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Abstract

The time dynamics of geoelectrical precursory time series has been investigated and a method to discriminate
chaotic behaviour in geoelectrical precursory time series is proposed. It allows us to detect low-dimensional
chaos when the only information about the time series comes from the time series themselves. The short-term
predictability of these time series is evaluated using two possible forecasting approaches: global autoregressive
approximation and local autoregressive approximation. The first views the data as a realization of a linear
stochastic process, whereas the second considers the data points as a realization of a deterministic process,
supposedly non-linear. The comparison of the predictive skill of the two techniques is a test to discriminate
between low-dimensional chaos and random dynamics. The analyzed time series are geoelectrical measure-
ments recorded by an automatic station located in Tito (Southern Italy) in one of the most seismic areas of the
Mediterranean region. Our findings are that the global (linear) approach is superior to the local one and the
physical system governing the phenomena of electrical nature is characterized by a large number of degrees of
freedom. Power spectra of the filtered time series follow a P(f) = f~* scaling law: they exhibit the typical
behaviour of a broad class of fractal stochastic processes and they are a signature of the self-organized
systems.
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dynamical systems — earthquake prediction been tested in Greece (Varotsos and Alexopou-
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Crete Island (Nomikos ez al., 1994) to predict
local earthquakes and intensive studies to de-
tect resistivity variations were carried out in

R the Parkfield experiment (Park and Fitterman,
as precursors of seismic events by many au-

: 1990).
thors. In past years some strong events in .
China (Raleigh ‘et al., 1977) have been fore. On the other hand, it has been well demon-

casted using geoelectrical measurements, some ~ Strated, using laboratory tests and/or outdoor
controlled experiments, that an increased stress

field over rock prisms modifies the resistivity

Mailing address: Dr. Vincenzo Cuomo, Istituto di and p I:Oduces self—p O.tentlail. trapswnt signals

Metodologie Avanzate di Analisi Ambientale, IMAAA/ (Joanmux et al., 1994’ Hadjlcomls and Mavro-
CNR, Tito Scalo (PZ), Italy; e-mail: cuomo(@unibas.it matou, 1994; Sornette and Sornette, 1990).

1. Introduction

Geoelectrical time series have been studied
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However, the use of the electrical precur-
sors in earthquake prediction is, to a large ex-
tent, still empirical due to the many difficulties
that continue to exist in understanding the
physics that underlies the problem (Rikitake,
1988). Recently many authors carried out
works (Teisseyre, 1997; Eftaxias et al., 1993;
Nishizava et al., 1994) to remove the ambigu-
ity in the application of electrical precursors. In
particular, the mean weak point of this deter-
ministic approach to the earthquake prediction
problem is the absence of a complete robust
statistical evaluation of the efficiency of the
electrical precursors (Burton, 1985; Mulargia
and Gasperini, 1992).

For this reason, the statistical analysis of
the anomalies in the geoelectrical time series is
a very important task when we approach the
earthquake prediction problem. A firm quanti-
tative methodology is necessary to select
anomalous patterns from the background noise,
but the anomalies can be correctly detected
only when the time evolution of the electrical
signal is known.

To fill this gap we investigated the time
dynamics (i.e., deterministic components,
stochastic nature, chaotic behaviour) of these
processes, studying in particular the short-term
predictability of the geoelectrical time series.
Our findings will give information on the sta-
tistical features of the geoelectrical background
noise and of the dynamical system producing
the electrical phenomena observed on the earth
surface in seismic areas.

This paper discusses the statistical analysis
of dynamical systems based on the estimation
of their degree of predictability. The analysis
can distinguish randomness from chaos and
can provide a parsimonious representation in
terms of autoregressive models of observa-
tions. These models may be used to forecast
future values of the phenomenon. The analysis
applies to a single scalar observable or scalar
time series of a given observable and can give
information on the number of degrees of free-
dom that are relevant to the dynamics of the
system.

The approach we propose consists in fitting
autoregressive processes to the data, then fore-
casts can be produced on the basis of the se-
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lected model. We distinguish between two pos-
sible strategies of approximating a given time
series with autoregressive processes. The
global autoregressive technique views the sig-
nal as the realization of a stochastic process:
the autoregressive model is fitted to all the data
points at once and estimates of the autoregres-
sion coefficients are computed consistently
with the above assumption of randomness. On
the other hand, based on recent ideas about the
problem of forecasting chaotic time series
(Farmer and Sidorowich, 1987; Casdagli 1992;
Serio 1992, 1994a,b; Cuomo et al., 1994), the
local autoregressive technique assumes the sig-
nal to be truly deterministic and the autoregres-
sion coefficients, and consequently predictions,
are obtained according to such an assump-
tion.

In practice, we compare the forecast error
functions computed according to the two tech-
niques. Since two such functions obey different
scaling laws, their proper comparison allows us
to gain insight into the knowledge of the dy-
namical characteristics of the process.

Non-linear short-term predictability as a tool
to distinguish chaos from randomness dates
back to Farmer and Sidorowich (1987). The
topic was been later discussed by Sugihara and
May (1990), Casdagli (1992), Kennel and Isa-
belle (1992) and Tsonis and Elsner (1992). A
possible drawback of non-linear short term
prediction is that random systems (e.g., Frac-
tional Brownian Motion) may exhibit the same
characters (correlation, covariance, predictabil-
ity, scaling properties) as chaotic systems. Our
method overcomes such a difficulty by a
proper intercomparison between the predictive
skills of linear (global) and non-linear (local)
predictors.

The second goal of this paper is to give an
estimate of the number of degrees of freedom
governing the time evolution of the dynamical
system under study. In fact, studying the short-
term predictability of the self-potential time se-
ries we have information on the dynamical
process responsible for the observed electrical
anomalies. When the forecasting gives better
results using a local approach, the degrees of
freedom of the system are few, otherwise if the
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global approach proves better we have an infi-
nite dimensional system.

On the basis of the results obtained from the
autoregressive analysis of the signal, we also
explored the possibility to apply the recent
methodologies regarding Self-Organized Criti-
cality (SOC) (Bak et al., 1988) to the analysis
of precursory phenomena.

The basic idea underlying our approach is
that the lithosphere can be viewed as an ex-
tended dissipative system; recently it has been
demonstrated that these systems naturally
evolve into a self-organized critical state
(states without detailed specification of the ini-
tial conditions) (Turcotte, 1992). The tectonics
of the Earth and all the unexplained correla-
tions of the geophysical and the geochemical
field over the earth surface can be considered a
sequence of instability episodes and earth-
quakes are the natural consequences of the dy-
namical state of the crust submitted to steady
increasing stresses. The temporal fingerprint of
the self-organized critical state is the presence
of the 1/f noise and the spatial signature is the
emergence of scale invariant (fractal) structure
(Bak et al., 1988).

To this purpose a thorough analysis of the
spectral features of geoelectrical time series
was been performed. The second goal of this
work is the detection of behaviour in the power
spectra typical of 1/f noises.

Finally, an analysis of the implications of
the earthquake prediction problem will be dis-
cussed applying our methods on the geoelectri-
cal data collected in Tito (Southern Italy).

2. Data

In this work we use the geoelectrical time
series recorded by an automatic station located
in Southern Italy (fig. 1). Since May 1991 two
arrays have been installed using copper elec-
trodes put in the ground at 1 m depth along the
N-S and E-W directions, spaced 100 m and
120 m respectively, near the Area della Ricerca
of the National Research Council located in
Tito (PZ) (40°35’'N, 15°44’E). Technically a
geoelectric or self-potential time series is a se-
quence of voltage differences measured with a
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Fig. 1. Location of the automatic station devoted to
the measurement of self-potential signals.
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selected sampling interval using a receiving
electrode array. During the geoelectrical
soundings, where a current is injected into the
ground, the self potential represents the noise
(Lapenna er al., 1994). On the other hand,
when we record using a passive measurement
technique (i.e., without energizing system), for
example in a seismic area, it is the signal.

In the Tito station a multi-channel data-log-
ger is equipped to measure the voltage differ-
ences between the probes and also some me-
teoclimatic parameters (temperature, humidity,
radiance, etc.). The sampling rate is Az = 30 s,
the acquisition procedures are controlled by a
personal computer connected to the data-logger
that computes and stores the mean voltage val-
ues every 5 min. The daily values of self-po-
tential data recorded during the period May
1991 - April 1994 are reported in fig. 2.
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Fig. 2. Daily self-potential time series recorded by

We had a great number of data missing only
during the period July 1991 - September 1991
because we upgraded the station, while there
are no other periods with a high number of
data missing, the global ratio, between missing
and measured values, being 10%. To avoid
some self polarizing effects we used ceramic
electrodes built of ceramic vessels filled with a
saturated solution of copper sulphate. The time
series obtained with the different probes are
constantly checked to remove anomalous pat-
terns related to polarizable effects (Di Bello
et al., 1994).

Furthermore, the self-potential measure-
ments can be influenced by many geophysical

Tito station.

parameters (i.e., seasonal effects of the clima-
tological variables, magnetic storms etc.), so a
preliminary filtering procedure is necessary to
remove these effects on the data (Lapenna
et al., 1994). Before going on we studied the
correlation between the self-potential time se-
ries and the air temperature and the humidity
time series recorded by the automatic station in
Tito. For the sake of brevity we do not report
in this paper the routinely filtering procedure,
but all the analyzed data were preliminary fil-
tered from any meteo-climatic effects. A firm
quantitative analysis of the techniques devoted
to the filtering of geoelectrical data is described
in a previous paper (Di Bello et al., 1996).
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The measuring station is located on the
Southern Apennine chain which is one of the
most seismically active areas of the Mediter-
ranean region. It is the result of a complex se-
quence of tectonic events associated with the
collision between Africa and Europe. In this
area on November 23, 1980, a large normal-
faulting earthquake occurred. It was one of the
largest event observed in Italy in the past 80
years (Pantosti and Valensise, 1990).

In particular, the measuring station is lo-
cated 7 km away from the town of Potenza, an

area characterized by a local seismicity with
intensities no larger than VII. In fact this seis-
mic activity is related to a faulting system
transverse to the great Apennine faults (Boschi
et al., 1994) and these tectonic structures typi-
cally are responsible for non destructive earth-
quakes. The spatial pattern of local seismicity
during the measuring period is depicted in
fig. 3.

In the investigated area there are favourable
conditions to observe precursory phenomena of
an electrical nature. Furthermore many rocks,

16°

41°
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BASILICATA

Fig. 3. Seismicity pattern in the monitored area of the Southern Apennines chain. The amplitude of the circles
is related to the magnitude of the earthquakes varying in the range from M = 2 to M = 5.
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deep fluids and gases interact as recognized by
recent investigations (Balderer and Martinelli,
1994), so it is possible to detect electrical
anomalies possibly related to electrokinetic
phenomena.

3. Autoregressive techniques: global and
local approaches

To study the time dynamics of the geoelec-
trical time series recorded by the Tito station
we use a methodology based on autoregressive
processes. The rationale behind the scheme is
that if only a few degrees of freedom interact
non-linearly to generate deterministic chaos
than a local (non-linear) predictor can be con-
structed which approximates the dynamics of
the low-dimensional signal better than any
global (linear) predictor. Technically, predic-
tors are built by locally and globally fitting au-
toregressive processes to the data.

The global approach is equivalent to repre-
senting the observations by means of a linear
(infinite-dimensional) stochastic model, whereas
the local approach is equivalent to represent-
ing the data on the basis of a low-dimensional
deterministic chaotic system. In this work, the
predictive skill of the two approaches is com-
pared. If the local representation gives a pre-
«dictive advantage over the global one, and
therefore over the entire class of linear stochas-
tic systems including regular attractors and
coloured noise, the conclusion is for chaos,
otherwise the reverse conclusion is taken.

Let x(¢) denote the function of time. We
shall assume that the signal is sampled at equal
intervals, say Af, then writing x(t = nAr) =
x(n), the sequence x(n), (n =1, ....., N) (N be-
ing the number of data points) constitutes a
discrete time series. In the global autoregres-
sive representation the [-step ahead forecast
(I>1)x(n+1) of x(n+ 1), standing at origin n,
is given by a linear function of current and pre-
vious observations i.e.:

X+ D) =¢(Dx(n) + p(Dx(n—1) +

+9,(Dx(n + 1-p) 3.1)
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with p the order of the filter and with the coef-
ficients, ¢, (), ¢, (D), ....., @,(1), are unknown to
be determined.

To this end, we use the well known Yule-
Walker estimation procedure (e.g., Box and
Jenkins, 1976). Note that these coefficients de-
pend on [ but they do not depend on the time
origin, that is, they are time-shift invariant.
This is a consequence of the linear structure of
the stochastic process with which the data
points are modelled in the global representa-
tion (e.g., Box and Jenkins, 1976). Reflecting
the infinite dimensionality of the system, the
quality of predictions increases with the num-
ber of data used to obtain estimates of the au-
toregression coefficients.

Conversely, in the local autoregressive rep-
resentation, to obtain the [-step ahead forecast,
(X(n+1D; I > 1), starting at the origin n, we
again construct a predictor which is an autore-
gressive filter:

fm+1D)=0¢mDx(m) + or(n,Hx(n-1) +
+ ¢,(n, Dx(n + 1-p) (3.2)

but now the autoregression coefficients,
¢ (n, D), ¢, (n,0), ..., ¢,(n,]), depend on the time
origin n and on [ as well. A strategy to com-
pute the autoregression coefficients for the lo-
cal case has been discussed by Serio (1992,
1994a). The key point of the local approach is
the ability to find local portions of a given time
series in the past which closely resemble the
present, and base the forecasts on what hap-
pened immediately after these past events.
Technically, we consider k p-ple,

x, (m;) = (x(my)),

m;<nandi=1,

..... s

(3.3)

that minimize the Euclidean norm || x,(n) —
— x,(m) .

Then, we regard every p-ple x,(m;) as the
input of the filter (3.2) and x(m; + [) as the out-
put. Finally the coefficients, ¢,(n, 1), ¢,(n,[),
wer @,(n, 1), are obtained by best-fitting the au-
toregressive model to the couples: x,(m;),
x(m+1). It should be noted that, for a given
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origin n, the search for the k p-ples is done
once, while the best-fitting procedure is per-
formed [ times, that is at each step /, in order to
compute the ¢(n,l). We apply the least-
squares method by singular-value decomposi-
tion (e.g., Press et al., 1986). When k = p this
is equivalent to linear interpolation which is
notoriously unstable, therefore to ensure stabil-
ity we choose k = 2p.

To evaluate the predictions we compute the
forecast error for the /-step ahead prediction
by: e(l) = x(n+1)— %(n+1), then the normal-
ized root mean square forecasting error, E(l),
will be defined as the expectation value of the
forecast error

(e )

2
x

E* ()=

34

where the angular brackets denote expectation
and o, is the standard deviation of the series.
E(l) provides a quantitative measure of the
predictive skill of each representation (local or
global).

In practice we divide the time series into
two separate parts: a fitting set x(1), ..., x(NV))
and a testing set x(N;+1), .., x(N, +N,),
N = N;+N, being the size of the sequence. For
each given order p, the first part of the series is
used to compute the autoregression coefficients
(global or local), then forecasts are produced at
the location of the data points in the second
part of the series and the corresponding errors,
e,(l) computed. Here, the subscript p recalls
that this operation is repeated for different val-
ues of p, i.e.,, p=1, ..., p,, where p, is an upper
bound specified from the user. Then, the fore-
cast error function Ep(l) is computed and the
norm, K(p), evaluated by

K(p)=NE D)+t E (ly)  (3.5)
Finally, we adopt as the order of the process,
Popts that p for which K(p) is minimized. Here,
lmax 1s the maximum step ahead at which fore-
casts are obtained. In practice, it is obtained by
the condition E(I,,,) = 1.

The procedure is used both in the case of
the global predictors and in the case of the lo-
cal ones. In any case we obtain true optimal
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mean-square predictors. This point is important
since for arbitrary p the representation (3.1) is
not necessarily the best in the least-square
sense.

Provided that the signal x(¢) is the output of
a chaotic system and p > D, where D is the di-
mension of the underlying attractor, it can be
demonstrated (Serio, 1994b) that

Ey(D) > E.(I) (3.6)
where E,(I) denotes the root mean square
forecasting error affecting the global prediction
and Ej.(I) is the corresponding value in the
case of the local prediction.

This property can be easily demonstrated on
the basis of the Kolmogorov linear mean
square estimation theory. A stochastic process
admits only a limited predictability, while a
chaotic signal generated by a non-linear set of
differential equations is continuous and differ-
entiable and it has an exact local prediction
(i.e., the equations are locally linearizable).
Conversely, if the signal is stochastic the re-
verse of eq. (3.6) is expected since the global
representation takes better into account the in-
finite dimensionality of the process (Drahos
et al., 1995).

4. Results

In this section a thorough analysis of the
time dynamics of the geoelectrical time series
has been performed using the above mentioned
methods. This study is supported by a spectral
analysis of the signals and all the results allow
us to improve the knowledge about the physi-
cal process underlying the observed electrical
phenomena. Finally, in the last sub-section, all
the implications on the earthquake prediction
problem are analyzed.

4.1. Detecting low-dimensional chaos

The Global Autoregressive (GA) and Local
Autoregressive (LA) techniques have been ap-
plied to discriminate low-dimensional chaos in
geoelectrical time series at different - time
scales.
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Firstly we investigated self-potential data
over a large time scale. From the observed
data, one sample every 5 min, the daily mean
values were obtained. In this way two daily
self-potential time series were analyzed, the
first one obtained from the dipole oriented in
the N-S direction and the second one from the
dipole oriented in the E-W. The autoregressive
techniques, GA and LA, were applied using
the algorithms described in the previous sec-
tion and the mean square forecast errors, E2(/),
are plotted in fig. 4a,b. The global approach
was better than the local one, so the self-poten-
tial time series can be well described by a

stochastic process. Our findings confirm the re-
sults discussed in a recent paper (Cuomo et al.,
1996) where an autoregressive process of order
2 was selected to describe daily self-potential
time series. According to the global approach
the estimates of parameters of the autoregres-
sive model fitted to the data increase with the
number of data available.

At this point, we explore the data at a very
short time scale sampling interval, the entire
set (sampling interval Az = 5 min) is subdi-
vided into sub-samples, each built up with
2880 consecutive values, and for each record
we estimated the mean square forecast errors
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Fig. da,b. Mean square forecast errors obtained from the analysis of daily self-potential time series. Figure
4a,b reports the results regarding the data obtained from the measuring dipoles oriented in N-S and E-W

directions.
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Fig. 5. Mean square forecast errors, with / = 1, obtained applying the global and local techniques to sub-sets
of the self-potential time series (line E-W). Each sub-set is built up with 2880 data points.

using the GA and LA techniques for data from
May 1991 to April 1994. The graphs of the esti-
mates of E2(I) versus time are plotted in fig. 5.
The data processed were obtained using the
dipole oriented in the E-W direction. Observing
the results of the forecast errors during the three
years, we can exclude at a very short time scale
the presence of low-dimensional chaos, since the
global and local approaches always give compa-
rable results. The physical process that produces
the geoelectrical phenomena is described by an
infinite dimensional dynamical system.

Our findings suggest including the geoelec-
trical time series in a wide class of Fractal
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Brownian Motion (FBM). In fact, the curves
E*(1) for the global case are very stable which
demonstrates the presence of correlations also
at lead time [ as large as 10 and long range
correlations are typical of FBM processes
(Voss, 1989).

To better substantiate our results a compari-
son with a method proposed by Tsonis and
Elsner (1992) was analyzed. In this article the
authors pointed out that Pearson’s correlation
coefficient, r, between predicted and actual
values decreases exponentially with the predic-
tion time when a chaotic signal is present. On
the other hand, when we have FBMs the expo-
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nentially behaviour is absent. On these basis
they proposed a method to discriminate low-
dimensional chaos in experimental time series.

In fig. 6, as described in the paper of Tsonis
and Elsner, the (1—r) values versus the predic-
tion time lag are reported on log-log scales.
According to the results obtained using our ap-
proach, the linear behaviours of the curves in
fig. 6 are typical fingerprints of FBM signals.

This agreement is dictated by the theoretical
relation between the forecast error and the cor-
relation coefficient (Wales, 1991):

o’ (x; =)
r=1- — 127 .1
2 o2 )

where r is the correlation coefficient, o the

sampling variance of data and o”(x;—y;) the
forecast error (in our text reported E*X (D).

4.2. I/f noises and self-organized systems

In this sub-section the main features of the
geolectrical time series in the frequency do-
main are analyzed. Recalling some recent pa-
pers (Bak er al., 1988; Sornette and Sornette,
1989) concerning the complex dynamics of ex-
tended systems with a very large number of
degrees of freedom, we studied the power
spectra of geoelectrical time series. In fact,
typical fingerprints of these systems are the
flicker or 1/f noises, so the power spectra of

T i — — — local
g L global
161 L L L 1 ! I I I
1 10
lag
—~ 1
— -
! L — — — local
g L global
~1
10 1 1 1 1 1 1 1 1
1 10
lag

Fig. 6. 1-r values vs. prediction time lag on log-log scales. Linear behaviour is observed in the plot as ex-

pected for an FBM signal.
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Fig. 7a,b. Power spectra of daily self-potential
lated to the different dipole orientations.

these processes follow a linear behaviour on a
log-log scale.

To compute the power spectra we used the
well known algorithm of the maximum entropy
(Burg, 1968). Power spectra of daily geoelec-
trical time series showed on double log-scales
a linear behaviour with angular coefficient
close to 1 (fig. 7a,b). The temporal dynamics
of daily self-potential time series was effec-
tively a realization of a 1/f noise, giving us a
signature of self-organized criticality. To com-
plete our analysis the power spectra of each
sub-sample were computed. Four examples are
plotted in fig. 8, and also in this case we noted
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time series on log-log plots. The two graphs (a) and (b) are re-

the presence of 1/f noise.

Our findings are not sufficient to consider
the geoelectrical phenomena the output of a
self-organized system, but all the results allow
us to consider the system governed by infinite
dimensional dynamic equations. In this case
the classical approach based on the «mean
field theory» or on the perturbative methods
fails. In nature some dynamical systems act in
a more concerted way. Different variables sup-
port each other in a way which cannot be un-
derstood studying the individual isolated con-
stituents. This result has great implications on
the earthquake prediction problem.
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Fig. 8. Examples of power spectra obtained from different portions of self-potential data. The sampling inter-
val is At = 5 min and each sub-set is built up with 2880 data points.

4.3. Implications on the earthquake prediction
problem

In this sub-section we point out the prob-
lems underlying the use of the electrical pre-
cursors in earthquake prediction. As an exam-
ple, the correlation between the geoelectrical
time series recorded by the Tito station and the
seismic sequences is discussed. The ambiguity
regarding the efficiency of precursory phenom-
ena of electrical nature is due to the compli-
cated interactions between all the parameters
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governing the phenomena. It is a hard task to
approach the earthquake prediction problem
studying the correlation between a single pre-
cursor of electrical nature and the incoming
earthquake: our findings allow us to conclude
the phenomenon cannot be predicted on the ba-
sis of a few prognostic equations. This is a
possible explanation for many ambiguous re-
sults obtained with electrical precursory phe-
nomena especially when we analyze the corre-
lation between anomalous electrical patterns and
seismic events with low magnitude (M < 3.5).
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To support our conclusions an experimental
example is discussed: we showed the ambigu-
ous results we obtained when we correlated the
seismic events recorded in the area around the
Tito station and the self-potential anomalies.
First, the geoelectrical time series were fil-
tered: long period components related to me-
teoclimatic effects were removed and all the
data were normalized in mean and variance
(Di Bello et al., 1994).

As regards the seismic sequences, since the
earthquake precursors are variations in geo-
physical fields caused by a local earthquake
preparation process, only earthquakes that could
be responsible for strain effects in the investi-
gated area must be selected. The stress field pro-
duces cracks on the rock volumes triggering fluid
pressure variations. As a result of this process we
have an underground charge motion and, subse-
quently, we observed anomalies in the electrical
field on the surface only if the preparation region
was near the measuring station.

It is necessary to discriminate the useful
events (i.e., earthquakes responsible of signifi-
cant geophysical variations in the rock volume
of the investigated area) from all the seismic
sequences which occurred in the area sur-
rounding Tito measuring station.

To this purpose an empirical formula intro-
duced by Dobrovol’skiy (Dobrovol’skiy et al.,
1979; Dobrovol’skiy, 1993) was used:

r= 10A43M

where M is the magnitude and r (km) the ra-
dius of the area in which the effects of the
carthquake are detectable. From the seismic
events listed in the catalogue of the National
Institute of Geophysics we considered only the
earthquakes with r greater than the distance be-
tween the epicentre and the measuring station.
Obviously this technique is based on an empir-
ical methodology, the situation is even more
complex and the behaviour of precursors at
different points of the preparation region may
be substantially different.

Figure 9a-c reports the residual geoelectrical
time series, characterized by zero mean and
unit variance, and the selected earthquakes,
while the dashed lines correspond to the limits
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of a 20 interval. Figure 9a depicts the residual
time series of the first year of monitoring ac-
tivity. During the period May 1991-June 1991
a M = 4.7 earthquake occurred and we also ob-
served a large number of aftershocks. In the
same period we picked out from the time series
a very significant anomaly (abnormal values
greater than 20) and observed a very sharp ef-
fect. The abnormal values started three days
before the earthquake and we observed many
scattered values in the coseismic and post-
seismic periods. In the subsequent period only
a few earthquakes with very low magnitude
occurred and we did not observe significant
anomalous patterns in the residuals time series.
Only few sparse residual data were over the
threshold.

As depicted in fig. 9b, on May 8, 1992 a
M = 3.7 earthquake occurred near the Tito sta-
tion and a sequence of anomalous values was
clearly visible during the same period. The
curve of experimental data shows a rapid in-
crease since May 2 and it is clearly recogniz-
able for many days during the coseismic and
postseismic phases. During the subsequent pe-
riod we had some earthquakes with magnitudes
ranging from 3 to 3.5, but we did not observe
very significant extreme values in the residual
time series.

As we can see in fig. 9c, during the first
week of July and September we had few ex-
treme values (i.e., the number of consecutive
abnormal values is less than 3) and during Au-
gust a M = 3.4 earthquake occurred. In this last
period a correlation between these values and
the seismic events is not reliable, and it is an
hard task to distinguish the preseismic and
postseismic effects.

The last correlations are examples of the
ambiguous results we obtain when we study
the electrical precursory phenomena: an
anomalous pattern can be detected but we do
not have a physical basis to give a firm result.
We have only two anomalies clearly detected,
in other cases we have earthquakes without
anomalies and vice versa. This effect is more
evident when the magnitude of the seismic
events becomes lower.

In our opinion, the electrical anomalies are
really linked with earthquake activity but, ac-
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Fig. 9a-c. Residual self-potential time series and earthquakes occurred in the investigated area during the pe-
riod May 1991 -April 1994. The dashed lines delimit the band + 2 0.

cording to the short-term predictability analysis
described in this paper, the ambiguity, espe-
cially for earthquakes with low magnitude, is
inside the physical process that produces the
electrical anomalies, the dynamical laws gov-
erning the process being infinite dimensional.

5. Conclusions

The predictability of the geoelectrical time
series has been evaluated using two possible
forecasting approaches: global autoregressive
approximation and local autoregressive ap-
proximation. For the daily mean time series
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our findings are that the global (linear) ap-
proach is always superior to the local one: the
geoelectrical time series are truly stochastic.
Power spectra of the residual time series fol-
low a f~% law, f being the frequency, so they
exhibit the typical behaviour of the broad class
of 1/f noises that are typical fingerprints of a
self-organized system. These dynamic charac-
teristics have important implications on the
predictability of the series. As opposed to the
chaotic case, we conclude the phenomenon at
hand cannot be predicted on the basis of a few
prognostic equations (whether linear or non-
linear), since its predictability is intrinsically
limited. We do not have the possibility to de-
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scribe our geoelectrical time series with a low
number of parameters, meaning that it is very
difficult to approach the earthquake prediction
problem using a single electrical precursor. In
the near future we will develop a multipara-
metric monitoring array to analyse the space
and time patterns of precursory phenomena in
seismic areas.
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