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The sand grain and the butterfly
Instability in geodesy and geophysics

Helmut Moritz
Physical Geodesy, University of Technology, Graz, Austria

Abstract

The problems of convergence of series in celestial mechanics and of certain series in geodesy (Molodensky’s
series and spherical harmonics) show similar features, involving a curious instability. This is imaginatively ex-
pressed as the «butterfly effect» in chaos theory and the «sand-grain effect» for spherical harmonics. Similarly,
the geodetic boundary-value problem (M.S. Molodensky, L. Hérmander) and the KAM problem in nonlinear
dynamics have a common mathematical structure: a <hard» inverse function problem. Such interrelations are
reviewed in the present paper.

Key words  geodesy — geophysics — gravity field — (1991, with many references). Chaos theory is
instability — chaos theory particularly popular with computer fans since it
generates pictures of wonderful exotic beauty;
¢f. the programs and diskettes in the books
(Herrmann, 1994; Korsch and Jodl, 1994).

) i . Modern chaos theory is said to start with the
«We collectively wish to apologize for hav- work of AN. Kolmogorov and V.I Arnold

ing mjsleq the general educate.d. public by (¢f Amold and Avez, 1968) and by Lorenz (1963).
SP readmg 1dpas about ﬂ,le deterrmmsm of sys- Its principles and implications were, however,
tems satisfying Newton’s la}ws of motion .tha_t, already fully understood, by the great mathe-
after 1960, were p roved Incorrect»>. This is matician Henri Poincaré; cf. Poincaré (1908,
what Sir James Lighthill, then President of the reprint, p. 68), also quoted in Moritz (1995). A
International Union of Theoretical and Applied special case, the «problém of small denomina-

Mechanics, said (Lighthill, 1994). tors», had alread .
: . . , y been known for a long time
What Sir James meant is that the old belief in celestial mechanics, but it was only the

that classical mechanics always leads to stable mathematician Heinrich Bruns (1884) who
and pLedliltable dsystems Illa; been ¢ pro;{ed shortly before Poincaré described the formi-
wrong by the modern general theory of nonlin- dably mathematical implication of this special

ear dynamical systems, now very popular by ; .
the name of Deterministic Chaos (e.g., Schus- case; ¢f. also Wintner (1941).

ter 1988) or simply Chaos Theory. From the
enormous «chaos» of books on this subject my ) .
favorites are Hilborn (1994) and Jackson 2. Convergence of astronomical series

1. Introduction

Let us briefly outline the work of Bruns in a

Mailing address: Prof. Helmut Moritz, Physical Geo- ~ Simplified manner, following Moritz (1969).
desy, University of Technology, Steyrergasse 30, A-8010 P?Oblems Of_ convergence already arise in
Graz, Austria; e-mail: moritz@fpgeods02.tu-graz.ac.at the first approximation, in the well-known case
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of linear perturbations. Planetary perturbation
equations are of the type

% =3 S e cosma-nyr, @.1)

m=0n=0

where x is a typical orbital element which
slowly changes because of the effect of attrac-
tion of a perturbing planet; 7 is the time, and A
and u are given positive constants with g < 1,
so that the series (2.1) will be uniformly con-
vergent.

The example (2.1) is very instructive be-
cause it exhibits in a simple manner several
interesting and even strange features that arise,
in some way or other, in many convergence
problems. Similar cases are considered by
Brouwer and Clemence (1961) for planetary
perturbations and by Moritz and Mueller
(1987) for precession and nutation.

Equation (2.1) can be directly integrated to
give, for the initial condition x(0) = 0,

x=B+ Y Y B nmA—-nyt, (22)

mA—n

which we shall call «Bruns’ series». The sine
terms arise from integrating the corresponding
cosine terms in (2.1). All terms for which

mA—-n=0, 2.3)

must be excluded from the sum in (2.2). For
such terms we have

cos(mA—n)t=1, 2.4)

the integral of which is ¢, so that the term Br
represents the integral of the sum of all these
constant terms.

The value of the constant B depends on
whether A is a rational or an irrational number.
If A is irrational, then the condition (2.3) is sat-
isfied only for m =n =0. The corresponding
term in (2.1) is 1, so that we have

B =1 for A irrational. (2.5)

If A is rational, however, then A has the form

A= (2.6)

where p and ¢ are relatively prime integers, so
that the condition (2.3) is satisfied for
m=hq, n=hp

with =0, 1, 2, 3... By (2.1) we then have in-
finitely many constant terms, so that now

B= Zuh(f”q) (for A= % rational). 2.7

h=0

Although for every A the solution may be writ-
ten in the form (2.2), it shows some rather
strange features: if A is a rational number, then
the series (2.2) may be shown to be conver-
gent, because then the small divisors mA—n
will not become «too small». If A is irrational,
then the series may be convergent or divergent
in such a way that in every interval

Aog<A<Ao+ € 2.8)

of arbitrarily small length g, there always exist
infinitely many values A for which the series
(2.2) converges and infinitely many values A
for which this series diverges. This is the es-
sential result of Bruns (1884).

Thus the convergence or divergence of the
series (2.2) depends on the value A and is quite
different for two values of A that are arbitrarily
close to each other. We thus have Bruns’ Theo-
rem: If Bruns’ series (2.2) converges for a cer-
tain value A, it is always possible to find an
arbitrary small value € so that for A = Ay+ € the
series diverges, and vice versa.

Thus, since A is known empirically only to a
certain accuracy (within A— ¢ and A + ¢, say),
the question whether Bruns’ series is conver-
gent or not, is practically meaningless!

Remark. H. Bruns is also the author of
«The figure of the Earth» (1878) and the dis-
coverer of «Bruns’ formula» for the geoid,
well-known in geodesy; c¢f. Moritz (1980,
p. 14).
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3. Asymptotic series

In perturbation theory applied in many dis-
ciplines of mathematics, mathematical physics,
astronomy, etc., the solution is tentatively ex-
pressed as a formal power series with respect
to a «small parameter» k:

X=Xo+x; k+x k24 x5 K +. .. 3.1)

H

where x stands for the quantities that we wish
to determine, and the x; are functions that de-
pend on the data.

Expansions of the type (3.1), whether they
are convergent or divergent, are always asymp-
totic series; that is, we have

lim lﬂ [x—(xo+x k+x k2 4., +x,k")] =0
k—0
3.2)

for every integer n. This follows from a prop-
erty of asymptotic series: a formal power series
(3.1) with arbitrary finite coefficients x, is
asymptotic (Erdélyi, 1956).

Our astronomical series (2.2) have the form
3.1) for k=1.

Poincaré (1987, vol. 2, pp. 1ff, 452ff) has
established that the astronomical series (of
Bohlin and others) are asymptotic and in gen-
eral divergent.

This does not mean that such divergent se-
ries cannot be applied in practice. Mathemati-
cians use the well-known Stirling series to
compute the gamma function; physicists solve
nonlinear oscillation problems, astronomers
calculate precise planetary orbits, and geode-
sists determine height anomalies and deflec-
tions of the vertical, all by means of asymp-
totic series that are, mathematically speaking,
divergent. Such series can be used if the first
terms decrease rapidly enough for their sum to
provide a good approximation to the function to
be calculated; it will not matter practically if the
neglected higher terms start increasing again.

The practical use of divergent series needs,
however, to be justified. An arbitrarily accurate
approximation can be obtained only with con-
vergent series; with divergent asymptotic se-
ries, this error cannot be reduced below a cer-
tain limit. It must be investigated whether this
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limit is small enough to be in keeping with the
desired accuracy. The answer to such questions
requires a considerable understanding of the
convergence or divergence behavior of the se-
ries under consideration.

By such considerations of convergence or
divergence, Poincaré (1890) established for the
first time the instability and chaotic behaviour
of many (in a certain sense, of most) problems
of classical mechanics, and thus founded chaos
theory.

Precise conditions for the stability or
chaoticity of nonlinear dynamic systems have
been given since about 1960 by the famous
Russian mathematician A.N. Kolmogorov, his
coworker V. I. Arnold and the German mathe-
matician J. Moser (the «KAM-theorem»). They
showed in a very general way that convergence
or divergence, stability or instability of nonlin-
ear dynamical systems depends on number-the-
oretical properties (similar to rationality or ir-
rationality) of a certain parameter A, thus ex-
tending the results of Bruns to nonlinear prob-
lems. Thus convergence or divergence may
change by going from one value of the param-
eter A, to an infinitely close value A + €.

Nevertheless, as mentioned above, asymp-
totic series may be used very well in numerical
practice even if they are, strictly speaking, di-
vergent. This is why they are sometimes called
«semiconvergent».

Starting with my 1969 paper, I tried to ap-
ply these ideas to the well-known Molodensky
series solution of the geodetic boundary-value
problem. The paper (Moritz, 1971) shows that
Molodensky’s series is an asymptotic series,
and (Moritz, 1973) investigates its convergence.
Vastly superior to these rather dilettante efforts is
the investigation of the famous Swedish mathe-
matician Hérmander (1976), using the powerful
tools of modern mathematics, but his results hold
only for a surface that is much smoother than the
Earth. Sanso (1976, 1977) obtained similar re-
sults with simpler mathematics, but only for a
non-rotating Earth. All this work is reviewed in
the book (Moritz, 1980).

Is it not remarkable that the basic mathe-
matical structure, a «hard» inverse problem of
modern functional analysis, is the same in the
KAM theorem and in Hormander’s work?
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4. The Lorenz attractor

Another pioneer of modern chaos theory,
Lorenz (1963) discovered a very particular
form of instability in meteorology. Everyone
knows that weather prediction is extremely un-
reliable beyond, say, three days. Already the
great Poincaré (1908) had understood perfectly
the underlying mathematical-physical situation,
as remarked above.

Lorenz simplified the hydrodynamic-ther-
modynamics equations of meteorology to ob-
tain a simple system of three differential equa-
tions for three unknown functions x(¢), y(f),
z(#) of time #(x, y, z are not Cartesian coordi-
nates but represent the system’s state):

%:—3x+3y,

Ay 26.5 4.1
E__XZ+ Sx-y, 4.1)
_

a T

the nonlinearities xy and xz are essential. Solv-
ing the three equations by numerical integra-
tion, Lorenz found that a very small difference
in the initial conditions will cause large devia-
tions in the corresponding trajectories (fig. 1).
Furthermore, the trajectories show a strange
attractor of butterfly-like shape. A trajectory
will spend some time orbiting around one
«wing» of the butterfly and then unpredictably
change to the other «wing», orbiting around it
a «random» number of times before jumping
back to the first wing, and the game continues
indefinitely.

It is particularly impressive to look at a
computer animation following the motion of a
number of particles which are first undistin-
guishingly close to each other. In the course of
time the particles separate, until they are ran-
domly distributed over the computer screen.

This is a typical case of unstable motion:
stability means that small causes produce small
changes, whereas in instability, small causes
may produce large effects.

Fig. 1. The Lorenz attractor.

Lorenz has picturesquely described this
phenomenon as the butterfly effect: the flight
of a butterfly in Austria may (in principle)
cause a tornado in America.

In the geodynamo theory of the core’s elec-
tromagnetic field, a similar attractor might ex-
ist, and the change of our particle (representing
the system’s state) from one wing to the other
may correspond to the unpredictable jump of
polarity of the Earth’s magnetic field every
million years or so on the average.

As a matter of fact, there are also other ap-
plications of nonlinear system theory in geo-
physics, one of the most important being the
application to earthquake theory by Keilis-
Borok and co-workers; cf. Keilis-Borok (1990).

5. The convergence of the spherical har-
monics expression of the geopotential

The development of the external gravita-
tional field into a series of spherical harmonics
has long been known to be convergent outside
and on the smallest sphere o, around the origin
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O that just touches the Earth’s surface E (fig. 2).
It would be convergent even at the Earth’s sur-
face if the analytical continuation of the exter-
nal potential exists and is regular to the second
limit sphere o, which just touches the Earth’s
surface from the inside.

Assuming the latter, a pointlike grain of
sand S, of arbitrarily small mass m, lying on
the Earth’s surface, will change convergence
into divergence since it produces a potential

_Gm

v 7

5.1

where [ is the distance from § and G is the
Newtonian gravitational constant. At S, the po-
tential (5.1), and hence also the analytical con-
tinuation of the total external potential, will
have a singularity. Hence this analytical con-
tinuation will no longer be regular down to o,
so that the external potential will no longer
converge over the whole Earth’s surface E.
The mass m might be as small as we like, e.g.,
10710 kg.

This simple consideration of Moritz (1961)
was supplemented by Krarup (1969) by show-
ing that also the converse is true: not only can
a sand grain change convergence into diver-
gence, but an arbitrarily small change of the
external potential may also change divergence

!

Fig. 2. The limit spheres o, and o;.

into convergence! This is the sand-grain effect
in gravimetry; Krarup (1969) called it «<Runge’s
Theorem» because Runge proved a similar the-
orem for analytic functions of a complex vari-
able. For more details ¢f. Moritz (1978) and
the book (Moritz, 1980, sections 6-8).

«Arbitrarily small» means arbitrarily small,
e.g., changing gravity along the Earth’s surface
in such a way that the change nowhere exceeds
107" mgals. This is obviously beyond measur-
ing accuracy, so that the question of conver-
gence or divergence of the geopotential at the
Earth’s surface is empirically irrelevant. Thus,
for practical purposes, the spherical harmonic
series of the geopotential can always be con-
sidered to be convergent at the Earth’s sur-
face.

Thus, paraphrasing the statement of Sir
James Lighthill quoted at the beginning, I
should like to say: «We theoretical geodesists
wish to apologize to the geodetic and geophys-
ical community for the false impression given
by us, that the question of mathematical con-
vergence of the geopotential at the Earth’s sur-
face has any practical significance.
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