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Abstract

Discretization of the wave operator for purposes of solving problems in the dynamics of crack growth numeri-
cally, introduces noncausality associated with the nonlinearity of the fracture criterion at the edge of the crack,
i.e. with an imperfect formulation of the fracture criterion in the discretized case. The noncausality can be at-
tributed to jumps from one inertial coordinate system to another as successive particles at the edge of a digi-
tized crack are triggered into motion. It is shown that there is an equivalent explanation in terms of the incom-
patibility of the short-range edge conditions and the long-range correlations of slip on the crack in the dis-
cretized case. The noncausal effects can lead to supersonic crack growth, and in some cases to infinite crack
growth velocities. A proposal for amelioration of the problem is offered.

Key words  nonlinearity - fracture — noncausality A synopsis of the physics is as follows: a
prestressed elastic solid has a pre-existing fault
surface that is prevented from slipping by

1. Introduction static friction. If the prestress is equal to the
friction at some point along the surface, on the

The solutions to the problems of the dynam- brittle fracture model the stress drops instantly
ics of fracture and crack growth are fundamen- to a low value and crack growth is initiated.
tal to our understanding of the seismic source The crack continues to grow as long as the
and as a consequence to their application to the stress concentration at the edge of the crack,
understanding of the problems of strong when added to the prestress exceeds the fric-
ground motions in large earthquakes, as well as tion. (Since the purpose of this paper is to ex-
to the problems of evolutionary seismicity in plore a numerical condition at the edge of the

an active seismic region. The mathematics of growing crack, I will not undertake to discuss
dynamic growth of a crack under conditions of the problems of healing, i.e. the progressive

brittle fracture on a pre-existing fault surface  cessation of slip or healing of crack motions,
for simple geometries and for specific modes which are equally important for understanding
of crack motions, is a well-known nonlinear crack slip histories as dynamical models of
problem that has been described in the pub- earthquake sources). The slip on the crack sur-
lished literature for over 30 years (see, e.g., face is the analytic continuation of the dis-
Kostrov, 1966). placement in the interior of the solid, where the

displacement satisfies the elastic wave equa-

tion; in other words, the slip gives rise to the
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is the source that drives the crack and that gen-
erates the displacements in the elastic wave ra-
diation field. Recent attention has focused on
modifications of this formulation under as-
sumptions that the failure of the frictional con-
tact is not instantaneous, but instead that the
bond strength undergoes progressive weaken-
ing during the dynamics.

Even for the simpler cases of instantaneous
failure, the solution to this nonlinear problem
as a problem in dynamics is extraordinarily
difficult for arbitrary fault geometry, for an ar-
bitrary geometrical distribution of friction at
the edge, and for in-plane slips in the crack
surface, which generate tensor stress fields. So-
lutions have been given for restricted cases of
problems of linear or planar faulting in one- or
two-dimensions, with specialized modes of slip
(usually antiplane), and for specialized distri-
butions of stress drop and of static friction at
the edge of the crack.

The problems of understanding the condi-
tions of growth at the edge of the crack are dif-
ficult; it is at the edge of the crack where the
nonlinearity arises due to the fact that the edge
is a moving boundary between the fractured
and unfractured regions. In this paper I will
show that discretization of the pde’s of dy-
namic elasticity introduce issues of causality
that need to be addressed for problems of in-
stantaneous failure; these problems are equally
important in cases of progressive weakening of
the strength of the contact at the edges of dis-
cretized cracks. I restrict this discussion to the
problems of instantaneous failure. Since this
problem will arise at all levels of complexity
of geometry, heterogeneity and mode of rup-
ture, it suffices for the purposes of illustration
to consider the simplest possible example
which is that of a problem of fracture under
conditions of homogeneous one-dimensional
elasticity without taking into account the en-
ergy losses due to elastic wave radiation; as re-
marked, there will be no loss in the generality
of understanding the difficulty if we consider
cracks with higher dimensionality or with slip
motions other than scalar, or if we consider
problems of nonplanar geometry of fault sur-
faces, although the solution, in most of these
cases will be more complex.
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2. One-dimensional continuum crack

In the homogeneous one-dimensional case,
the problem of the slip on the fault U(x, 1), is
given by a solution to the inhomogeneous
wave equation

pUtt (X, t) - .uU)cx (x, t) =f(x)7 x< é(t)
2.1)
U=0, x>&(p),
with the conditions
U, (x, 1) + EpU, (x, 1) = —g (),
2.2)

U+EU, =0,

on the edge of the crack x = £(¢), which are
appropriate in the inertial frame of the coordi-
nate system x; see Knopoff e al. (1973) for a
derivation of these two advection equations. In
the moving frame of the crack edge, the frac-
ture criteria are simply uU, (£(2)) =—g (£(9)
and U (£(¢)) = 0. Equation (2.1) is valid in the
inertial frame. The usual elastic modulus and
density are (U, p), and we use the usual sub-
script notation for partial derivatives with re-
spect to ¢ and x. The velocity of elastic waves
is ¢ = (Wp)"?. The quantity f(x) is the stress
drop. The edge of the crack is at coordinate
E(?). In (2.2) we only consider the condition at
the rightward travelling edge of the crack; the
modification for the other edge is easily made.
The quantity g(x) is called the «excess force»
and in the dynamic case is the difference be-
tween the bond strength and the prestress at the
edge of the crack, in the appropriate units; i.e.,
the quantity g(x) is the force that must be
added to the prestress at the crack edge that
has to be supplied by the stress concentration
at the edge of the crack to cause new material
to break; g(x) =0 at the point of initiation of
fracture.

The quantities f and g have different dimen-
sions: f(x) is a stress, which in our one-dimen-
sional system is a force per unit length, while
g(x) is a force. These definitions are unique to
the one-dimensional case. In two- and three-
dimensions, the quantity g(x) will be a stress,
having the same dimensions as udU/dx, and
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S will be a stress gradient. These differences
disappear when the continuum is digitized onto
a discrete lattice.

It is clear that egs. (2.1) are linear: the non-
linearity in the problem is focused on egs. (2.2).
Thus this problem is a form of Stefan problem.
A closed form solution to a restricted case of
the nonlinear problem (2.1)-(2.2) is given by
Knopoff er al. (1973).

By eliminatiqg U, or U, from egs. (2.2), it is
easy to see that & <c, and & = ¢ only if g (x) = 0.
Thus these cracks always grow subsonically if
the excess force demanded for fracture is
nonzero and they grow sonically if it is zero.
Thus the conditions (2.2) represent a causality
condition since these cracks can never propa-
gate supersonically. There can be no super-
sonic crack-edge velocities in a perfectly elas-
tic system because of the following physics-
based argument: the dynamics of the rupture is
controlled by the elastic waves that are excited
by the slip on the crack which is the boundary
to the elastic medium outside it; the elastic
waves exist only in the elastic medium outside
the crack and travel outward, away from the
crack, with elastic wave velocity. The dynamic
stresses in these elastic waves are the trigger-
ing agents for the growth of the cracks, i.e. the
stress waves in the elastic medium provide the
increment over the prestress that takes the
force up to the level needed to break additional
material at the edge of the crack. The greater
the amount of excess stress at the edge of the
crack, the slower the rate of growth of the
crack. Since the maximum speed of stress
wave propagation is c, these passive cracks
cannot rupture with edge velocities greater
than c¢. In general, these conclusions are
unchanged for cases of two- or three-dimen-
sional geometries; however the form of the
conditions at the edges is no longer as simple
as in this example; Chatterjee and Knopoff
(1983) give an example in the two-dimensional
antiplane case.

The conditions (2.2) show that immediately
behind the crack edge the particle velocity U,
Jjumps instantly to a finite value from the Zero
value it has in front of the crack. The jump in
slip velocity does not violate conditions for conti-

1289

nuity of momentum since an infinitesimal ele-
ment at the crack edge has infinitesimal mass,

3. Noncausality of the discretized crack

In order to solve the general problem
g =0, f(x)= constant, we can have recourse
to the Green’s function methods (see Chatterjee
and Knopoff, 1983), or we can try to solve the
system (2.1)-(2.2) numerically. In the latter
case, the discretization of the spatial second-
derivative operator 0%9x? in egs. (2.1), and
more generally the operator V2 arising from
elasticity leads to the difference equations

mU,=k[U,,1=2U,+U,_1=f,, (3.1a)

where we have set k=ula, m =pa, x=na,
and a is the lattice spacing or digitization inter-
val. For convenience we rewrite (3.1a) in the
obvious way

mUn_k[Un—Un—1]+k[Un+1_Un] =fn'

(3.1b)

Equation (3.1b) exhibits the force balance of a
system undergoing dynamic slip among a
chain of particles with mass interconnected
in a linear array by a set of linear springs with
spring constants k; we can place subscripts 7
on the masses and spring constants if they are
spatially variable quantities. Stresses in the
ruptured section are described by the system of
difference eqs. (3.1a,b) and are transmitted
along the ruptured segment with elastic wave
velocities, albeit with dispersion due to the
discretization; the dispersion is well-known
(e.g., Brillouin, 1946). (In the discretized Sys-
tem, the quantities f and g are both forces, the
difference of the units of these quantities in the
continuum having been accommodated by the
lattice spacing a. Thus the critical fracture
threshold of a lattice site is (f+g), and the
fracture needs to develop a force g or more to
allow the fracture to grow.)

Our attention is focused on the last brack-
eted term on the left hand side of egs. (3.1b).
Assume that the discretized fracture has
reached lattice site (or particle number) n and
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that particle (n + 1) has not yet begun to move.
Consider the transmission of stresses from the
last moving element, particle 7, to the adjacent
unbroken element, particle (n+1). Then the
force on particle (n + 1) at time ¢ is kU, (¢). The
usual fracture criterion is then taken to be that
rupture occurs at time 7 (measured from the time
that the n-th particle began to move) such that

kUn (t) =8n+1- (32)

The stress at particle (n + 1), which is kU, (9),
no longer satisfies the wave equation, since the
(n+ 1)st particle does not move and hence
there are no inertial effects. We can restore the
wave property if we suppose that there is a
perfect image wave travelling leftward that ar-
rives from sites to the right of site (n+ 1), so
that site (n+ 1) is a nodal point in a wave sys-
tem. But this would violate causality, since it
would imply that sites to the right of (n+ 1)
have a foreknowledge of the stress system at
times in advance of the arrival of signals from
the left that can only travel with wave veloc-
ity c. The difficulty is that the particle at
site # has stresses on it that do not satisfy the
wave equation within the framework of egs.
(3.1a,b).

As each particle begins to move from rest
under the sudden application of the force f, its
velocity increases linearly with time because of
its inertia, as all first-year physics students
know. Thus the discrete system differs from
the continuum markedly: the continuum begins
to move initially with finite velocity while in
the discrete system the particles begin to move
quadratically. A given particle only approaches
the constant velocity continuum limit after the
edge has moved some lattice sites away.

Although the edge moves in jerks, we define
the crack edge velocity to be the quotient of the
lattice spacing and the time interval between ini-
tiation of motion at successive lattice sites.

The simplest possible example is an ex-
treme case. Consider the homogeneous case in
which f, is the constant f;, and let g, = £ < f;,
except for g, = 0, which allows for initiation of
rupture at n = 0. As we have seen, the edge of
the fracture must travel with elastic wave
speed in the continuum limit of g(x) =0, ie.
& — 0, which is causally consistent.

In the discrete case, the situation is differ-
ent: at the time that the n-th particle begins to
move with quadratic increase of slip as a func-
tion of time, it transmits a force kU, to the
(n + 1)st particle, thereby triggering it into mo-
tion at the same instant as well, since the ex-
cess-force threshold for rupture is negligibly
small. Thus the crack edge in this discrete case
travels with infinite velocity as € — 0, a result
in violation of causality. The result is indepen-
dent of the wave properties of the system, be-
cause any individual classical connecting
spring transmits a force k (U, — U, ) instantly
without the phase delays implicit in the wave
equation. The phase delays arise in the wave
equation because of the long-range correlations
implicit in egs. (3.1a,b), even though only the
equations describe the coupling between near-
est neighbour particles. Thus the wave/phase
delay is a property of the (slip) motions at
wavelengths that are long compared with the
lattice spacing, while crack growth is a short-
wavelength property of the system. Thus the
failure to be causal in this discretized case can
be described as a consequence of the incom-
patibility of the long-range forces implied in
the slip on a crack and the short-range fracture
criterion.

If g, # 0, the discretized crack grows at fi-
nite velocity, although this velocity may still
be supersonic; in any case, the situation im-
proves with increasing g,, but there is always a
noncausal term at the edge of the crack that in-
fluences the motion that is due to the dis-
cretization. In most cases g, # 0, the slip of the
particles leave their parabolic regime quickly
and may reach their terminal velocity quickly;
if the first moving particle behind the crack
edge reaches its terminal velocity state after or
about the time that the next particle begins to
move, then these cases closely resemble the
continuum.

4. Amelioration of the noncausality

The amelioration of the incompatibility be-
tween the long-range correlations of the slip
and the short-range properties of the fracture
condition at the edge in the numerical case is
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difficult. An approximate solution to our prob-
lem can be found in egs. (2.2). On a continuum
theory, the static criterion for fracture is

HU, = —g (x), (4.1)
which is the same as its discretized version,
egs. (4.1). (Recall that U, is negative at
the right hand edge of the crack.) The first of
eqs. (2.2) shows that on the basis of a dynamic
theory, the criterion is

MU, (6 D ==g ()~ EpU, (x, 7). (4.2)
In other words, the dynamic continuum theory
states that the effective fracture strength is in-
creased due to the advection of momentum
across the crack boundary. To put it another
way, the static theory (4.1) would have been
perfectly applicable, had we evaluated the frac-
ture criterion on the moving boundary, rather
than on the fixed (inertial) coordinate system
in which U, = 0, .

Let us eliminate the velocity & between the
two equations of (2.2); we get an energy ver-
sion of the fracture criterion

U = —g (1) U, + pUZ. (4.3)
This expression is a statement of energy con-
servation. Thus the strain energy in the elastic
deformation field not only must be used to pro-
vide the energy needed to break the frictional
bonds at the crack tip, but also it must supply
the kinetic energy of motion of the sliding ma-
terial just behind the crack tip. (This expres-
sion also has the form of a Lagrangian if we
transpose the second term on the right hand
side of (4.3) to the left; this not unexpected if
we appreciate again that (4.3) is an expression
of the energy balance in the stationary and not
in the moving coordinate system). Thus we
have two forms of the fracture criterion, one
being a critical stress condition (4.2) and the
other being a critical energy criterion (4.3).
These are identical fracture criteria in the dy-
namic regime, but have often been identified as
being at odds with one another for static
cracks.
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The problem of the noncausality in the dis-
cretized case can be restated: since the edge
moves ahead by jerks in the discretized case,
the edge of the crack is at rest most of the time
in the inertial coordinate System, but the edge
advances abruptly to a new inertial coordinate
system every time a new particle is promoted
to the edge of the crack. Since the second of
egs. (2.2) is always satisfied at the edge of the
crack, we only need consider the first of these
equations. We rewrite the edge condition (4.2)
in a form appropriate to the local or discrete
system,

kUn_%<Un>=gn+ls (44)
C

where the second term on the left is the dy-
namic correction to the usual static stress rule;
the quantity in angular brackets is the value of
the particle velocity averaged over the time
since initiation of motion of the n-th particle.
Since &= alt, where ¢ is the time of fracture
of the (n+1)st particle, (U,)=U,lt, and

C2-

k 5 .
TR the result is

{

This fracture criterion model (4.5) is a satisfac-
tory solution to the problem of noncausality,
since it guarantees that. the rupture velocity
cannot be greater than ¢, even in the extreme
case g, = 0. Unfortunately (4.5) does not give
the correct rupture velocity, even though it is
always subsonic, for cases g # 0. This is due to
dynamic corrections that must be introduced
into (4.5) that arise from the failure of the mo-
tion of the n-th particle to satisfy the wave
equation for fixed (n + 1)st particle. These dy-
namic effects are manifested as lattice oscilla-
tions; although these oscillations are strongly
damped in the interior of the growing crack,
nevertheless they have a profound influence on
the rate of growth of the crack. This important
issue will be discussed in a second paper on
this subject.

- @

27 (4.5)

)Un=gn+l‘
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Unfortunately, we do not have similar ana-
lytic expressions as (4.3) for the edge condition
for more complex geometries such as those of
in-plane fractures in three dimensions. The
one-dimensional case is the only one having a
local fracture criterion; all others involve long-
range interactions because of the nature of the
Green’s function in several dimensions. For
example, the fracture condition in two-dimen-
sions for antiplane motions is known for gen-
eral (f(x), g(x)) (Chatterjee and Knopoff,
1983), and includes the effects of the long-
range terms; an application of the local model
(4.5) to discretized 2D antiplane cases gives
ambiguous results, even though of necessity,
they do not have supersonic edge velocities.

An application of model (4.5) to the prob-
lems of two-dimensional in-plane fractures,
with the imposition of a local fracture criterion,
gives the reasonable result that cracks that
grow in the direction of slip have edge veloci-
ties that are bounded by the P-wave velocity,
while growth in the crack plane perpendicular
to the slip is bounded by the S-wave velocity.
Details of this application are not given in this

paper.
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