysis. Local spectral
analysis is a natural extension of the classical
Fourier frequency filtering, but decomposition
in space-frequency atoms now allows to sup-
press also spatially-related spectral contribu-
tions. Obviously, such filtering has to be per-
formed with caution, due to possible overlap
effects with respect to both the frequency and
Space variables of the phase-plane. In other
words, the effective separation of the phase
plane in two or more parts is somewhat arbi-
trary; nevertheless our results show that even if
the considered separation is affected by some
overlapping effects (check fig. 5¢ around the
X = 64 axis) of the two sources, the spectrum-
based depth estimations are well recovered.
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