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Abstract

In geodesy as well as in geophysics there are a number of examples where the unknown parameters are partly
constrained to be integer numbers, while other parameters have a continuous range of possible values. In ail
such situations the ordinary least square principle, with integer variates fixed to the most probable integer
value, can lead to paradoxical results, due to the strong non-linearity of the manifold of admissible values. On
the contrary an overall estimation procedure assigning the posterior distribution to all variables, discrete and
continuous, conditional to the observed quantities, like the so-called Bayesian approach, has the advantage of
weighting correctly the possible errors in choosing different sets of integer values, thus providing a more real-
istic and stable estimate even of the continuous parameters. In this paper, after a short recall of the basics of
Bayesian theory in section 2, we present the natural Bayesian solution to the problem of assessing the es-
timable signal from noisy observations in section 3 and the Bayesian solution to cycle slips detection and re-
pair for a stream of GPS measurements in section 4. An elementary synthetic example is discussed in section 3
to illustrate the theory presented and more elaborate, though synthetic, examples are discussed in section 4
where realistic streams of GPS observations, with cycle slips, are simulated and then back processed.

Key words  Bayesian theory — prior and posterior Physically this situation is realised for in-
probability — integer and continuous variables stance when we observe phases of waves (e.g.,
electromagnetic waves), which are related to
the travelled path, reduced by an integer num-
ber of wavelength.

This happens for instance in GPS theory
where satellite to receiver observation equa-
tions include at least (') geodetic coordinates of
the receiver, tropospheric parameters and so-
called integer bias, i.e., the integer number of
wavelengths when the satellite signal is locked
to the receiver as well as possible cycle slips
where the lock is lost and this integer number

1. Introduction

In geodesy as well as in geophysics there
are a number of examples where the unknown
parameters are partly constrained to be integer
numbers, while other parameters have a contin-
uous range of possible values.

Mailing address: Dr. Giovanna Venuti, DIIAR, Poli- has a sudden change from one epoch to the
tecnico di Milano, Piazza Leonardo da Vinci 32, 20133 next.
Milano, Italy; e-mail: giove@ipmtf4.topo.polimi.it The same is true for instance in SAR inter-
(") Of course a much more complex model could be ferometry where mteger numbers are defm.ed
established with unknown parameters for earth orientation on subsets of the interferogram, so that a dis-
in space, unknown parameters for orbit corrections, un- continuity is realised between one zone and the
known palaméters for clocks modelling and for iono- next, and these have to be determined together
spheric effects; most of these however can be either deter- gt X .. N
mined by ancillary observations or eliminated by suitable with the hgnzontal position ar%d height of the
differencing the observation equations. reflectors, i.e., the digital terrain model.
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Even more generally, it is possible to model
in this way one of the basic problems of signal
theory, i.e., the determination of the informa-
tion content of a certain flow of measurement
about a signal expressed on a certain fixed ba-
sis of a Hilbert space, by considering the «vari-
able» number of determinable coefficients on
this basis as an unknown.

In all such situations the ordinary least
square principle, with integer variates fixed to
the most probable integer value, can lead to
paradoxical results, due to the strong non-lin-
earity of the manifold of admissible values;
this has happened for instance in geodetic GPS
theory where for a long time the accuracy of
the estimation of the unknown coordinates has
been grossly overestimated (Betti er al., 1993).

On the contrary an overall estimation proce-
dure assigning the posterior distribution to all
variables, discrete and continuous, conditional
to the observed quantities, like the so-called
Bayesian approach, has the advantage of
weighting correctly the possible errors in
choosing different sets of integer values, thus
providing a more realistic and stable estimate
even of the continuous parameters.

In this paper, after a short recall of the ba-
sics of Bayesian theory in section 2, we present
the natural Bayesian solution to the problem
of assessing the estimable signal from noisy
observations in section 3 and the Bayesian
solution to cycle slips detection and repair
for a stream of GPS measurements in sec-
tion 4.

An elementary synthetic example is dis-
cussed in section 3 to illustrate the theory pre-
sented and more elaborate, though synthetic,
examples are discussed in section 4 where real-
istic streams of GPS observations, with cycle
slips, are simulated and then back processed.

2. Recalls of Bayesian estimation theory

Bayes’ theory of elementary probability the-
ory is as follows:

Theorem: given a set Q with a probability
distribution P, given a partition of Q in non-

overlapping measurable sets D;,
D;ND;=0 i#j,
and given an event A, the following holds:

P(A|D;) P (D))
Y. PAID)P (D)

P(D;|A) = 2.1

This formula has the following nice interpreta-
tion: if the only knowledge we have about our
stochastic system is P, for any A, of {D;} we
can indeed compute P (D;), which are consid-
ered the prior information on D; as well as
P(A|D;), namely the probability of sampling
in A given D;; now if we come to know that A
is true for our system (additional information
or observation), formula (2.1) allows us to
compute the posterior probabilities P (D; |A).

When {D;} is just the partition associated
with a discrete random variable

Di={w;x(@=x i=1,2,....n} (2.2)

and A is also an event associated with an «ob-
servable» discrete r.v. Y

A={o; Y(0) =y} (2.3)
we write (2.1) as

P(X=x|Y=y,)=
2.4

_ PY=y|X=x)PX=x)
Y P =y |X=x)P(X=x)

Formula (2.4) says that observing the value
y; for Y modifies the prior distribution of
X, P(X=x;) into the posterior distribution
P (X =x1Y=y).

Let us notice that if X = x; is thought of as a
fixed value of the parameter x, P (Y =y, | X = x;)
can be considered as the probabilistic model of
the observation of Y, given X = x;, i.e., the like-
lihood of the observations given the value of
the parameter; for this reason we will also
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call
PY=ylX=x)=Lylx). (2.5)
The transition from (2.5) to the case of contin-

uous variables (X, Y), is straightforward, namely,
in terms of probability densities one gets

L% po (x)

L 1x)po (x)dx

p(xly) = (2.6)

where X and Y can be scalar as well as vector
variates and the integral ranges over the whole
parameter space.

In (2.6) p, (x) is the prior distribution of the
parameter X, while p (x|y) is the posterior dis-
tribution, i.e., p (x|y) =fxiy (1Y), fyy (x]y) in-
dicating the conditional probability density.

All the information on X after observing Y
iS now contained in p (x]y) and of course if we
would like to determine representative values we
could for instance compute %y = Ey {X|Y = v}
interpreted as a Bayesian estimator, while
the variance associated with the distribution
P (x|y) can be interpreted as the estimation er-
ror of xp.

An interesting feature of the Bayesian
scheme is its ability to represent mixed models
where the parameters can be divided into two
groups, one of continuous variables X, the
other of discrete variables K (where X and K
can be both vectors).

If the prior knowledge of X and K is such
that we can assume them a priori indepen-
dent

Po (x, k) = py (x) py (2.7)
then (2.6) becomes
L(ylx, k) po (x) py
O | RACT RPN P

(2.8)

P kly) =

all the information on X, K is now contained in
the function p (x, k|y) which we underline to
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be simultaneously a probability density with
respect to X and a probability with respect
to K.

If we want to concentrate more on one or
the other variable, we have just to switch to the
marginal distributions, namely

pxly) =, p@x k|y) (2.9)

pkiy=[pe klpar. @10

Naturally willing to analyze the posterior dis-
tribution of KX, searching for a representative
value, it would be awkward to use the average
of p (k|y) because this is in general a non-inte-
ger value and therefore it has no clear inter-
pretation in terms of variable K. On the con-
trary, in this case a MAP criterion, i.e., looking
for k maximizing p (k|y), is more suitable and
understandable; we stress, however, that only
in case a very large probability is concentrated
on a single value k, it is reasonable to take it
as representative for K. In this case moreover
1 —p (k| y) represents just the error commetted
by fixing K = k.

3. Maximum information from noisy signal
observations

The following situation is standard in signal
theory. A «signal» u(7), te R" is considered as
a smooth function belonging to some Hilbert
space H, endowed with some (normalized but
not necessary orthogonal) Ritz basis {0, (1)}
such that

oo

u@®=Y e @, Aglla=1) (3.1
k=1
where u, are unknown parameters.
We assume to observe the quantities
Yi=u(t)+v,
3.2
LER", i=1,2,....m

with v; independent, equal variance noises. The
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problem of estimating u; from y; is indeed al-
ways undetermined, however due to the pres-
ence of the noise and to the fact that necessar-

ily

+ o0

2 Uy Ok

k=N

lim =0, lim
N— oo

k—>oo

=0, @(3.3)

one way to reduce the problem to an overdeter-
mined form is to assume that the relevant part
of the signal is well described by a finite
series

N
u(@)= Y g () N<m)  (34)

k=1

for a suitable value of N.

The choice of the best N, i.e., the highest es-
timable degree of the coefficients compatible
with the observations, represents the maximum
information we can draw from {y;} on u, rela-
tive to the base {¢,}.

This problem could be treated in different
ways, particularly with the least squares for-
malism and the related testing procedures, al-
though it finds a very natural formulation in
terms of Bayes’ theory. So we will consider as
unknown parameters of the problem the dis-
crete variable N and the vector of continuous
variables Xy,

Xy = (uy, Uy, .., uy)". (3.5)

To apply the Bayesian formula we need first of
all the priors of Xy, N; to make it simple we
assume these variables to be a priori inde-
pendent and to have uniform priors(®), i.e.

(® Since formula (2.8) is homogeneous of degree zero
in p, (x), we can accept for such priors also improper dis-
tributions like the uniform distribution in R".

Do (xy) = const

(3.6)

with N sufficiently large as to be sure that
P (N>N) be negligible. We observe that in any
way as maximum value we have N =m; in the
contrary case the measurements are not suffi-
cient to identify the signal.

Then we need (y|xy, N), which according
to the hypotheses done on v is given by

Y = N[y, cI] (3.7
y=Ayxxy
o (1) Oy (1)
o () Oy ()

therefore, we can write

L(ylst N) =
(3.8)

1

1 2
e T2 VAt
v \4

If at this point we realize that we would prefer
to consider o, as well as a parameter to be esti-
mated from the observations, we should also
introduce a prior hypothesis on the o, variable,
assuming for instance that o, is independent of
Xy, N and that

po (6,) = S5t (3.9)
O,

v

This choice is considered in Bayes’ theory as
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non-informative for variables ranging on [0, o)
(Box Tiao, 1992).
Formula (2.8) then writes

PN, xy, 0,]Y) =

1 ] 1
expl-—1|Y-Aux, |*] =
p[ i NNI}N

(2 n.)m/Z ovm .,

— [+00

N

1 J' do, f 1 1l 1

o — | dvexp|-—|Y-Ayxy Y| =

(272‘.'»1/2Z . O.Vm+1 N p[ 20.3' NN N
RN

n=1

(3.10)

Willing to concentrate on the variable N, we
can further write, after some simplifications,

P(Nly) =
Fd
0,
J- Vl deNeXP _LZIY—ANxNIZ
. o,"" het 20,

= [+

Al Wdav
2

1
il J.deeXp ___ZIY—ANxNF
n=1 0 Ov RY 2O-V

(3.11)

The result of the integration can be expressed
as

By

N
2 B,
n=1

PNy =

(zn)n/z F(m;n)
B”_ m—n

\detAT A, - 2(’”2‘”) 7 G

(3.12)

s y=A, (ATA) ATy
00, = m—n

and T is Euler’s function.

As an example we have simulated 10 equi-
spaced observations on the function (signal)

u (%) =2cos 20+ sin ¥
(3.13)

2% o210

19,*=-'7r+lﬁ

to which a white noise V; with zero average
and ¢, =0.5 has been added;

Yi=u(0)+v;. (3.14)
Disregarding the Bayesian approach, one could
think of interpolating by least squares our
function with an increasing value of N; due to
the well known orthogonality relations of Dis-

crete Fourier Transform, the coefficients esti-
mated from the model

N
Vi=ay+ 2 [a; cos (i) + b, sin (i9)] +v; (3.15)

i=1

stay the same even changing N.
The behaviour of the u(¥ and the esti-
mated (a;, b;) are shown in figs. 1 and 2a,b.
As one can see, indeed the coefficients a,
and b, are larger than the others, however not
to such an extent as to make it obvious (just by
looking) which is good and which is not.
Moreover, if we compute O3 after the ad-
justment for n = 1, 2, 3, 4 we find we find the
values plotted in fig. 3; here too we see a clear
jump at n = 2, but after that it is not obvious
that n = 3 or larger should not be accepted.
By using the approach summarized in for-
mula (3.12) however, one obtains the follow-
ing values for P(N=n |y):

0.0004 0.9978 | 0.0000 | 0.0020

this corresponds to having chosen N =4 in
(3.12).

As one can see the distribution P, points at
the value N =2, with an error probability P,

P, =0.22%
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Fig. 2a,b. a) Estimated values of coefficients a; of Discrete Fourier Transform of u (1); b) estimated values of
coefficients b; of Discrete Fourier Transform of u ().
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Fig. 3. 6¢ for different values of n.

when fixing N at the value 2. So this seems to
be a nice confirmation of the theory, although
extensive testing of the approach should be
performed in the future.

4. Cycle slips detection and identification
in GPS phases measurement

In GPS theory the set of code and phase ob-
servation equations for a single receiver and a
single satellite (Marana, 1994), reads

R, (t) =pp+1+v,

¢©1(t) =p—I1+ AN, + 1,
4.1
Ry (1) = pe+ ol + v,

P2 (%) = pr— ol + AyN, + 1,

where

R; () = code readings at time 7, on L(i=1,2);
¢: () = phase readings at time 7, on Li=1,2);
Pi = p (%) = satellite-receiver range at time z;
I = ionospheric correction for L;;

A,

A

( [ =tes

v = code noise, 0, = 20 cm;
N = phase noise, 0, =0.5 cm;
A; = wavelengths of L;;
N; = initial integer ambiguity for ¢,.
From eq. (4.1) a single time solution can be
derived, namely

Il

OR, (&) - R, (1)

= o—1

_ R, () - R, (1)
- o—-1

(i
(4.2)

1+ )R (1) - 2R, (1)
A a-1

(N = Ail 0 () -

_ 1 _izaRl ) -1+ 0)R, (z,)
(N2)k—A—2(p2(tk) A .

9 o-1

Considering the equations for the integer bi-
ases only, one can say that through (4.2) one
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has a stream of values of the type

(N)k=N+a)k k=1,2,...,m (43)

with @, a white noise constant variance. This
model at least holds as far as the phase obser-
vations in the receiver are locked to the incom-
ing wave so that the initial ambiguity is the
same for all the observations. 3

However if lock is lost at sometime 7, = kA
(A = observating leg) the corresponding phase
¢ has a jump of height #A. So that the eq. (4.3)
has to be substituted by the new model

N(tk) = N+ h'l}k’(tk) + a)k

Ve () = {(1)

We note that the same model can be written as
well

Y= NE) = Ny (1) + hd (1) + o

4.4
k>k
k<k

or in vector form

y=N&y+hd+ w. 4.5)
Here we have as a matter of fact three discrete
parameters, N, k, h; however for the sake of
simplicity of the subsequent computations, we
have considered N as continuous variable, that
is not wrong but it corresponds to accept a
weakening of the model because we do not ex-
ploit fully information on this variable.

So we call x=N, and we assume that its
prior is uniform on R; as for k we also assume
this variable to be uniformly distributed on the
integers between 0 and m (number of epochs);
concerning / (the height of the jump) we have
considered again a uniform distribution on the
integers over a reasonable interval, for instance
0 to 5 since in the simulations we are going to
illustrate, we have always taken positive slips
smaller than 4. Moreover all the priors have
been taken as independent.

Under these hypotheses the posterior distri-
bution of x, k, & is

L(y|x, k, h) py (k) po(h)

Lk, hly) =
p(x ly) )

(4.6)

where
L(ylx, k, h)=
——exp —L|y—-xz90—h29;g|2
Qry"? o 202

p(y)=
X 3| Jap 0L 15 £ 1] o Grpo ),

Willing to concentrate the attention on the pos-
sible epoch of the jump, k, one can then de-
rive

p&1y) =2, [ dup e &, hly)y;

this can be explicitly calculated giving as a re-
sult (Sanso and Venuti, 1995)

1
PIN [——2 |Ug |2]
_ 20,
pkly) = 1 4.7)
_ _ 2
ZkZheXp[_i}}‘glUk,hl]
where
Uk-,h=y—)2190—h29k- (48)
A 1 _Igl
F=om Y y—h 2T ) @9)

1422

i=1

Remark: it is important to stress here that,
as we did in section 3, it would be possible to
include o, in the Bayesian scheme, averaging
on its posterior distribution; however, experi-
ence has proved that the formulas so derived,
though exact, suffer from a numerical instabil-

(®) This value is just the least squares estimate of x
(floating) when k, h are fixed.
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Fig. 4a-c. a) Simulated values of initial integer ambiguity N (k = 11, h = 2); b) posterior distribution of the
cycle slip epoch k; c) posterior distribution of cycle slip height & (for k = 11).
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Fig. 5a-c. a) Simulated values of initial integer ambiguity N (k = 30, & = 2); b) posterior distribution of the
cycle slip epoch k; c) posterior distribution of cycle slip height 4 (for k = 30).
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p(kly)

32
37

42
47
= 52

57
62
67
72
77
82
92
97

87

Fig. 6a,b. a) Simulated values of initial integer ambiguity N (no discontinuity); b) posterior distribution of the

cycle slip epoch k.

ity. To avoid this we will present examples
where o, is fixed as, according to our tests, the
result does not depend critically on o, as far as
we fix it at a value smaller than the real one.

So, for instance, in our simulations we
will add to the model (4.5) a noise with 6, = 1
and will perform all the computations with
0,=0.5.

Once k has been identified one can think of
studying the distribution of the variable 4; nat-
urally in this case it would look strange to av-
erage the probability for the values of 4 on dif-
ferent jump epochs, so we decided that in this

case what is relevant to the problem is the dis-
tribution

1
€X —
p[ 202

1
20 eXp [—ﬁ [ Ug, 1 |2]

Op

178 V]

phlk,y) = (4.10)

where, contrary to the case of formulas “.7-
(4.9), here k is fixed to the value previously
detected for the jump time.
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Fig. 7a,b. a) Simulated values of initial integer ambiguity N (k = 41, h = 2; k = 81, h = 4); b) posterior distri-

bution of the cycle slip epoch k.

Results coming from processing simulated
data are shown in figs. 4a-c and 5a-c, where
jumps of height # = 2 have been introduced,
respectively, at k = 11 and k = 30.

As we see in both cases we achieve a cor-
rect estimation of the jump epoch as well as of
the height; neverthless, in the first case the
identification of k is more doubtful due to
border effects, as is evidenced by the non-
smaller error probability.

A case with no discontinuities introduced
into the data is shown in fig. 6a,b where the

almost uniform distribution of k& is a clear
indication that no jump is found.

At this point we wanted to understand how
to treat a more general model with more than
one slip. Of course also in this case one can
apply the general theory, arriving however at a
rather complicated computational scheme; while
in the single jump example one has to compute
probabilities for each possible jumping epoch
(namely m probabilities), in the multiple slips
case one has to test all the combinations of the
possible discontinuity epochs. So, in order to
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N WA 0 N

0.5 |
& 0.4 1
0.3 +
0.2 4
0.1

100

..........

Fig. 8a,b. a) Simulated values of initial integer ambiguity N (k =41, h=2; k =81, h = 2); b) posterior distri-

bution of the cycle slip epoch .

reduce the number of calculations and simplify
the procedures, we decided to test the actual
one-jump model to see whether it is possible to
implement a sequential detection of the jumps.

Of course once a jump has been found, the
data can be split into pieces and the procedure
can be repeated.

In the fig. 7a we plot a simulated example
with jumps at k = 41 and k = 81 of amplitude
h=2and h =4, respectively.

The noise level is always o, = 1 and in the
computation it has been fixed at 0,=0.5 as

explained in a previous remark. As one can see
(fig. 7b), the method clearly identifies the jump
at k = 81 so that, after this step all the subse-
quent analysis runs smoothly as in the single
jump case.

In fig. 8a,b we have a similar situation, with
the amplitude of the two discontinuities equal
to ~ =2 in both cases k =41 and k = 81. Also
in this case the method identifies one disconti-
nuity in the right place k = 81, although indi-
cating a larger uncertainty through a greater es-
timation error.
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Fig. 10a-c. a) Simulated values of initial integer ambiguity N(k = 21, &
rior distribution of the cycle slip epoch k (k =0
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=1; k=41, h=2; k=81, h = 3); b) poste-

+ 100); ¢) posterior distribution of the cycle slip epoch & (k = 0.80).
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To gain insight into this procedure we tried to
push it to the analysis of data with three jumps.
In fig. 9a-d a three jump data set with

identifies the largest discontinuity at k =21 and
then the other two in sequence k =81, k = 41.
Another example with

k

21

41

81

k

21

41

81

h

4

2

h

1

is presented. The processing, as expected, first has been processed and presented in fig. 10a-d

10

100

p(Kry)

47
= 52 3

92 3

97

Fig. 11a,b. a) Simulated values of initial integer ambiguity N k=21, h= 2, k=41, h= 2,k = 81, h=2),
b) posterior distribution of the cycle slip epoch .
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where the three discontinuities are detected in
the predictable order; here the last distribution
of k presents a certain spread of probability,
though always identifying the right k =21
with a larger probability.

As the last example we have tried with three
jumps of the same amplitude, (see fig. 11a,b),
namely

k

h

After the processing the time k =41 is clearly
identified, so that a splitting of the data into
two subsets clearly reduces the problem to a
single jump case, already discussed.

As a conclusion for the present example
apart from some problems which still have to
be analyzed more deeply, like the o7 problem,
we feel that the Bayesian approach has proved
to be quite reliable and stable in identifying the
discontinuity epochs as well as their amplitude;
in all cases, even in those where a larger error
probability was present, the answer of the
method was correct.

Our impression is that this procedure can be
adopted quite advantageously to detect cycle
slips in GPS data. Naturally our results have to
be read on a proper scale; if the noise is in-
creased, as it is almost certain for realistic GPS
observations, the identifiable jumps must also
be larger to obtain results as good as those pre-
sented here.
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5. Conclusions

The examples proposed in the paper show
that the Bayesian approach, with its ability to
treat together continuous and discrete vari-
ables, is ideal to discuss and solve different es-
timation problems where discrete variables are
present. The method works reliably in cases
where different approaches could be used as
well as in cases which are not treated by the
ordinary statistical literature (Betti er al.,
1993). This is the strength of the method for
instance in discussing the GPS data analysis
for cycle slip detection. This case, in fact, can-
not be reduced to the alternative of hypotheses
where the manifold of the admissible values
are contained (nested) one into the other.

Many more exciting problems could then be
analyzed by the same approach and we expect
this to happen in the future.
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