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the geopotential field and its derivatives
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Abstract

The 3D spectral analysis of the gravitational potential field for a given mass distribution is studied. The de-
rived quantities, the gravitational force field and the gravity gradient tensor are computed in frequency space.
As an example, the fields are theoretically and numerically evaluated for a right rectangular prism. The spec-
tral approach finds several geophysical applications, as, e.g., in inversion processes. Gravity inversion for deep
seated masses, as for instance at Moho level, are treated with an iterative inversion process, in which the
downward continuation is alternated with the classical calculation of the gravity field. The theory is applied to
the inversion of the gravity data in the SE-Alps, regarding only the long-period field, generated by Moho un-
dulations. The results are used for the evaluation of the equipotential lines, the gravity field, and the gravity
gradient tensor in a vertical section of the Alpine crustal root.

Key words gravity inversion — downward contin- gard two classes of problems: the surface and
uation — gravitational gradient tensor upper crust local inhomogeneities and the

deeper horizontal discontinuities, as for exam-
ple the Moho.

1. Introduction The more superficial local inhomogeneities
may be in many cases approximated by geo-

For several decades spectral methods have ~ Metrical objects of known shape, as the sphere,
been used to describe geopotential fields. Taking the right or inclined cylinder, or a right or in-
advantage of the great quantity of satellite data, clined prism. The spectral approach gives some
both the gravitational and the magnetic fields advantages particularly in the process of grav-
are modelled at global scale by an expansion in ity inversion. The spectral problem has been

spherical harmonics. At local and regional approached in  the past (e.g., Odegard and
scale the spectral methodology can be devel- Berg, 1965; Regaq and H.m.ze’ 1976) for partic-
oped in Cartesian coordinates, applying the ular geometric objects, giving a formglat{on of
Fourier transform. This offers a variety of in- the spectrum of t'he gravity field which is t'he
terpretational possibilities scarcely used in apalytlce.ll evaluation of tl}e spectrum of gravity
practice. In the following we intend to point distribution along a profile or in the horlzop-
out some spectral characteristics of the geopo- tal plane (Bhattacharyya, 1.9 66, 1967, hBhl'
tential fields, which follow directly from their masankaram et al., 1977). This approach, how-

hysical mathematical 3D formulation. We re. ever, masks the intrinsic relationship between
phy ’ properties of the spectrum (as positions of ex-

tremal values, characteristic decay curves) and

the geometric dimensions, or the depth of the
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1433




Maria Zadro and Carla Braitenberg

Regarding the deep-seated masses, the
model of a single geometric object is generally
not applicable, as the measured field is gener-
ated by the superposition of multiple anoma-
lous masses, which can only poorly (at best) be
separated. In this case it may be more conve-
nient to model the system in terms of horizon-
tal density discontinuity surfaces (Granser,
1987; Oldenburg, 1974; Parker, 1972). The
task is then to determine the depth and undula-
tion of the surfaces. A further problem which
can be tackled with the 3D-spectral approach is
that of the effect of self-gravitation. As will be
shown further on, the presence of an anoma-
lous mass in the crust influences the geopoten-
tial field, as well as the gravity field and the
stress field throughout the surrounding crust. In
the present paper we evaluate the variation in
the potential field, in gravity, and its deriva-
tives due to the presence of the crustal roots in
the Southern Alps.

2. The 3D spectrum of gravitational fields

The Newtonian potential field U produced
at a point P by a density mass distribution
p(Py) with (Py) inside the volume (V) can be
considered as a convolution product (Zadro,
1984, 1986):

U(P)= G % p(Py) @.1)

with G the gravitational constant, p(Py) =0
for (Py) outside (V), and r=|P—P,|. (1/r) is
the Green function of the process.

It follows that the Fourier Transform (FT)
of the potential field is given by:

FT[U(P)] = GFT[I/AFT[p(P)], (2.2)
where FT[1/7] = —— (Sneddon, 1951), with
o
o’=a’+ A+ y3

o, B, v being the wavenumbers along the x, v,
z coordinates, respectively. The relationship
(2.2) holds in the entire space.

The Newtonian gravit_a)tional forces acting
along whatever direction 7 in the wavenumber
space are:

FT[VU 7] = —27i vFT [U]

with v =an,+ Bn, + yn,. 2.3)

In gravity anomaly studies 7 is generally verti-
cal so that
N
FT[VU ¢;]1 = 2miyFT[U], (2.3)

whereas, for the horizontal components we
have (e.g., along the x direction):

FT[VU ¢,]=-21i aFT[U]. (2.3")

Here ¢, and ¢ are the unitary vectors along
and 7y, respectively.

The gravitational gradient tensor can also be
easily computed for a self-gravitating body,
inasmuch as the tensor matrix 7;; is given in
the ¢, B, y space by

FT (1;;) = —4n*afFT U] (2.4)

and analogously for the other matrix elements.
The study of the gravitational gradient ten-
sor can be of interest in gradiometry and in
several geodynamical processes where struc-
tures with large density variations collide.

3. Geophysical applications

In the previous section the spectral proper-
ties of the potential field, the gravitational
forces and the gravitational gradient tensor
were given. The anti- Fourier transform (FT ')
of the above functions allows us to obtain the
following quantities in the entire 3D space, in-
cluding the inside of the gravitating body:

a) Equipotential surfaces, which can give
information, e.g., on the geoidal undulations.

b) Gravitational forces, which have applica-
tion in the solution of gravity anomaly inver-
sion problems. Both surface perturbing bodies
and deep layered media (isostatic effects and
Moho undulations) can be treated.
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¢) The tensor of the second derivatives of
the potential, useful in gradiometry as well as
in the evaluation of the Newtonian stress ten-
sor due to intruded anomalous masses.

Particular techniques can sometimes be ap-
plied in geophysical problems in order to re-
duce the 3D spectrum to a 2D one. Three sig-
nificant cases are mentioned below.

In the analysis of gravity anomaly data
along profiles crossing orthogonally (e. g,
aligned along x) parallel structural lineaments
(aligned along y), the perturbing bodies can be
assumed of infinite extension. The spectrum
reduces to a 2D spectrum, function of ¢ and g
as following (2.2):

FT[U(P)] = GFT[1/rlFT[p(P)] (B) (3.1)

with 8(B) the & of Dirac.

A second case regards the comparison be-
tween the 2D spectrum (therefore function of o
and ) of a surface distribution of observed
gravity anomalies and the corresponding theo-
retical one calculated for a 3D model. The lat-
ter is given by the FT," _ . of the 3D spectrum
(computed according to (2.3’) with the anti-
transform carried out for the y variable only
and for an assigned z, surface reference level.
Of course, the observational data can as well
be compared with the theoretical ones com-
puted through the 3D FT!, where the theo-
retical anomalies are given at all sampled z
levels, thus allowing a check of the assumed
depths and shapes of the modelled perturbing
bodies.

A third particularly interesting case is the
one concerning deep horizontal inhomoge-
neous layers or discontinuities like the Moho.
In this case the perturbing mass is simulated by
a surface mass distribution (see e.g., Tsuboj,
1983) and the process is known as the «gravity
continuation law». It results that, for a gravity
anomaly (Ag) at the surface (z = 0) induced by
a surface mass distribution o (x, y) located at a
depth (zo),

FT [Ag] = 2nGFT [0] ¢ 27 @+ 87 (37

and

1 -1 27zy (0 + [32)% ’
o=——FT7 |FT[A “ . (32
- FT [FTiagre | 62

For an assigned depth (zy), 6(x, y) can be cal-
culated, and by assuming a known value for
the density contrast p, (the density contrast be-
tween crust and mantle in the case of the
Moho), the undulation amplitude h(x,y) is
given by

h(x, y) = o(x, y)/py. (3.3)

The above technique presents two serious
problems. The first is the amplification of high
wave number energies, especially for great
depth (zo) values, caused by noise and surface
gravity perturbations of no interest. This effect
can be avoided through suitable low-pass fil-
tering (Santero et al., 1988). The second prob-
lem is the assumption of a surface mass distri-
bution instead of a 3D mass distribution. In
cases of deep crustal roots (Moho discontinu-
ity) the solution can be improved by means of
an iterative process (Parker, 1972; Braitenberg
et al., 1997) as shown below.

4. The spectrum of a right rectangular
prism

The numerical evaluation of the spectral
field of the gravitational potential or the de-
rived quantities as the gravitational forces and
the gravitational gradient tensor, requires the
3D FT of the density distribution. Generally,
the mass distribution may be modelled by a se-
ries of right vertical prisms of constant density.
The spectrum of the total mass distribution is
then equal to the sum of the spectral distribu-
tions of the single prisms.

Given a right rectangular prism of sides A,
B, C aligned with the x, y, z axes of the refer-
ence system, respectively, and centred with its
centre of mass in the origin, the Fourier spec-
trum is given by

FT[p] = p, dif (e, A) dif (8, B) dif (, C)
@.1)
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with the density of the prism (pg) and the sine-
function dif (A, L) = sin (mAL)/7A.

In the far field it is sufficient to approximate
the mass distribution by point-masses located
in the centre of mass of elementary cubes. For
one single point mass the density distribution
is defined by

P (x, y,2) = Py 6(x) 6(y) 6(2),

and the FT is equal to

FT (p) = po.

Applying the transformation law of the FT for
lateral shift gives the FT for the density distri-
bution centred at the point (x, yo, Zo):

FT [P(x_xo’ Y—=Yo» Z—ZO)] =
= FT[p(x, y, D] e 2 @nhorro 1)

Other transformation laws (Arsac, 1961, pp. 116-
120) can be applied in the computation of the
FT [p]. The most important one concerns the
rotation: a rotation € in the x, y, z space results
in a rotation Q in the o, f3, ¥ space, so that in-
clined prisms (e.g., simulating inclined faults)
can also be calculated from (4.1) by rotating
the o, B, ¥ coordinate system.

From the total mass distribution spectrum
all the other spectral matrices regarding the
Newtonian potential and its derivatives can be
easily obtained following the expressions (2.2),
(2.3) and (2.4).

In the above numerical procedure both sam-
pling and Nyquist frequencies have to be care-
fully chosen in order to avoid truncation and
aliasing effects. It is well known that sampling
in the o, B3, v space corresponds to the trunca-
tion (and repetition) in the x, y, z space and
viceversa. Moreover border effects strongly ap-
pear in the FT™! process, as a consequence of
the infinite repetitions in the x, y, z space of the
gravitating masses according to the FT law.
This implies that the spectral resolution must
be chosen small enough, or equivalent by the
X, y, Z space extensive enough so as to shift the
repetition effects beyond the zone of interest.
Regarding the position of the Nyquist frequen-
cies (inversely dependent on the space sam-

pling Ax, Ay, Az), the problem is less critical:
the mass distribution, the Newtonian potential
and its derivatives appear as «transient» phe-
nomena, to which the energies are concentrated
at low frequencies with rapidly decreasing
spectra. Nevertheless, in order to avoid aliasing
effects the computed spectral values should be
almost evanescent at Nyquist frequencies.

A particular case of geophysical interest is
that of a mass distribution infinitely extended
along a horizontal direction. As already stated
above, this case reduces to 2D: in (4.1)
dif (3, B) simplifies to &(f3) for a prism infinite
in the y direction, so that all the above compu-
tational considerations are still valid. In this
simplified case of course we have to deal with
2D repetition spectra.

5. Moho undulations — the SE-Alps
as an example

Deep seated horizontal density contrasts can
be treated applying the downward continua-
tron, as defined in (3.2). A problem arises
when interpreting the variation of surface den-
sity as a vertical undulation of the discontinu-
ity surface. It can be shown that the gravity
field (Parker, 1972) produced by the undulat-
ing surface deviates considerably from the
gravity field produced by the equivalent flat
sheet with varying surface density. A two-step
iterative procedure in which the undulation is
corrected at each iteration was developed in
Braitenberg et al. (1997). The two iteration
steps are explained below, where the variable
iter starts from iter = 1, increasing at each iter-
ation step by 1.

Starting values are the sampled Bouguer
gravity b(i, j) (i=1,n; j=1, m) data placed
on a regular n X m grid. Two free parameters
must be set, which are the mean Moho depth
(d) and the contrast Ap between crust and
mantle densities (p.) and (p,). The Bouguer
anomalies must be low pass filtered, in order to
eliminate short wavelength variations not re-
lated to deep structures. Furthermore the pro-
cess of downward continuation must be limited
in frequency, as it becomes unstable at high
frequencies.
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In the first step the undulation of the crust-
mantle boundary ry., (i, j) is calculated by ap-
plying the expressions (3.2) and (3.3) to this
particular case, obtaining:

, _ _ 1
hier ,J)=FT ! FT [ ter—1 (K, Zrsd]___—__
ter (15 J) [FT [Ogiter—1 (k, D]e ]MGAP

for i=1,n; j=1, m and k=1Ln;l=1,m

with s = 4 /(k/ny + (1 /m)2 (5.1

Fiter (I, J) = Titer—1 (lv ]) + hiter @, J)

Ogiter—1 1is the gravity residual between ob-
served and model Bouguer gravity data (see

Lithosphere gravity effect (mgal)

11° 12°

13° 14°

next step). For the starting iteration (iter = 1) it
is set equal to the observed gravity g, (i, j) =
= b (i, j); hy, is the calculated undulation. At the
first iteration (iter = 1) the Moho is assumed
flat: ry(i, j) = d.

In the second step the Moho undulation is
approximated by a series of vertical rectangu-
lar prisms, of sides A and B, and the gravity
field is calculated at geoidal level by classical
methodology (Nagy, 1966). The residual grav-
ity Ogye, is defined as the difference between
the observed and modelled gravity effect.

The above two steps are then repeated itera-
tively, obtaining each time a correction to the
undulation of the Moho surface, until the grav-
ity residual has reached an acceptable value, or
equivalently, the corrections to the Moho sur-
face are insignificant.

5o

Fig. 1. Gravity effect (mgal) of the lithosphere roots in the studied area. Contour interval 2 mgal.
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We apply the above iteration scheme to
evaluate the Moho undulations in the SE-Alps.
Complete Bouguer gravity data were furnished
by BGI (Bureau Gravimetrique International)
and integrated in the SE part of the studied
area (Slovenia and part of the Adriatic Sea)
with data of the 0.5° grid distributed by Prof.
I. Marson, Trieste. The complete data set (10-
I15°E, 44-48°N) was gridded (inverse square
distance) on a 5x5 km grid obtaining a
108 x 128 point grid. The analyses were done
on this larger grid, whereas the final results are
considered in a reduced (90 x 90) grid, in order
to eliminate border effects. As the inversion re-
gards exclusively the Moho undulation, the
Bouguer data were corrected for the gravity ef-
fect produced by the lithosphere thickening be-

neath the Alpine chain. The lithosphere was
modelled by a series of prisms (density con-
trast 0.03 g/em?) in the geographical area
44-50°N and 7-15°E at a resolution of (.5°,
according to the physical properties of the
asthenosphere-lithosphere system given in
Suhadolc et al. (1990). The lithosphere gravity
effect is shown in fig. 1: the Bouguer data, cor-
rected for the lithosphere gravity effect, are
shown in fig. 2.

Table I shows the root-mean square of the
residual anomalies (RMS) in mgal and the
minimum (R;,) and maximum (&) Moho
depths in km obtained in successive iterations.
A decrease in the RMS at each iteration can be
observed. We regard three iteration steps as
sufficient, as only a very modest correction to

Gravity values (mgal) corrected for lithosphere contribution

11° o 1207

46°

\ A q{ 145°

13° 14°

Fig. 2. Bouguer gravity map of North-Eastern Italy (BGI), corrected for the gravity effect of the lithosphere

roots. Contour interval 10 mgal.
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Moho depth (km) - third iteration

=

NS

1 ©

Table I. Iterative inversion of gravity data in the
SE Alps. For iteration steps 1-5 the extremal vaiucs
of the Moho undulation (R, and R,,) and the
standard deviation of the gravity residual are tabu-
lated.

Gravity

Tteration Roin Wi
step (km) (km) residual
(mgal)
1 29.5 402 10.2
2 275 54.1 3.8
3 26.2 57.4 47
4 252 60.0 4.3
5 24.5 62.2 4.1
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46°

14°
Fig. 3. Moho depths (km) in the SE-Alps obtained from the iterative inversion algorithm of the Bouguer

gravity data, corrected for the lithosphere effect. Contour interval 5 km. The profile AA’ refers to the vertical
section along which we evaluate the gravitational potential, forces and stresses.

13%

the root is obtained at further steps. The Moho
undulation at the third iteration is shown in
fig. 3. The most prominent features are the pro-
nounced deepening below the Alpine arc, the
Moho high in the SW area of study (Vicenza
high), and the shallowing of Moho to a depth
of 35 km below the Adriatic sea. The 2D re-
sults are in excellent agreement with the map
of Moho depth obtained unifying different
DSS-profiles available in the area (Slejko
et al., 1987, p. 26). The modelled gravity at the
third iteration is shown in fig. 4. The modelled
values reconstruct the observed field well, as
regards the long period features. The short pe-
riod components in the observed field are due
to the presence of superficial inhomogeneities,
not considered in the analysis.
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Modelled gravity values (mgal) - third iteration

46°

2, \\\\Iu. C&{, 45°

Fig. 4. Modelled gravity values after three iterations. Contour interval 10 mgal.

6. The gravitational potential, forces
and gradient tensor across a section
of the Alpine crustal roots

We proceed to evaluate the equipotential
lines, the gravity values, and the gravitational
gradient tensor field in a vertical section cross-
ing the E-Alps, taking advantage of the spec-
tral properties of the gravitational potential
tield. As shown above, the crustal root may
be approximated by a series of right rectangu-
lar prisms. It is therefore convenient to con-
sider at first the fields generated by a single
prism.

From (4.1) and (2.2) we may construct the
FT of the potential field of a single prism of
width A and length L (infinite in one horizontal

direction), centred in the point x, z, by

FT[U(P)] = GP% sinTaA sinmyl o 1)
me’ o Ty
(6.1)

where
i J =l el
o=+ )

The potential is obtained from the anti trans-
form of expression (6.1), the gravitational
forces and the components of the gravitational
gradient tensor 7, 7., T.. from the anti trans-
form of the expressions (2.3°) and (2.4), re-
spectively.
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distance (Km)

depth (Km)

Fig. 5. Vertical section in the x-z plane crossing the
rectangular right vertical prism of sides 20 km x 30
km. Isolines of the potential field (10° cm?/s?).

distance (Km)

depth (Km)

Fig. 6. Vertical section in the x-z plane crossing the
rectangular right vertical prism of sides 20 km x 30
km. Isolines of the vertical gravity force component
(100 mgal contour interval) and directional variation
of the negative (black filled) and positive (white)
components of the gravitational gradient tensor
(1077 1/s%).
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The isolines of the potential (10° cm?/s?) in
the (x, z)-plane are graphed in fig. 5. Figure 6
shows the isolines of the vertical force compo-
nent (cm/s?). The tensor components in the
plane are represented at single points in terms
of the directional variation of the negative
(blackened) and positive (whitened) tensor
components (10”7 1/s*). The graphical repre-
sentation is analogous to that used for the
plane stress tensor. The forces and tensor com-
ponents are for a unitary mass. The position of
the prism (20 km width, 30 km length) is
drawn in the figure; the prism is infinite in the
y-direction, orthogonal to the sheet-plane. The
density of the prism is p = 1 g/cm’. The fields
were calculated on a 280 x280 point grid,
whereas we display a subgrid of 80 x 80. Con-
sidering the spatial Nyquist-frequencies, the
maximum sampling is dx = 10 km, dz = 15 km
for this particular prism. We used a more con-
venient value dx = dz = 1 km. For graphic con-
venience an arbitrary additive constant was
chosen for the potential values, equal to the
minimum potential value over the grid. The
isolines of the vertical force resemble the
dipole field: the vertical force is specular with
respect to the horizontal plane passing through
the centre of mass of the prism, and pointing
downwards above the prism, and upwards be-
low it. Internally to the prism the compressive
component of the gravitational gradient tensor
prevails above the extensional component.

We may now apply the above procedure for
the series of prisms approximating the section
AA’ (fig. 3) of the Alpine crustal root, 100 km
long. In order to obtain a greater discretization
the results for the Moho undulation were inte-
grated with those obtained in a previous 2.5D
inversion (Braitenberg er al., 1997). The latter
had been done with a sampling of 1 km, and
with prisms of 4 km width. The prisms approx-
imating the root extend infinitely in a horizon-
tal direction orthogonal to the profile. The den-
sity of the prisms is set equal to Ap =-0.53
g/em’. In this case the fields were calculated on
a 500 x 500 grid, with a sampling of dx = dy=1
km. We display a subgrid of 100 x 90, exclud-
ing the border effects. Analogously to the
graphs regarding the single prism, fig. 7, gives
the equipotential lines and fig. 8 the isolines
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distance (Km)
0 10 20 30 40 50
" S — - S S — -

B 6\0 70 80 90 100

depth (Km)

Fig. 7. Vertical section in the x-z plane crossing the
Alpine crustal root along profile AA” (fig. 2). Iso-
lines of the potential field (10° cm?/s?).

distance (Km)

depth (Km)

Fig. 8. Vertical section in the x-z plane crossing the
Alpine crustal root along profile AA” (fig. 2). Iso-
lines of the vertical gravity force component (mgal)
and directional variation of the negative (black
filled) and positive (white) components of the gravi-
tational gradient tensor (1077 1/s?).

of the vertical force component together with
the graphical representation of the gravitational
gradient tensor. Due to the negative density,
the potential values decrease towards the nega-
tive mass anomaly, the contrary of what is ob-
served for the single prism of positive density.
Considering the potential variations at the sur-
face (z = 0) and adopting a normal gravity
value of 981 gal, the deepening in geoidal
height from a position above the center of the
root and at km-mark zero amounts to about
2.5 m. The crustal root exerts a considerable
distortion of the regular gravity field, as can
be seen from the isolines of the vertical force
component (fig. 8). Internally to the root the
extensional component of the gravitational gra-
dient tensor prevails above the compressional
component. Regarding the magnitude of the
gravitational gradient induced by the moon,
which causes the tidal deformations and which
can be estimated to the value of about 1.8
10" 1/s* (Falk and Ruppel, 1983), the gravi-
tational gradient generated by the Alpine
crustal root in its immediate neighbourhood is
far greater: just above the upper border of the
root the positive gradient component amounts
to 8 1077 1/s%

7. Conclusions

The spectral approach can be a useful tool
in the understanding and interpretation of sev-
eral gravimetric problems concerning geodesy
and geophysics. In the present paper the FT
methodology is applied, which is defined for
Cartesian coordinates. This implies that re-
gional areas are considered, in which the Earth’s
curvature can be neglected. Large memory
storage is needed, but this is not a problem
with present computers.

The 2D downward continuation law is ap-
plied in the inversion problem treated in sec-
tion 5. It is shown how the continuation law it-
self, combined in iterations with the classical
computation of the gravitational field can give
successful results, thus overcoming the too
simple approximation of a horizontal deep dis-
continuity with a plane mass distribution.
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In section 6 the FT methodology presented
in section 1 is applied to an elementary body,
and thereafter to an actual geodynamical case
regarding a vertical section across the E Alpine
chain.

The above process is particularly relevant in
inversion and interpretation problems regard-
ing geodesy, geodynamics, and geophysical
prospections, inasmuch as the values of the
potential field as well as that of its first and
second derivatives in the whole selected grid
can be obtained very quickly (the FT computer
time is almost negligeable).

In some cases of gravimetric inversion, the
perturbing mass may be known, but its depth is
to be determined. The spectral method allows
gravity values to be obtained in a vertical sec-
tion, and thus at various levels above the per-
turbing mass. The depth of the mass can thus
be determined by comparison of the observed
values with the computed ones.

In geodetic problems the method allows to
compute, as in the example of fig. 7, the
geoidal undulations caused by large deep dis-
continuities as well as the vertical and horizon-
tal variations of the gravity vector. As far as
other geodetic interests are concerned, we can
also mention the great importance of the tensor
given by the second derivatives of the potential
in the Marussian Intrinsic Geodesy and in gra-
diometry. Moreover, the above tensor can be
usefully applied in geodynamic problems in or-
der to evaluate the stress contribution due to
the Newtonian effects of nearby perturbing
masses of high density contrast.
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