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Rigorous time domain responses
of polarizable media
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Abstract

The scope of this note is to study a model of induced polarization which fits the usually accepted frequency
dependent formula of Cole and Cole, but is more general and allows the time domain observations to retrieve
the parameters describing the induced polarization phenomena of the medium. By introducing the memory
mechanisms, represented by derivatives of fractional order, in the relation between the electric flux density and
the electric field and considering the fractional order differential equation which follows, I solve it with mathe-
matically rigorous and closed formulae and compute the responses to a step function, a box, a set of positive
boxes and a set of alternating positive and negative boxes. I also introduce a method which retrieves the pa-
rameters describing the medium when comparing the theoretical curves with the observed ones. The responses
to these signals also allow to estimate the temporary alteration of the medium when repeated positive
(negative) signals are input; the response increases (decreases) in amplitude when the signals are all positive
(negative), it decreases when the signals are alternatively positive and negative in agreement with the known
attitude of the medium to induced polarization.

Key words constitutive equations — induction — noted by Fox and later by Barus; the first sci-

polarization — alterations — Cole-Cole model entific paper is due to Schlumberger (1920),

who had previously reported his studies with a

patent in 1912, and then discussed it as a cur-

1. Introduction rent stimulated phenomenon observed as a de-

layed voltage response in exploration. It is ob-

The polarization of materials was already served mostly where there are pores filled with
known to the ancient Greeks but was first  fluids near deposits of metallic minerals.

quantitatively studied by Faraday. In physics Comprehensive repqrts on the mathematical
Induced Polarization (IP) was studied by De- ~ modelling and mechanisms of IP are those by
bye (1928) who recognized in 1912 that all ~ Wong (1979) and Olhoeft (1985). ‘
atoms must have displacement polarizability The phenomqnon has been .stu(_hed also in
and that this polarization must contribute to the the laboratoyy with results confirming those of
dielectric constant. the exploration. .

The history and development of IP in geo- The effect of IP is well known. When we

science is well described by Allaud and Martin inject a continuous current into in the soil, it is

(1977); in the nineteenth century IP was first b;lieved_ that a relatively 'large number  of
dipoles is formed. These dipoles oppose the

passage of the electric current, therefore tem-

porarily increasing the resistivity (charge
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In general the phenomenon of IP is repre-
sented mathematically by. means of simple
laws based on the observation that the charge
and decay curves are almost logarithmic.

The Fourier Transforms of these empirical
laws are in general of the type proposed by
Cole and Cole (1941) who assumed a complex
dielectric constant model in the frequency do-
main and also verified that it satisfies Kronig-
Kramer conditions of realizability. (From here
the formula of Cole and Cole (1941) or the rel-
ative paper or these authors will be indicated
with CC). This law is the most useful of all the
laws proposed to model IP (Pelton et al.,
1983).

The first systematic study of memory for-
malism in mathematics is due to Liouville
(1832) with the introduction of the derivatives
of fractional order.

Heaviside (1899), during the last decade of
the 19th and the first decade of the 20th cen-
tury, was the first to study electric phenomena
in the frequency domain by means of the oper-
ational calculus which corresponds, in the time
domain, to the use of fractional order deriva-
tives.

Memory mechanisms to represent dispersive
media have been used directly in the time do-
main by Cisotti (1911), who proved that pro-
cesses regulated by generic memory mecha-
nisms are irreversible, and by Graffi (1936).

Prior to CC, Gemant (1936) suggested an
empirical formula similar to that of CC and
used the derivative of order 1/2 in the form of
a memory mechanism operating on E (electric
field), but he considered it only as a possi-
bility.

In a more recent work Graffi (1962) intro-
duced a generic memory mechanism in the re-
lation between E and D (electric flux density)
applying it only to E probably because this al-
lows Maxwell equations to be solved without
the use of Laplace Transform (LT).

An extensive study of energy storage in
electric networks was been made by Jacquelin
(1984, 1988, 1991) using the complex fre-
quency dependent impedence represented by
inserting fractional order derivatives in the re-
lation between J (current density of free
charges) and E.

424

Jacquelin’s (1984, 1988, 1991) discussion
is practically extended to almost all possible
circuits; he illustrates his results in the fre-
quency domain at steady state, when the Fres-
nel terms of the fractional order derivatives are
nil, and his technique, based on the observa-
tions at many frequencies, relies on convolu-
tion for the retrieval of the response in the time
domain.

In general we may state that the formalism
of this note is now spread to many linear ap-
proaches in the studies of dissipative and dis-
persive properties of many anelastic and di-
electric media (e.g., Caputo and Mainardi,
1971; Bagley and Torvik, 1983a, 1983b, 1986;
Pelton et al., 1983; Le Mehaute and Crépy,
1983: Jacquelin, 1984: Kornig and Miiller,
1989; Caputo, 1989, 1994a,b).

An important work to model the IP was
made by Pelton er al., (1983) who gave the in-
terpretation of the CC formula (as well of other
formulae) in the time domain by means of
derivatives of fractional order. Pelton et al.
(1983) solved in the time domain the fractional
order differential equation in the cases of a
delta and of a step input. The time domain so-
lution of Pelton ef al. (1983) is given by means
of series which are practically valid for larger
and smaller values of the time measured in
units of the relaxation time.

However many aspects of IP modelled by
the CC formula, represented in the time do-
main' with constitutive equation for £ and D
containing fractional order derivatives, have
yet to be discussed. It is therefore desirable to
obtain rigorous solutions, with rapidly conver-
gent closed form formulae, not only for the
step and the boxcar input but also for other
types of inputs.

The present approach will be directly in the
time domain with special attention to the re-
sponse to the delta input, which allows solu-
tions to be found also for more complex inputs
not considered by Pelton er al. (1983) and
which may be useful in geophysical explo-
ration.

We will also find the solution to the re-
sponse to a delta input for a medium governed
by a more general constitutive equation con-
taining two fractional derivatives of different
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order which includes as a particular case that
considered by Pelton er al. (1983).

This will be implemented by introducing the
two fractional order derivatives in the relation
between D and E and by solving the fractional
order differential equation, representing the
constitutive equation, for a delta input, with
closed form formulae valid for all positive val-
ues of the time and introducing an integral pre-
viously used by Caputo (1984) in the solution
of anelastic problems.

The case when the two fractional deriva-
tives have the same order will be given special
attention and solutions are found when the in-
puts are the delta, the step, the box, the set of
successive positive boxes, the set of alternating
positive and negative boxes and the set of saw
teeth. The solutions are all expressed by means
of closed form formulae.

A method is also given which retrieves from
the time domain response to the input of sig-
nals of given shape the parameters characteriz-
ing the IP phenomena of the medium which
was done, with Prony’s method, for the case of
a box, by Patella er al. (1979, 1987).

Besides Pelton et al. (1983), many authors
have done work in the time domain interpreta-
tion of the CC formula. I quoted here only the
results essential to the discussion which fol-
lows.

2. The E-D relation with derivatives
of fractional order

Consider that the usual relation D = €E is

substituted with

aD+yD® = oE+eE™ 2.1)
where o, ¥, € 0, w and z are real constants
with the appropriate dimensions, with 0 < w < z =
=r/n < 1, r and n positive integers. The clas-
sic Maxwell equations coupled with eq. (2.1) are
the equations governing the propagation of elec-
tric signals in the medium.

The fractional order derivatives operating on
the applied electric field and on induction are
here assumed with different order to represent
different physical mechanisms.
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The derivative of order z of the function
S is here defined as the following convolu-
tion

df(/dt*=1/T (1 -2) Itf'(u)du/(t —u),
0
whose LT is (Caputo, 1969)

LT (@ @/dr?) = p* LT (f(1)) — p*~ 'f(0).

Substituting the LT of (2.1) in the LT of Maxwell
equations we find

VxVxe=—up® [(c+ep”(a+ypIle. (22)

where e is the LT of E.

This equation with € = ¥ = 0 reproduces the
classic case of absence of dispersion.

We have assumed here that dJ/d t = 0 which
gives sufficient generality for our purpose. The
results of this note however may be extended to
the case when dJ/d ¢ # 0.

A solution to eq. (2.2), obtained by means of
separation of variables, is found in Caputo (1993)
for the case z = w. A solution to eq. (2.2) with
z # w may be obtained with the same method
used for the case when z = w.

In some IP works the exponents z and w are
equal but the ratio (ep*+ 0)/(yp*+ @) is elevated
to a power inserting again an additional parame-
ter as is done in (2.1) relative to the CC formula.
However we prefer formula (2.1) which satisfies
the Kronig-Kramer compatibility condition and is
easier to. handle analytically.

3. The retrieval of the IP parameters and
the temporary alterations of the medium

In this section I shall consider a medium
whose induction is defined by eq. (2.1), compute
the response to the following inputs: a) a step;
b) a box: c) a set of positive boxes; d) a set of
alternating positive and negative boxes, and
discuss how to retrieve the parameters appearing
in (2.1).
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The LT of eq. (2.1), considering the one-di-
mensional case, which does not alter the meaning
of the results, gives

Yp'd+ad = ce+ep”e (3.1
where d is the LT of D.
Solving for d we find
d = e(ep”+0)yp*+ o). (3.2)

Assuming p = iw, ylao = 7%, e/y= €., olo = &),
and z = w where g and &_, are the dielectric con-
stants at zero and infinite frequency respectively
and 7is a relaxation time, eq. (3.2) coincides with
the CC formula. The time domain representation
of formula (3.1) was first given by Caputo and
Mainardi (1971), in the study of anelastic media,
and used by Bagley and Torvik (1983a), by Le
Mehaute and Crépy (1983) and by Pelton et al.
(1983). Bagley and Torvik (1983ab) already
used form (3.2) of the constitutive equation in the
frequency domain with two, different exponents
for p (Laplace Transform (LT) variable).

To operate in the time domain I rewrite
eq. (3.2)

d=e{ol(a+yp*) + (elyp*™)
[1 = (a/y)aly+p*]l}. (3.3)
Assuming e = 1, I find the Green function
Do{(0lo)é(t) = (ely) [1*7* 1/ T(z — w)] }*
(sin wz/mz) J:o (uR)"* exp (— uR)"t)dul(u* +
+2ucoswz+ 1)+ (e/y) """ YT (z—w)
R=ualy. (3.4

In the following, to simplify the presentation
and to conform to the work of CC we will
assume z = w; formula (3.4) is then

Dy = (ely)6(®) + B(sin wz/mz) r (uR)"
0

exp (- (uR)"*)dul(u® + 2ucos wz + 1)

B=(c/la—-¢ly). (3.5)

The values of the integral in (3.5), assuming
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T = R"* t as independent variable and z as pa-
rameter are shown in fig. 1.

a) The response to a step function input

With e = 1/p in eq. (3.3), we obtain the re-
sponse to a step field

D, =¢ely+ B(sinmz/nz)

r (1= exp (— (uR)"*1))dul i + 2u cos 707 + 1),
° (3.6)

D,(0) = €/y and D () = o/ give meaning to
the ratios £/y and o/c; specifically the ratio
gly = &, is the step response to E(e) = 1 or
the response at infinite frequency according to
eq. (3.2) and o/ = g, is the asymptotic value to
E(e0) =1 or the response at zero frequency.
Formula (3.6) is useful for the computation of
the parameters D,(0) = &/y and D,(e) = ol
appearing in CC formula where it is assumed that
a=1, p=i. The third parameter appearing in
CC formula is 1/R = 7° = y/o. The recording
of eq. (3.6) gives directly D,(0) = &/yand D,(c0) =
= o/a, while the fitting of eq. (3.6) to the data
gives a/y=R, B and z from which 7 is obtained.

b) The response to a box input
A case of practical interest is the response
to an applied E with a form of a box of unit

amplitude and duration 7 (fig. 2(b)); from
eq. (3.5) it is seen that this response is

Dy, (t) = €/y+ B(sin wz/mz)

j " (1= exp (= (uR) 1)) dul(u® + 2u cos w2 + 1)
0
for 0<t<T 3.7
Dy, = B(sin n2/72) j " (exp (—(uR) (1~ T) +
0

—exp (—(Ru)"“))du/(u* + 2u cos wz + 1)

for T<t,

which is shown in fig. 3.
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Fig. 1. Derivative of the induction response to a unit step field (eq. (3.5)) for z =
0.6 (dotted dashed curve) and z =

(dashed curve), z =
(sin 7z)/7z.

In order to verify the values of the parameters
B, z, and 7 resulting from the fitting of the theo-
retical curves to the observed one it is useful to
recall that theoretically we have

im Dy, (1) = o/, Dy () — Dy (0) = B,

[0

Dy (T) =Dy (T) = €ly
Dy (T) = Dy (0) = Dy (T), Dy (0)=ely. (3.8)

Considering that D,,(2T) # 0, from the third
of (3.8) it follows that the load response curve for
t < T and the initial part of the unload curve for
T <t < 2T may not be superimposed by means
of a rotation and a translation.
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0.2 (dotted curve), z = 0.4

0.8 (solid curve). The ordinate is in units of (&—¢&.)

If it may be considered that 7 is sufficiently
larger than 7 so D,,(T) practically coincides with
the asymptotic value of the response to a step
load then, from D,j(=) = D,,(T), it follows
that:

Db](T) = O'/Ot
Dy (T) = ola—e/y.

In practice however many IP experts use the ob-
served data for t > T only (i.e., Patella et al.,
1987). In this case one may retrieve the theoreti-
cal values of 7, B and z using the following
method.

A double infinity of Theoretical Curves (TC)
for z = gAz and 7= mArt, with ¢ and m integer, is
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Fig. 2. Shapes of the electric field E considered as input in eq. (3.2); b) a box of duration 7; c) a set of
positive boxes of duration T and separated by T; d) a set of boxes of positive and negative sign of duration
T and separated by T; e) a set of saw teeth alternatively of positive and negative sign (only for the case

o= 0).

computed from the second of (3.7) for t = T and
the values defining the points of each curve are
stored in the memory of the computer.

Then the value of B is assumed for each theo-
retical curve such that for # = T the theoretical
curve has the same value as the observed one. At
this stage an automatic search is made with the
following procedure in order to find which theo-
retical curve has the closest match to the ob-
served one.

To this purpose a generic point in the grid
7 = gAz and T = mAT7 is selected, and the Mean
Square Difference (MSD) computed between
the assumed TC and the Curve of the Observed
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Data (COD); then by trial and error the com-
puter finds which of the four possible direc-
tions of the grid in the point selected has the
largest decrease of the MSD between the TC
and the COD curves.

The procedure is then automatically re-
peated until a relative minimum of the MSD is
reached.

But one may reasonably increase the num-
ber of TC in the set of those matching the
COD by taking into account the experimental
errors. In fact one may estimate the mean
square error of.the experimental curve (MSE)
and, during the search for the minimum
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Fig. 3. Induction in a medium with constitutive eq. (3.2) and caused by a box of unit amplitude and duration
T (see fig. 2(b)). The time is in units of the relaxation time 7= R = (ot/y)™"%. The curves are for z = 0.2

(dotted curve), z = 0.4 (dashed curve), z =

0.6 (dotted dashed curve), 7z =

0.8 (solid curve). The constant term

glyfor 0 <t < T is omitted. The ordinate is in units of (g—¢.) (sin z)/xz.

of the MSD, a number of TC which have
MSD < MSE is obtained. In principle, one
should consider as acceptable all the TC which
have MSD < MSE.

Obviously, as was already found (Gasperini
and Caputo, 1979), it is possible that one finds
more than one relative minimum for the
MSD and, therefore, other sets of TC with
MSD < MSE which belong in a domain of the
grid z = gAz and T = mAT7 not connected with
the domain of the grid already found; it is the
priviledge of the experimenter to foresee which
of the curves selected by the method are the
most appropriate to model the medium under
study.

The method of finding with a random walk
all the theoretical curves with MSD < MSE
and accepting them as physically acceptable
(known as the Hedgehog method) has been
successfully applied in geophysics especially
in the studies of the Earth’s surface waves
where, instead of the 2D space (that of the grid
2= gAz and T = mAt), one uses a space with a
larger number of dimensions where the models
of the thickness and velocity of the layers
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forming the asthenosphere and lithosphere are
represented.

The variant of the Hedgehog method sug-
gested here consists in guiding the computer to
the minimum MSD.

Experimentally, however, the input E is not
exactly a box and, for instance, its rise and de-
cay times are not nil. To take this into account
one may then compute analytically the re-
sponse curve to the actual input obtaining a
formula similar to (3.7) and proceed as previ-
ously suggested.

¢) The response to a set of positive boxes input

Another case of practical interest, in order
to see the alteration of the medium, is that
when a set of successive positive boxes, with
the same sign and duration 7 and separated by
T are applied (fig. 2(c)). Convolving this func-
tion with eq. (3.5) we find, in the case when
we consider the n-th box, that the response is a
box of amplitude &/, given by the 8(¢) term of
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eq. (3.5), to be added to the integral

D,.,=B(sinmwz/nz)

n—1

jm(exp(—vﬂ)(zi exp(2w73)(exp(vT)-1)+
0

0
+(1 —exp (—v(t = 2(n — 1)T))) du/(u* + 2ucos £z + 1)

v=wR)", 2m-DT<t<2m-DT+T

3.9

which has the sign of o/a—¢&/y = g—-¢&..

By differentiating eq. (3.9) with respect to
t it is seen that, for ¢ within the box, the func-
tion (3.9) increases.

Assuming ¢ = 2(n—1)T and ¢ = 2nT which
give the ordinates of the initial points of the
n-th and of the (n+1)-th box respectively, it is
seen that |D.,(2(n—1)T)| < |Dus1)(2nT)| for
all n.

That is the modulus of the ordinate at the
initial points of the boxes increases. The same
property applies also to the end points.

It is also seen that for n increasing the am-
plitude of the boxes converge to a finite
value.

We may then conclude that if the sign of
olo—¢ely = g—¢&. in eq. (3.5) is positive the
response is formed by successive boxes in-
creasing in amplitude, if that sign is negative
the successive boxes of the response are of de-
creasing amplitude; the laboratory data show
that the sign of o/a—¢&ly = g—&., is positive.
This indicates how the medium temporarily al-
ters its attitude to be polarized.

0.1

0.05-0.

Fig. 4. Induction in a medium with a dielectric constant characterized by eq. (3.2). The input is an electric
field of the type (d) of fig. 2 with z = 0.9 and the relaxation time is 7= 0.1 T (dotted dashed line), 7= T (solid
line) and 7= 10T (dashed line). The abscissa is in units of 7" and the ordinate is in units of (&—&..) (sin 7z)/7z.
The scale to the far left is for the dashed line, the other is for the two other lines. In order to have total induc-
tion the curves shown must be added to a curve of the type (d) of fig. 2 with amplitude given by the ratio &/,
which generates discontinuities at the times t = T, ¢t = 2T, t = 37, but leaves the curved shape of the lines

unchanged.



Rigorous time domain responses of polarizable media

In an inverse experiment the three ratios
oly= 17, ola, e/yand the exponent z charac-
terizing (3.5) may be retrieved fitting the
curves determined experimentally to curves of
the type shown in fig. 4. Considering the n-th
box, as we mentioned, the response curve is a
box of amplitude &/y to be added to a function
of the type (3.9); amplitude of the box gives
the ratio &, the fitting the curves of the type
shown in fig. 4 gives B, 7 and the relaxation
time .

d) The response to a set of alternating positive
and negative boxes input

In exploration the unit amplitude boxes of
duration T of the set considered are actually al-
ternatively positive and negative and each box
is separated by the next by a time interval of
duration 7 during which the applied field is nil
(see fig. 2(d)).

For the applications the response should
therefore be computed for four successive
time intervals 7. Convolving the signal with
eq. (3.5) we obtain a repetition of the signal
with amplitude &/y as a result of the 6(f) term
of eq. (3.5) to be added to  *

D,,=B, j :(exp (=) (exp(vT) - 1) ((1 - exp (2vT))

|

+(exp (vt) — exp (4nT))) dul(u® + 2u cos Tz+1),

n-1

Y exp (4jT)) +exp ((4n—2)vT)) +

j=0

for 4nT <t < (4n+ 1T, (3.10)

D, =B, _[:(exp (~v0) (expvT— 1) (1 - exp 207)

|

n—1

Y exp 4jT) +exp4nT) dul(u® + 2ucos 7 + 1),

j=0

for n+1)T<t<@n+2)T:

Dy =B, f:<exp (v) (exp (T) = 1) (1 = exp (20T

( 2"1 exp (4jT)) +exp (4nT)) +
j=0

—exp (vf) + exp ((4n + 2)T)) dul(u* + 2ucos 7 + 1),

for (An+2)T<t< (4n+3)T

Dy = B, f:(exp (vD)(exp (V) - 1)((1  exp (2T))

|

D exp (4iT)

)du/(u2 +2ucosmz+1)
j=0

B, =Bsinnz/nz,

for @n+3)T<t<(4n+4)T.

- Formulae (3.10) reproduce the shape of the re-
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sponse, shown in fig. 4 obtained in exploration
and give another method of retrieving the pa-
rameters of eq. (3.2) when the set of inputs of
the type of fig. 2(d) are applied.

4. The case of o = 0

In rheology, expression (3.2) is used in the
one-dimensional case as the parameter relating
strain to stress because it gives a rheological
model which fits many laboratory data (Bagley
and Torvik, 1983a, 1983b, 1986). :

Formula (3.2) is more general than that of
CC because of the presence of the parameter
¢ appearing in the denominator and of the
presence of two fractional derivatives of differ-
ent order (z # w); the two formulae coincide
when a =1 and z = w.

The case =0 is of great interest in the lin-
ear rheology of the very slow motions occur-
ring in the Earth, because it gives the model
best fitting the observed geological phenomena
(Kornig and Miiller, 1989); this case, which
has a very simple mathematical solution,
would escape CC formulation.
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I shall consider the case @ = 0 now to com-
pute the responses and estimate the alteration
of the medium when applying a step input (a)
and a set of saw teeth input of the type shown
in fig. 2(e).

With ¢ = 1 in eq. (3.2), I obtain

Do = (/7)) 8(0) + (c/yT @) t*~!,  (4.1)

which is the Green function.

a) Response to a step input

For the retrieval of the parameters o/y, &'y
and z characterizing the medium it is sufficient
to observe the response to a step input; in fact
from eq. (3.2), with a = 0, substituting e = 1/p
we obtain the linear relation in In ¢

Dy, (0) = ely
In (Dy, (1) =Dy, (0)) =In (o/yT' (1 +2)+zIn ¢
4.2)
where the initial value Dy, (0) = &/y and the

values of z and o/y are obtained by fitting the
observed data.

e) The response to a set of saw teeth input

To see the alterations of the medium we
consider the case when E is represented by a
function S(¢) nil for ¢ < 0 and formed by an in-
finite set of saw teeth with nil initial and mean
value, with period 47 and slope b (fig. 2(e)). S(¥)
also shows the deviations from linear be-
haviour; the convolution with eq. (4.2) gives
the saw teeth term with period 47 and ampli-
tude €/7, plus the following function Dy, (%)

Dy (t) = bt**(z+ 1), for 0<t<T, 4.3)

Do, (t) = b(E+' =20t =T Dz + 1),
for T <t < 37,

Do, () = b (5 =20t = TY ' +2(t = 3Ty Dz + 1),
for 3T <t < 57T,
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Do (1) = b(t** '+

+ i =D)"2(t— 2m— DT Hiz + 1),

m=1

for Qn—-1DT<t<@n+1)T.

The function Dy, (f) has maxima, at ¢ = (4g—3)7T,
with g positive integer, which decrease with in-
creasing ¢ indicating an alteration of the polar-
ization properties of the medium which de-
creases its attitude to be polarized.

It is noted that the decreases of the moduli
of the amplitudes of the successive maxima
and minima are converging to zero.

The variation of the maximum from the
(g+1)-th cycle to the (g+2)-th is

T (= (4g+ 55+ + (4g+ 17 +2((4g + 4 ' +
—(4q+27" )z + 1), 4.4)

which is positive; the sum of these variations

_05 -

A 4

Fig. 5. Sum of the successive decreases of the in-
duction of a medium represented by constitutive
eq. (3.2) with o = 0 and caused by an infinite set of
saw teeth (see fig. 2(e)), as a function of the order of
fractional differentiation z. The values of the curve
have been obtained dividing the values of formula
(4.5) by T*"! where T is the period of the saw teeth.
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after an infinite number of cycles is obtained
assuming g as a continuous variable and inte-
grating eq. (4.4) from zero to infinity; I find

T =1+ 5%2 -2 (442 222+ 2))4.(2 + 7) (1 +2),
4.5)

which is positive, limited for 0 < 7 < 1 and
plotted in fig. 5.

5. Conclusions

The time domain representation of the usu-
ally accepted CC formula is generalized with
the introduction, in the formula, of two frac-
tional derivatives of different order; the result-
ing fractional order differential equation is
solved obtaining its Green function (response
to a delta input) which allows the solutions to a
large variety of inputs to be found.

The mathematical approach used obtains the
mathematically rigorous and closed formulae
representing the response of the medium to a
step input, to a box, to a set of positive boxes
and to a set of alternatively positive and nega-
tive boxes in the time domain which may be
used to compute and check the parameters ap-
pearing in the CC formula relative to the
medium under consideration.

It is shown how the introduction of the
memory formalism represented by deriva-
tives of fractional order in the classic relation
D = gE is representative of a temporary differ-
ent attitude of the medium to be polarized; spe-
cial attention is given to the transients of many
signals of interest in geoelectric prospecting.

When o = 0 it is seen that if periodic posi-
tive (negative) signals are applied, the medium
decreases temporarily its attitude to IP, when
the periodic signals are alternatively positive
and negative this attitude increases.

The rate of change of the temporary varia-
tion of the attitude to IP is proportional to
B = (g—¢&.) (sinmz)/mz, is a function of the
number of elapsed cycles and converges to
zero when steady state is reached.

In the case o = 0 the number of arbitrary
parameters is only 3, namely &, and &, and z;
the shape of the response to a step seems to fit
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the field data well and the retrieval of the pa-
rameters describing the medium seems possi-
ble through the response to this simple input.

Finally the new method to retrieve CC pa-
rameters from the observation of the response
to an input box allows the variety of parame-
ters which represent the IP phenomena of the
medium and are physically acceptable to be
discussed.
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