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Abstract

The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution
equation of fractional order in time, which interpolates the heat equation and the wave equation. The funda-
mental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright
type) in the similarity variable and their behaviours turn out to be intermediate between those for the limiting
cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the
seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy
and Signalling problems are shown to be related to stable probability distributions with an index of stability
determined by the order of the fractional time derivative in the evolution equation.

Key words Earth anelasticity — quality factor — cause of its great relevance in determining the
wave propagation — fractional derivatives — stable composition and the mechanical properties of
probability distributions the Earth, the problem has been considered
from different points of view by many re-
searchers. Without pretending to be exhaustive,
we quote (in alphabetic order of the first au-
thor) some original contributions and reviews
among those which have attracted our atten-
tion, e.g., Aki and Richards (1980); Ben-Men-
hahem and Singh (1981); Caputo (1966, 1967,
1969, 1976, 1979, 1981, 1985, 1996a); Caputo
and Mainardi (1971); Carcione et al. (1988);
Chin (1980); Futterman (1962); Gordon and
Nelson (1966); Jackson and Anderson (1970);
Kanamori and Anderson (1977); Kang and
This note is dedicated to Professor Michele Caputo on McMechan  (1993); Kjartansson  (1979);

the occasion of his 70th birthday. Throughout his intensive Knopoff (1964); Kornig and Miiller (1989);
and outstanding career Professor Caputo recognized the ’ :

importance of the quality factor Q and fractional calculus Mitchell . (1995); Murphy (19_82) ; O’Connel
in seismology, providing interesting contributions on these and Budiansky (1978); Ranalli (1987); Saba-

1. Introduction

In seismology the problem of wave attenua-
tion due to anelasticity of the Earth is de-
scribed by the so-called quality factor 0, or,
better, by its inverse Q7! (internal friction or
loss tangent), which is related to the dissipation
of elastic energy during wave propagation. Be-

topics. dini et al. (1985, 1987); Savage and O’Neill
- N (1975); Spencer (1981); Strick (1967, 1970,
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It is known that seismic pulse propagation
mostly occurs with a quality factor Q constant
over a wide range of frequencies. As pointed
out by Caputo and Mainardi (1971) and Ca-
puto (1976), this factor turns out to be indepen-
dent of frequency only in special linear vis-
coelasti¢c media for which the stress is propor-
tional to a fractional derivative of the strain, of
order v less than one. Since these media ex-
hibit a creep compliance depending on time by
a power-law with exponent v, we refer to them
as power-law solids, according to the notation
by Kolsky (1956) and Pipkin (1972-1986).

For the sake of convenience, the generalized
operators of integration and differentiation of
arbitrary order are recalled in the Appendix in
the framework of the so-called Riemann-Liou-
ville Fractional Calculus. In this paper we
adopt the Caputo definition for the fractional
derivative of order o > 0 of a causal function
f(@® (i.e., vanishing for ¢ < 0)

F™@), if a=meN
d*
—_— = t (m)
d;“f(t) 1 A C))
F(m—a) O(I—T)DHI_m

if m—l<a<m
(1.1

where £ (f) denotes the derivative of integer
order m and I is the gamma function.

In section 2 we derive the general evolution
equation governing the propagation of uniaxial
stress waves, in the framework of the dynami-
cal theory of linear viscoelasticity. For a
power-law solid the evolution equation is
shown to be of fractional order in time, which
is intermediate between the heat equation and
the wave equation.

In fact, denoting the space and time vari-
ables by x and ¢ and the response field variable
by w(x, ), the evolution equation will be
shown to be

0%w _ 0%w _
G =DSE 2B=2-v. (D)

The order of the time derivative has been de-

noted by 2 f3 for reasons that will appear later.
Since 0 < v<1,wegetl2< <1,

In section 3 we review the analysis of the
fractional evolution eq. (1.2) in the general
case 0 < § < 1, essentially based on our works,
Mainardi (1994, 1995, 1996a,b). We first anal-
yse the two basic boundary-value problems,
referred to as the Cauchy problem and the
Signalling problem, by the technique of the
Laplace transform and we derive the trans-
formed expressions of the respective funda-
mental solutions (the Green functions). Then,
we carry out the inversion of the relevant
Laplace transforms and we outline a reciproc-
ity relation between the Green functions in the
space-time domain. In view of this relation the
Green functions can be expressed in terms of
two interrelated auxiliary functions in the simi-
larity variable r = |x|/(\/Dt’3). These auxiliary
functions can be analytically continued in the
whole complex plane as entire functions of
Wright type.

In section 4 we show the evolution of the
fundamental solutions for 1/2 < 8 < 1, that can
be relevant in seismology to simulate the prop-
agation of seismic pulses. Accounting for the
low dissipation occurring in the Earth, the
nearly elastic limit must be considered; in this
case the pulse response becomes a narrow,
sharply peaked function and the arguments by
Pipkin (1972-1986) and Kreis and Pipkin
(1986) must be adopted to obtain an evaluation
of the solutions, which is suitable from the nu-
merical point of view.

Finally, in section 5, following Kreis and
Pipkin (1986), we point out the interesting con-
nection between the fundamental solution for
the Signalling problem and the density of a
certain (unilateral) stable probability distribu-
tion. We note that this connection generalizes
the one known for the standard heat equation
for which the fundamental solution for the Sig-
nalling problem is related to the density of the
stable Lévy distribution. Since the above prop-
erty is expected to provide a further insight
into our evolution equation of fractional order,
the seismic pulse propagation with constant Q
assumes an additional interest from a mathe-
matical-physical point of view.
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2. Linear viscoelastic waves and the
fractional diffusion-wave Equation

According to the elementary one-dimen-
sional theory of linear viscoelasticity, the
medium is assumed to be homogeneous (of
density p), semi-infinite or infinite in extent
(0 €£x <400 0or —oo < x < +00) and undisturbed
for r < 0.

The basic equations are known to be, see,
e.g., Hunter (1960), Caputo and Mainardi
(1971), Pipkin (1972-1986), Christensen (1972-
1982), Chin (1980), Graffi (1982)

Gx (X, t) = pun‘ (-x9 t) (21)
EXx, H=u,(x, 1) 2.2)
e, f)=[Jo+J (O *]0(x, 1). (2.3)

Here the suffixes x and 7 denote partial deriva-
tion with respect to space and time, respec-
tively, the dot ordinary time-derivation, and the
star integral time-convolution from 0" to 7. The
following notations have been used: o for
stress, € for strain, J(¢) for creep compliance
(the strain response to a unit step input of
stress); the constant J;:=J(0") >0 denotes
instantaneous (or glass) compliance.

The evolution equation for the response
variable w(x, t) (chosen among the field vari-
ables: the displacement u, the stress o, the
strain € or the particle velocity v = u,) can be
derived through the application of the Laplace
transform to the basic equations. We use the
following notation for the Laplace transform
of a function f(#), locally summable for >0,

L{f(D}:= J:e‘ff f@Odi=F(s), seC, and we

adopt the sign + to denote a Laplace transform

pair, iLe., f(t) + f(s).
We first obtain in the transform domain, the
second-order differential equation

[d

dx?

s uw (s)] w(x, 5)=0 2.4)
in which

1 (s):= s [psJ ()] (2.5)
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is real and positive for s real and positive. As a
matter of fact, ((s) turns out to be an analytic
function of s over the entire s-plane cut along
the negative real axis; the cut can be limited or
unlimited in accordance with the particular vis-
coelastic model assumed.

Wave like or diffusion like character of the
evolution equation can be drawn from (2.5) by
taking into account the asymptotic representa-
tion of the creep compliance for short times,

j@® =Jy+0@{), as t—0* 2.6)

with J; 20, and 0 < v< 1. If J; > O then

0
s s

=\plpi=3 @D

we have a wave like behaviour with ¢ as the
wave-front velocity; otherwise (J, = 0) we
have a diffusion like behaviour.

In the case Jy, > 0 the wave like evolution
equation for w (x, 7) can be derived by inverting
(2.4)-(2.5), using (2.6)-(2.7) and introducing
the non dimensional rate of creep

1 dJ(@)

W(t)1=J—O ai

=0, >0. (2.8)

We get

- 2 -
12 ()= 5% [ psT (s)] = (%) [1+y()]  (29)
so that the evolution equation turns out to be

P _
or ox?

L+ y@*}

=c (2.10)

This is a generalization of the D’Alembert
wave equation in that it is an integro-differen-
tial equation where the convolution integral
can be interpreted as a perturbation term. This
case was investigated by Buchen and Mainardi
(1975) and by Mainardi and Turchetti (1975),
who provided wave-front expansions for the
solutions.
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In the case Jy, = 0 we can re-write (2.6) as

v
J=2—— 1 o), ast—0" (2.11)
pD T'(v+1)

where, for the sake of convenience, we have
introduced the positive constant D (whose di-
mensions are L*7T"~?) and the gamma function
I'(v+1)). Then we can introduce the non-di-
mensional function ¢(f) whose Laplace trans-
form is such that

S2-v -
[1+¢(s)]. (2.12)

#(9):=s"[psT (9] = =

Using (2.12), the Laplace inversion of (2.4)-
(2.5) yields

o
or*h ox?

{1+¢@) =} =D (2.13)

where 23=2-vso0 1/2 < < 1. Here the time-
derivative turns out to be just the fractional
derivative of order 23 (in Caputo’s sense), ac-
cording to the Riemann-Liouville theory of
Fractional Calculus recalled in the Appendix.

When the creep compliance satisfies the
simple power-law

1

T = oD T(v+1)

>0 (2.14)

we obtain ¢(7) = 0, and the evolution eq. (2.13)
simply reduces to (1.2). As pointed out by Ca-
puto and Mainardi (1971), the creep law (2.14)
is provided by viscoelastic models whose
stress-strain relation (2.3) can be simply ex-
pressed by a fractional derivative of order v. In
the present notation this stress-strain relation
reads

v
G:de—e, O<v<l1. (2.15)
dt’

For v =1 the Newton law for a viscous fluid is
recovered from (2.15) where D now represents
the kinematic viscosity; in this case, since
B=1/2 in (1.2), the classical diffusion equation
(or heat equation) holds for w(x, f). When
0 < v< 1 the evolution eq. (1.2) turns out to be

intermediate between the heat equation and the
wave equation. In general we refer to (1.2) as
the fractional diffusion-wave equation, and its
solutions can be interpreted as fractional diffu-
sive waves, see Mainardi (1995).

We point out that the viscoelastic models
based on (2.14) or (2.15) with 0 < v < 1 and
henceforth governed by an evolution equation
of fractional order in time, see (1.2) with
1/2 < B < 1, are of great interest in material sci-
ences and seismology. In fact, as shown by Ca-
puto and Mainardi (1971), these models exhibit
an internal friction independent of frequency
according to the law

Q'=tan (ﬂ) & v=2 arctan oM.
2 T

(2.16)

The independence of Q from frequency is in
fact experimentally verified in pulse propaga-
tion phenomena for many materials including
those of seismological interest. From (2.16) we
note that the Q is also independent of the mate-
rial constants p and D which, however, play a
role in the phenomenon of wave dispersion.

The limiting cases of absence of energy dis-
sipation (the elastic energy is fully stored) and
of absence of energy storage (the elastic en-
ergy is fully dissipated) are recovered from
(2.16) for v =0 (perfectly elastic solid) and v =
1, (perfectly viscous fluid), respectively.

To obtain values of seismological interest
for the dissipation (Q = 1000) we need to
choose the parameter v sufficiently close to
zero, which corresponds to a nearly elastic ma-
terial; from (2.16) we obtain the approximate
relations between v and Q, namely

~ _2_ ~ -1 -1 T
v~(7rQ) 0,640 & Q0 2v 1.57 v.
2.17)

As a matter of fact the evolution eq. (1.2) turns
out to be a linear Volterra integro-differential
equation of convolution type with a weakly
singular kernel of Abel type. Equations of this
kind have been treated, both with and without
reference to fractional calculus, by a number of
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authors including Caputo (1969, 1976, 1996b);
Meshkov and Rossikhin (1970); Pipkin (1972-
1986); Buchen and Mainardi (1975); Kreis and
Pipkin (1986); Nigmatullin (1986); Schneider
and Wyss (1989); Giona and Roman (1992);
Metzler et al. (1994) and Mainardi (1994,
1995, 1996a,b). For recent reviews on related
topics we refer to Rossikhin and Shitikova
(1997) and Mainardi (1997).

3. The reciprocity relation and the auxiliary
functions

The two basic problems for our fractional
wave eq. (1.2) concern, for ¢ > 0, the infinite
interval —eo < x < +c0 and the semi-infinite in-
terval x > 0, respectively; the former is an ini-
tial-value problem, referred to as the Cauchy
problem, the latter is an initial boundary-
value problem, referred to as the Signalling
problem.

Extending the classical analysis to our frac-
tional eq. (1.2), and denoting by g(x) and A (?)
two given, sufficiently well-behaving func-
tions, the basic problems are thus formulated
as follows:

a) Cauchy problem,

w(x, 07) =g (x), —oo<x< +oo;

(3.1a)
w(Foo, H)=0, t>0;
b) Signalling problem,
w(x, 0")=0, x>0;
(3.1b)
w0, D =h(), w(e, £)=0, ¢>0.

If 1/2 < B< 1, we must add in (3.1a) and (3.1b)
the initial values of the first time derivative of
the field variable, w, (x, 0*), since in this case
(1.2) contains a time derivative of the second
order. To ensure the continuous dependence
of our solution with respect to the parameter
B also in the transition from B = (1/2)” to
B = (1/2)", we agree to assume w;(x, 0*) = 0.

In view of our analysis we find it conve-
nient from now on to add the parameter 3 to
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the independent space-time variables x, ¢ in the
solutions, writing w = w(x, ; 8).

For the Cauchy and Signalling problems
we introduce the so-called Green functions
G.(x,; B) and G, (x, t; B), which represent
the respective fundamental solutions, obtained
when g(x) = 8(x) and A(f) = 8(f). As a conse-
quence, the solutions of the two basic problems
are obtained by a space or time convolution ac-
cording to

wen i =[G -& 1 Pra(&de G

w1, B) = jo G, (x. 1—1; BYh (D dr. (3.2b)

It should be noted that in (3.2a) G. (x, 1; B) =
=G, (x|, t; B) since the Green function of the
Cauchy problem turns out to be an even func-
tion of x. According to a usual convention, the
limits of integration in (3.2b) are extended to
take into account for the possibility of impulse
functions centred at the extremes.

For the standard diffusion equation (3 = 1/2)
it is well known that

G.(x, 1/2):=G%(x, ) = ;_ 12 /4D
2NmD
(3.3a)

G, (x, 15 112):= G (x, 1) = — 2 32 p="104D1)
2NnD
(3.3b)

In the limiting case § = 1 we recover the
stancl/ald wave equation, for which, putting
c=\D,

G, t:1):= G (x, ) = % [8Ce—ct) + 8Cx+ c)]
(3.42)

G(x, 1, 1):=GY(x, £) = 5(t— x/c). (3.4b)
In the general case 0 < 3 < 1 the two Green
functions will be determined by using the tech-
nique of the Laplace transform. This technique
allows us to obtain the transformed functions
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G. (x, s; B), G, (x, s; B), by solving ordinary
differential equations of the 2nd order in x and
then, by inversion, G, (x, #; §) and G; (x, £; B).

For the Cauchy problem (3.1a) the applica-
tion of the Laplace transform to (1.2) with
w(x, 1) =G, (x, t; B) leads to the non homoge-
neous differential equation satisfied by the im-
age of the Green function, G. (x, s; )

——d gc—szﬂg =—8(x) s,

dx? (.5)
—oo < X < 400,

Because of the singular term &6(x) we have
to consider the above equation separately in
the two intervals x < 0 and x > 0, imposing
the boundary conditions at x = F oo, G,.(F oo,
t; B) =0, and the necessary matching condmons
at x = 0. We obtain

~([x|/\/5)xﬂ

w__ ’

—o00 < X < 400,

G (x, 53 ) =
(3.6)

For the Signalling problem (3.1b) the applica-
tion of the Laplace transform to (1.2) with
w(x, 1) = G,(x, t; B) leads to the homogeneous
differential equation

&G
L6
dx2

- G,=0, x=20. 3.7

Imposing the boundary conditions at x = 0,
G,(0%,5B) = h(r) = 6(f), and at x = +oo,
G, (+oo, 1; B) = 0, we obtain

G.(x,s; By=eD >0 (38)
From (3.6) and (3.8) we recognize for the orig-

inal Green functions the following reciprocity
relation

2BxG. (x, t; B)=tG, (x, t; B), x>0, 1> 0.
(3.9)

This relation can be easily verified in the case
of standard diffusion (8 = 1/2), where the ex-

plicit expressions (3.4) of the Green functions
leads to the identity

xGl, =1tG!(x, =

1 X

e X 14D) _ pd oy = T Md
2 P \/Dt (r) = (r

(3.10)

where r=x/NDt2)>0, is the well-known
similarity variable and

M () = % o G.11)

T

We can refer to F%(r) and M%(r) as to the
auxiliary functions for the diffusion equation
because each of them provides the fundamen-
tal solutions through (3.10). We note that
M%(r) satisfies the normalization condition

f M* (rydr=1.
0

Applying in the reciprocity relation (3.9) the
complex inversion formula for the transformed

Green functions (3.6) and (3.8), and changing
the integration variable in o = st, we obtain

2BxG. (x, t; B)=1G, (x, 1; B) =

(3.12)
=F(r; B)=BrM(r; B)
where
r=x/(ND*) > 0 (3.13)
is the similarity variable and
F(r; B):= J e’ do,
2mwi JBr
(3.14)
o-rof _dO
M(r; B):= e —_
ﬂ:l Br 0'1 -B

are the auxiliary functions. In (3.14) Br denotes
the Bromwich path and » >0, 0 < B < 1.

The above definitions of F(r; 8) and
M(r; B) by the Bromwich representation can be
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analytically continued from r > 0 to any z € C,
by deforming the Bromwich path Br into
the Hankel path Ha, a contour that begins at
O0=—o0—ja(a>0), encircles the branch cut
that lies along the negative real axis, and ends
up at 0= —oo+ib(b>0).

The integral and series representations of
F(z; B) and M (z; ), valid on all of C, with
0 < B <1 turn out to be

1 o-z0f
—ZEJ‘HGE dO'
- (2
F(z; B) = —_— = 15
@GP & 1
1S .
_—;nzz“l Tr(ﬁrw 1) sin (7fn)
1 U—zoﬂ_da_
ij‘ﬂae O'l_ﬂ
M@ py={ Y 2 (3.16)

S T =pn+(1-B)]

o _\n-1
=% 2 ((nz—)l)' I" (Bn) sin (7fn).
n=1 .

In the theory of special functions, see Erdélyi
(1955), we find an entire function, referred to
as the Wright function, which reads (in our no-
tation)

Zn
= N Cs
2 mMTAn+p)  oF

n=0

where A > ~1 and u > 0. From a comparison
among (3.15)-(3.16) and (3.17) we recognize
that the auxiliary functions are related to the
Wright function according to

1317

F(z; B) =W 0(=2) = BzM (z; ),

Mz B) =W _p(-2).

(3.18)

Although convergent in all of C, the series rep-
resentations in (3.15)-(3.16) can be used to
provide a numerical evaluation of our auxiliary
functions only for relatively small values of r,
so that asymptotic evaluations as r — + are
required. Choosing as a variable 7/ rather than
r, the computation by the saddle-point method
for the M function is easier and yields, see
Mainardi and Tomirotti (1995),

FB-12/1-B)

M@l B)~ —— -
(/B; B) i)

(3.19)

- exp [——1 Bﬁ r“(l‘ﬁ)], r— +oo.

We note that the saddle-point method for
B = 1/2 provides the exact result (3.11), i.e.
M(r;1/2) = M%) = (IN7) exp(-r%/4), but
breaks down for # — 1. The case 8 = 1, for
which (1.2) reduces to the standard wave equa-
tion, is of course a singular limit also for the
series representation since M(r; 1) = § (r—1).

The exponential decay for r — +oo ensures
that all the moments of M(r; B) in R* are fi-
nite; in particular, see Mainardi (1997), we ob-
tain

+oo 'n+1)
" ; =— " = 2...
Jo r"M(r; B)dr TGnel) n=0,1,
(3.20)

In fig. 1 we exhibit plots of the auxiliary
function M(r; B) in 0 < r < 4 for some rational
values of . The plots are obtained by means
of a numerical matching between the series
and the saddle-point representations. As a mat-
ter of fact it turns out that the function M (r; B)
is monotonic decreasing for 0 < B < 1/2, while
for 1/2 < B < 1 it first increases and then de-
creases exhibiting the maximum value M,(S)
at a certain point ry(8); as B — 17, My(B) —
+eo and ry(B) — 1.
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Fig. 1a-d. Comparison of M (r; 3) (continuous line) with M (r; 1/2) (dashed line) in 0 < r < 4, for various of

B. (@) 1/4; (b) 1/3; (c) 2/3; (d) 3/4.

4. The evolution of the seismic pulse
from the fundamental solutions

It is known that in theoretical seismology
the Dirac delta-function is of great relevance in
simulating the pulse generated by an ideal seis-
mic source, concentrated in space (8 (x)) or in
time (0 (#)). Consequently, the fundamental so-
lutions of the Cauchy and Signalling problems
are those of greatest interest because they pro-
vide us with information on the possible evolu-
tion of the seismic pulses during their propaga-
tion from the seismic source. Accounting for
the reciprocity relation (3.12) and the similarity
variable (3.13), the two fundamental solutions
can be written, for x > 0 and ¢ > 0, as

Go (b B)= ——F(r; f) = ——

2[x \/D M B,

(4.1a)

G, (. 1. f)=LF (s pr=- By p,

(4.1b)

1+[3

where

r=x/(ND#)>0.

The above equations mean that for the funda-
mental solution of the Cauchy (Signalling)
problem the time (spatial) shape is the same at
each position (instant), the only changes being
due to space (time)-dependent changes of
width and amplitude. The maximum amplitude
in time (space) varies precisely as 1/x (1/7).
The two fundamental solutions exhibit scal-
ing properties that facilitate their plots versus
distance (at fixed instant) and versus time (at
fixed position). In fact, using the well-known
scaling properties of the Laplace transform
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in (3.6) and (3.8), we easily prove, for any
D, g > 0, that

G. (px, gt; B) = iﬂ G. (pxlg®, t; B) (4.2a)
q

G, (pr. gt B) =1 G. (pla®, . ) (4.2b)

and, consequently, in plotting we can choose
suitable values for the fixed variable.

In order to inspect the evolution of the ini-
tial pulse for seismological purposes, we need
to plot G. (x, ; B) versus x and G, (x, 1; B)
versus t as B is sufficiently close to 1 (nearly
elastic cases) to ensure a sufficiently low value
for the constant internal friction Q™. From
(2.13)-(2.14) and (2.16)-(2.17) we need to con-
sider B = 1—¢ with € = v/2 of the order of
0.001 to 0.01. In the evaluation of the auxiliary
functions in the nearly elastic cases, we note
that the matching between the series and sad-
dle-point representations is no longer achieved

100.00

1004

0.10 -

001 —_—
0.6 0.7 08 09 1.0 11

®

since the saddle point turns out to be wide and
the consequent approximation becomes poor.
In these cases we need to adopt the ingenious
variant of the saddle point method introduced
by Pipkin (1972-1986), see also Kreiss and
Pipkin (1986), which allows us to see some
structure in the peak while it tends to the Dirac
delta-function. With Pipkin’s method we get
the desired matching with the series represen-
tation just in the region around the maximum
r = 1, as shown in fig. 2a,b, where we exhibit
the significant plots of the auxiliary function
M(r; B) with f=1—¢for £=0.01 and €= 0.001.
In this figure we compare the series representa-
tion (100 terms, dashed line), the saddle point
representation (dashed-dotted line), and the
Pipkin representation (continuous line). Once
the auxiliary function M(r; B) is obtained in
the nearly elastic cases, we easily get the corre-
sponding plots of the fundamental solutions of
the Cauchy and Signalling problems by using
(4.1a,b), see figs. 3a,b and 4a,b.

We also note the exponential decay of
G. (x, 1; B) as x — +oo (at fixed 7) and the al-
gebraic decay of G, (x,#; ) as t — +oo (at

1000.0

100 4

10

0.1 : ; . ; . . .
092 094 0.96 0.98 100 102

®

Fig. 2a,b. Comparison of the representations of M (r; 8) with =1 — £ around the maximum 7 ~ 1, in the
cases (a) €=0.01, (b) £=0.001, obtained by Pipkin’s method (continuous line), 100 terms-series (dashed

line) and saddle-point method (dashed-dotted line).
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Fig. 3a,b. Plots of the fundamental solution G, (x, ¢; 8) versus x at fixed =D =1, with B=1—¢ in the
cases (a) £€=0.01, (b) €=0.001.
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Fig. 4a,b. Plots of the fundamental solution G (x, t; ) versus t at fixed x=D =1, with f=1—¢ in the
cases (a) £€=0.01, (b) €=0.001.
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fixed x), for 0 < B < 1. In fact,

using (4.1a,b)

with (3.16) and (3.19), we get

G (x, 1, ﬁ)~a(t)x(ﬁ—1/2)/(1_l3)_
(4.3a)
~exp [-b () x"1P] x 5 oo,

Gs 6 5 B)~c@ P, 1 5 o (4.3b)

where a(?), b(r) and c(x) are positive func-
tions.

5.

The fundamental solutions as
density functions

probability

It is well known that the fundamental solu-

tion of the standard diffusion equation for the
Cauchy problem is related to the Gauss or nor-
mal probability law, bilateral in space. In fact,
recalling (3.3a), we have

1 .
Gl (x, r)=2 —¢ P =psx; 00 (5.1)
Tt
where
pG(x;G):=;__e“"z/(2"Z), 0’=2Dr (5.2)

2o

denotes the well-known Gauss probability den-
sity function (pdf) with variance o2, The asso-
ciated cumulative distribution function (cdf) is
known to be

T2

Py (x: 0):= fmpc(x;a>dx=

=4[

(5.3)

)|
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The moments of even order of the Gauss pdf
turn out to be

(2n)!

2"n!

2n _

jmxz" Pe (x; 0)dx =
- (5.4)
=(@2n- D! o¥= 2n - 1)!! 2Dy,

where n=1,2, ..

If we consider the fundamental solution of
the standard diffusion equation but for the Sig-
nalling problem, we note that it is related to the
Lévy probability law, unilateral in time (a prop-
erty not so well-known as that for the Cauchy
problem!). In fact, recalling (3.3b), we have

Gie == P = p ) 55
T
where
Vi 2
. - —H/(21) -
L= = e, p= S (56

denotes the Lévy
cdf

pdf, see Feller (1971), with

P, p:= J.OPL @ wdre = Frfc (\/2%)

The Lévy pdf has all moments of integer order
infinite, since it decays at infinity as 2.
However, we note that the moments of real or-
der & are finite only if 0 < § < 1/2. In particu-
lar, for this pdf the mean (expectation) is infi-
nite, but the median is finite. In fact, from
Py (tweas W) = 172, it turns out that 1,,, =~ 24,
since the complementary error function gets
the value 1/2 as its argument is approxima-
tively 1/2 (a better evaluation of the argument
is 1/2.1).

The Gauss and Lévy laws are special cases
of the important class of a-stable probability
distributions, or stable distributions with index

. 6.7

2Dt

= erfc(
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of stability (or characteristic exponent) & = 2
and o = 1/2, respectively. Another special case
is provided by the Cauchy law with pdf
pe(; A) = A/[m(E*+ A%, and o = 1.

The name stable has been assigned to these
distributions because of the following property:
if two independent real random variables with
the same shape or type of distribution are com-
bined linearly and the distribution of the result-
ing random variable has the same shape, the
common distribution (or its type, more pre-
cisely) is said to be stable. More precisely, if
Y, and Y, are random variables having such
distribution, then Y defined by the linear com-
bination cY =c; ¥, + ¢, Y, has a similar distri-
bution with the same index ¢ for any positive
real values of the constants ¢, ¢, and ¢, with
c¢%=cf+ 5. As a matter of fact only the range
0 < o < 2 is allowed for the index of stability.
The case « = 2 is noteworthy since it corre-
sponds to the normal distribution, which is the
only stable distribution which has finite vari-
ance, indeed finite moments of any order. In
the cases 0 < o < 2 the corresponding pdf p,(y)
have inverse power tails, i.e., f1y|> APa M dy =
= O (X%), and therefore their absolute moments
of order § are finite if 0 < § < o and infinite if
52

The inspiration for systematic research on
stable distributions, originated with Paul Lévy,
was the desire to generalize the celebrated
Central Limit Theorem (CLT).

The restrictive condition of stability enabled
some authors to derive the general form for the
characteristic function (c¢f, the Fourier trans-
form of the pdf) of a stable distribution, see
Feller (1971). A stable ¢f is also infinitely di-
visible, i.e., for every positive integer n it can
be expressed as the n-th power of some cf.
Equivalently we can say that for every positive
integer n a stable pdf can be expressed as the
n-fold convolution of some pdf. All stable pdf
are unimodal and indeed bell-shaped, i.e., their
n-th derivative has exactly n zeros.

Using standardized random variables, the
o-stable distributions turn out to depend on
an additional parameter ¥, called the skewness
parameter. Denoting a stable pdf by pa(y; V),
we note the property po(—y;=7¥) = pal¥; ¥):
Consequently, a stable pdf with y= 0 is neces-

sarily symmetrical. As a matter of fact | y| < aif
O<oa<land|y|<2-aif 1 <o <2. Stable
distributions with extremal values of y are
called extremal.

From the theory one recognizes that the
normal distribution is the only stable df inde-
pendent on % and that all the extremal stable
distributions with 0 < o < 1 are unilateral, i.e.,
vanishing in R* if y = + ¢ In particular, the
following representations by convergent power
series are valid for stable distributions with
0 < o0 < 1 (negative powers) and 1 < & < 2
(positive powers), for y > 0,

r 1

Pa O y)—ﬂl Z( -y LD
(5.8)

-sin[n—zﬂ(y—a)], O<ax<l,

L L/ 1

Pa i) =— ! Z( (na+)
5.9

-sin[ﬂ(y—a)], 1<o<?2.
20

From (5.8)-(5.9) a relation between stable pdf
with index o and 1/¢¢ can be derived. Assum-
ing 1/2< a<1andy>0, we obtain

— P Ofa; ’}/) =Pa (y; 7*%

a+1

(5.10)
y*=oa(y+1)—-1.

A quick check shows that y* falls within
the prescribed range, | y*| < «, provided that
|7| < 2—1/a. Furthermore, we can derive a
relation between extremal stable pdf and our
auxiliary functions of Wright type. In fact, by
comparing (5.8)-(5.9) with the series represen-
tations in (3.15)-(3.16) and using (3.18), we
obtain

o

o+1

Po(y; —0) = %F(y’“; o) = MO»™ o),

(5.11)
0<ax<l,
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Pa (¥; a—2)=%F(y; 1/a)=iM(y; la),
o

(5.12)
l<a<?2.

Consequently we can interpret the fundamental
solutions (4.1a) and (4.1b) in terms of stable
pdf, so generalizing the arguments for the stan-
dard diffusion equation based on (5.1)-(5.7).

We easily recognize that for 0 < B <1 the
fundamental solution for the Signalling prob-
lem provides a unilateral extremal stable pdf in
(scaled) time with index of stability o = f,
which decays according to (4.3b) with a power
law. In fact, from (4.1b) and (5.11) we note
that, putting y = =8 = ¢,

WNDY' G, (x, 1; B) = py (; ),

(5.13)
7=t (ND/x)"P > 0.

This property has also been noted by Kreiss and
Pipkin (1986) based on (3.8) and on Feller’s re-
sult, py(t; —0) + exp(—s% for 0 < o < 1.

As far as the Cauchy problem is concerned,
we note that the corresponding fundamental
solution provides a bilateral symmetrical pdf in
(scaled) distance with two branches, for x > 0
and x < 0, obtained one from the other by re-
flection. For large |x| each branch exhibits an
exponential decay according to (4.3) and, only
for 172 < B < 1, is it the corresponding branch
of an extremal stable pdf with index of stability
o= 1/f. In fact, from (4.1b) and (5.12) we note
that, putting y = |r| = £ > 0,

2BVD P G, (1x1. ; B) = pujg (& 1/8-2),
(5.14)
E=x|1/(DP) > 0.

This property had to the authors’ knowledge
not been noted: it properly generalizes the
Gaussian property of the pdf found for 8= 1/2
(standard diffusion). Furthermore, using (3.20),
the moments (of even order) of G, (x, t; B)

turn out to be

_ TQ@n+1)

2B\n
C(2Bn+1) DY

(5.15)

We recognize that the variance is now propor-
tional to Dr*, which implies a phenomenon of
Jfast diffusion if 1/2 < B < 1.
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Appendix. Essentials of fractional calculus.
\\

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications
of integrals and derivatives of arbitrary order. The term Jractional is a misnomer, but it is retained following

the prevailing use.

According to the Riemann-Liouville approach to fractional calculus, the notion of fractional integral of or-
der o (o > 0) is a natural consequence of the well-known formula (usually attributed to Cauchy) that reduces
the calculation of the n-fold primitive of a function f(¥) to a single integral of convolution type. In our notation

the Cauchy formula reads

J'f():=f, (’)=r11)z J:) (t-1"'f(t)dt, t>0, ne N, (A1)

where IN is the set of positive integers. From this definition we note that £, () vanishes at ¢ = 0 with its deriva-
tives of order 1, 2, .., n—1. For convention we require that Jf(®) and henceforth 1,(® be a causal function, i.e.,

identically vanishing for ¢ < 0.

In a natural way one is led to extend the above formula from positive integer values of the index to any
positive real values by using the gamma function. Indeed, noting that (n—1)! =" (n), and introducing the arbi-
trary positive real number ¢, one defines the Fractional Integral of order o > 0:

1

Jaf(t) = m

Jr t-D*'f(Ddr, t>0, ae R* (A.2)
0

where R™ is the set of positive real numbers. For complementation we define J°:= | (Identity operator), i.e., we
mean J° £(r) = £(5). Furthermore, by J*£(0") we mean the limit (if it exists) of J*f(¢) for £ — 0; this limit may

be infinite.

We note the semigroup property J*JP = jo+B o B = 0, which implies the commutative property JP J* =
= J*JP, and the effect of our operators J% on the power functions

Jo =
F'y+1+om

I'(y+1) fra

20, y>-1, t>0. (A.3)

These properties are of course a natural generalization of those known when the order is a positive

integer.

Introducing the Laplace transform by the notation L{f(1)}:= j e f(0)dt = f(s), seC, and using the
0

sign + to denote a Laplace transform pair, i.e., f(#) + f(s), we note the following rule for the Laplace transform
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of the fractional integral:

rrw+t, @z, (A4)
N

which is the generalization of the case with an n-fold repeated integral.

After the notion of fractional integral, that of fractional derivative of order o (o > 0) becomes a natural re-
quirement and one is attempted to substitute o with — ot in the above formulas. However, this generalization
needs some care in order to guarantee the convergence of the integrals and preserve the well-known properties
of the ordinary derivative of integer order.

Denoting by D", with n € IN, the operator of the derivative of order n, we first note that D" J"=1, J"D" #1,
ne N, i.e., D" is left-inverse (and not right-inverse) to the corresponding integral operator J”. In fact we easily
recognize from (A.1) that

n-1 k
"D =)= Y f“”(O*)%, t>0. (A.5)
k=0

As a consequence we expect that D is defined as left-inverse to J For this purpose, introducing the positive
integer m such that m—1 < o < m, one defines the Fractional Derivative of order o > 0:

D“f(r):=D'"Jm‘“f(r)=j—m[ 1 I f(1) dr].

[ T'm-a) Jo (t_T)OHI—m

m—1<oa<m, melIN. (A.6)
Defining for complementation D° = J%= I, then we easily recognize that D*J*=1, o > 0, and

pego LD

=— "% o020, >-1, t>0. A7
I'iy+1-o 4 A7)

Of course, these properties are a natural generalization of those known when the order is a positive
integer.

Note the remarkable fact that the fractional derivative D”f is not zero for the constant function f(z) = 1 if
o¢ IN. In fact, (A.7) with y = 0 teaches us that

Z—O{

="t
r(l-a)

o

a0, t>0. (A.8)

This, of course, is =0 for e IN, due to the poles of the gamma function in the points 0, —1, -2, .... We now
observe that an alternative definition of fractional derivative, originally introduced by Caputo (1967, 1969)

in the late sixties and adopted by Caputo and Mainardi (1971) in the framework of the theory of Linear
Viscoelasticity, is

t (m)
DEf(t):=T""“D"f(f) = F(ml_ o Js (t_ff)g_m de.

m—1<oa<m, melN. (A.9)
This definition is of course more restrictive than (A.6), in that requires the absolute integrability of the deriva-
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tive of order m. Whenever we use the operator D) we (tacitly) assume that this condition is met. We easily
recognize that in general

Def():=D™J"=%f(z) JmTED™E() = DEF(p), (A.10)
unless the function f(¢) along with its first m— 1 derivatives vanishes at £ = 0*, In fact, assuming that the passage of

the m-derivative under the integral is legitimate, one recognizes that, for m—1 < ¢ < m, and ¢ > 0,

m—1

Def®)=DEfD+ Y

k=0

tk~oc

&)+
r(k—a+1)f 0%, A1)

and therefore, recalling the fractional derivative of the power functions (A.7),
m-—1 lk
D® (f(t) -y Al ‘k’(O*)) =D f(1). (A.12)
k=0

The alternative definition (A.9) for the fractional derivative thus incorporates the initial values of the function
and of its integer derivatives of lower order. The subtraction of the Taylor polynomial of degree m — 1 at 7 = 0*
from f(¢) means a sort of regularization of the fractional derivative. In particular, according to this definition,
the relevant property for which the fractional derivative of a constant is still zero can be easily recognized, i.e.,

DI1=0, o>0. (A.13)

We now explore the most relevant differences between the two fractional derivatives (A.6) and (A.9). We
agree to denote (A.9) as the Caputo fractional derivative to distinguish it from the standard Riemann-Liouville
fractional derivative (A.6). We observe, again by looking at (A.7), that D* %! = 0, >0, t > 0. From above
we thus recognize the following statements about functions which for t > 0 admit the same fractional deriva-
tive of order @, with m—1 < ¢ < m, me N,

D=0 & f)=gW)+ Y c;1 ‘ (A.14)

j=1

DIf)=Dlg(t) o f()=g(t)+ 2 ¢t (A.15)
j=1
In these formulas the coefficients ¢; are arbitrary constants.

For the two definitions we also note a difference with respect to the Jormal limit as o« — (m—1)*. From
(A.6) and (A.9) we obtain, respectively,

o= (m=1)* = D f(1)— D" Jf() = D" f(1); (A.16)
a=(m=1)" = DZf() >ID"f(r) = D"~ f(r) — f "~ (0", (A.17)

We now consider the Laplace transform of the two fractional derivatives. For the standard fractional deriva-
tive D the Laplace transform, assumed to exist, requires the knowledge of the (bounded) initial values of the
fractional integral J”~*and of its integer derivatives of order k = 1, 2,..m—-1. The corresponding rule reads,
in our notation,

m-—1

DY f(t)+s*F (s) - ZD"J(”"“‘)f(O")s'”‘]"‘, m-1<o<m. (A.18)

k=0

The Caputo fractional derivative appears more suitable to be treated by the Laplace transform technique in
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that it requires the knowledge of the (bounded) initial values of the function and of its integer derivatives of
order k = 1,2, ... m—1, in analogy with the case when & = m. In fact, by using (A.4) and noting that

m-1 k
JDEf@) =AD" () = I D) =f0) = 3 F P07 5 (A.19)

k=0

we easily prove the following rule for the Laplace transform:
m—1
DY f(1)+s“F (5) - 2 FO0) sk, m—1<a<m. (A.20)
k=0

Indeed, the result (A.20), first stated by Caputo (1969) by using the Fubini-Tonelli theorem, appears as the
most «natural» generalization of the corresponding result well known for o = m.

This appendix is based on the review by Gorenflo and Mainardi (1997). For more details on the classical
treatment of fractional calculus the reader is referred to Erdélyi (1954); Oldham and Spanier (1974); Samko
et al. (1987-1993) and Miller and Ross (1993). Gorenflo and Mainardi have pointed out the major utility of the
Caputo fractional derivative in the treatment of differential equations of fractional order for physical applica-
tions. In fact, in physical problems, the initial conditions are usually expressed in terms of a given number of
bounded values assumed by the field variable and its derivatives of integer order, no matter if the governing
evolution equation is a generic integro-differential equation and therefore, in particular, a fractional differential
equation.
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