ANNALI DI GEOFISICA, VOL. XL, N. 1, January 1997

Adaptive regridding in 3D reflection
tomography

Gualtiero Béhm, Giuliana Rossi and Aldo Vesnaver
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Abstract
3D reflection tomography allows the macro-model

of complex geological structures to be reconstructed. In the

usual approach, the spatial distribution of the velocity field is discretized by regular grids. This choice simpli-
fies the development of the related software, but introduces two serious drawbacks: various domains of the

model may be poorly covered, and a relevant mismat

cur. So the tomographic inversion becomes unstable,
duce an algorithm to adapt the grid to the available
irregular grids with a locally variable resolution.

Key words reflection tomography — irregular
grids — automatic regridding — travel time inver-
sion

1. Introduction

The estimate of the local velocity of seismic
waves is a parametric inversion of their travel
times. We assume first some general model for
the Earth structure, characterised by a few free
parameters; then we fit it to our experimental
data by optimising these parameters, according
to some physical or mathematical principles.

Often, the chosen Earth model is very sim-
ple, like a set of plane parallel layers of vari-
able thickness. This is the case for the velocity
spectra in reflection seismics (Taner and
Kohler, 1969; Hubral and Krey, 1980), which
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ch between the grid and a complex velocity field may oc-
unreliable and necessarily blurred. In this paper we intro-
ray paths and to the velocity field in sequence: so we get
We

can guide the grid fitting procedure interactively, if we
are going to introduce some geological a priori information; otherwise, we define a fully automatic approach,
which exploits the Delauny triangles and Voronoi polygons.
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provide a 1D function relating velocity and
travel times. We can estimate more compli-
cated 2D velocity models by allowing for the
effects of possible dipping interfaces, i.e. by
the Dip Move Out (DMO) correction (Yilmaz
and Claerbout, 1980; Rocca et al., 1982; Hale,
1983).

The tomographic inversion of travel times
allows much more complex models for the
Earth to be adopted, especially in 3D. In the
most common approach, the investigated area
is discretized by voxels, i.e. parallelepipeda
where the physical properties are supposed
constant in space (in 2D, they are often called
pixels). Usually the voxel shape and size is the
same everywhere, and so the velocity field is
estimated in a regular grid. This choice is due
to the much simpler software setting up of the
tomographic inversion, but may lead to serious
drawbacks. In fact, the distribution of the
available ray paths may be quite uneven, and
some voxels may be not crossed at all. These
facts cause heavy instabilities and the non-
uniqueness of solutions (Vesnaver, 1994).
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An important advantage of seismic tomog-
raphy over other inversion methods is the pos-
sibility of exploiting different wave types
jointly and an arbitrary distribution of sources
and receivers (see e.g., Vesnaver, 1996).

In this paper we show that transmitted and
reflected arrivals allow a complex 3D geologi-
cal structure to be reconstructed. By adopting
irregular grids in sequence, we match the local
resolution to one that can be supported by the
ray paths’ distribution: so we obtain a reliable
solution, which is not affected by the instabili-
ties due to the null space of the tomographic
equations. We also match the shape of the vox-
els in the chosen space discretization to the es-
timated velocity anomalies, and so we further
reduce the estimate errors.

2. The principle of minimum dispersion

In the tomographic inversion of seismic ve-
locities, the vector ¢ of the measured travel
times is related to the vector u of the unknown
slownesses by a linear function:

t=Au, 2.1)
where the tomographic matrix A depends on
the ray paths of the considered waves.

The solution of (2.1) is rarely unique. Gen-
erally the system is rank deficient and a null
space exists: we therefore obtain a space of so-
lutions, instead of just one. Among the infinite
possible ones, however, we can choose some
of them satisfying further requirements. A very
effective choice is that the vector u of un-
known slownesses has a minimum energy
(Menke, 1984; Carrion, 1991): in this way, the
solution is unique and not contaminated by the
null space.

From the practical point of view, we in-
verted system (2.1) by the SIRT method, based
on the Kaczmarz’ algorithm (Kaczmarz, 1937;
van der Sluis and van der Vorst, 1987). Al-
thought it is a bit slower than the ART ap-
proach, we preferred the SIRT one because it
produces tomographic images that do not de-
pend on the equation order in (2.1), i.e. that of
the traced ray paths, as happens with ART.
Furthermore, SIRT is more stable and robust: it
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may be generalized and applied even when the
picked travel times are affected by experimen-
tal errors and some mispicks (Dobroka, 1994;
Dobroka et al., 1991).

System (2.1) yields a parametric inversion
of slownesses u from travel times £. We as-
sume explicitly that the space properties are
fairly well represented by voxels, i.e. that we
can approximate the velocity field by a blocky
function. Also, we assume implicitly that the
reflecting (or refracting) interfaces are fixed
and known, if we use reflected (or refracted)
waves.

Naturally, often we do not know precisely
(or at all) the shape and depth of the interfaces
of the Earth layers. These additional unknowns
aggravate the already ill-posed problem (2.1).
Again, we can face the new degrees of free-
dom by adopting a further principle. Here we
can exploit the natural lateral continuity of
geological interfaces, as proposed by Carrion
et al. (1993a,b), which is what we call the
principle of minimum dispersion.

From the practical point of view, we can
split the inversion procedure we propose into
distinct parts. The estimate of the vertical and
the lateral velocity gradient should be done
separately, at the beginning, and jointly only at
the end.

In the seismic exploration, the usual acqui-
sition geometry allows for the multiple cover-
age of the reflecting points in depth (fig. 1). So
we adopt first a local 1D model composed of
horizontal layers. Our two unknowns are z and
v, which are the reflector depth and the RMS
velocity from surface to reflector, respectively;
the data available in two dimensions are ¢ and
o, i.e. the travel times and the offsets between
source and receiver. We can solve the un-
knowns 7-v by scanning several possible cou-
ples at each reflector: the values 7-v providing
the minimum dispersion for the corresponding
reflection points are the sought solution. So we
satisfy a basic physical principle: the seismic
waves are reflected at the surface because a
notable change of the local physical properties
occurs in a limited zone.

Repeating the estimate just described for
each major reflector and at different places, we
obtain a first image of the velocity field and re-
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(T, D) — (V,2)

Fig. 1. The principle of minimum dispersion in a 1D model. We estimate the la

yers’ velocity and thickness
from the travel time variations with respect to the offset.

(LD, X) — (V(x,2), Z)

Fig. 2. The principle of minimum dis
each layer by imposing the lateral continuity of the estimated reflectors.

persion in a 2D model. We compute the lateral velocity variations in
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flector structure in 2D or 3D. Naturally this
guess may suffer from relevant errors, mainly
when dipping interfaces are present. So a sec-
ond application of the minimum dispersion
principle is necessary: now, along the dimen-
sions x and y, which are the spatial coordinates
of the sources and receivers at the surface. Fig-
ure 2 shows a 2D example: we obtain the cor-
rect values of v(x) when the dispersion of the
estimated reflection points is small both verti-
cally and laterally.

3. 3D reflection tomography

Figure 3 is a block diagram of the procedure
we follow in practice for the 3D tomographic
inversion. First, we select a few 2D profiles
from the whole 3D data set, and obtain a pre-
liminary 2D inversion as described in fig. 2.
Secondly, we interpolate these profiles to 3D
and obtain a first guess for the 3D velocity
field and the reflecting surfaces. Then we in-
vert the whole data set for the velocity field in

3D, leaving fixed the layer interfaces: so we
consider the 3D geometry of the ray paths.
Later, if necessary, we update further both the
reflectors’ shape and the velocity field in se-
quence, until their variations become small
enough.

Figure 4 shows the model of a steep anti-
cline, surrounded by a layered medium with
dipping interfaces. At its top, we set a low ve-
locity anomaly resembling a hydrocarbon
reservoir. The model interfaces are charac-
terised by a circular symmetry and are de-
scribed by 2D spline functions.

In fig. 5 we see a few ray paths by a trans-
parency effect, displaying some voxels. The
small cubes at the model boundaries show the
position of sources and receivers. We placed
many sources and receivers at the surface,
which are necessary to reconstruct the layer in-
terfaces by the reflected waves. Furthermore,
we introduced a few wells at the model bound-
aries and traced the ray paths of transmitted
waves across them, to improve the voxel cov-
erage in the outer domains.

Inversion scheme

v

Fig. 3. Block diagram of the procedure for the 3D reflection tomography.
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18 km/s e Ui, S

D 25 ks

Fig, 4. 3D synthetic model of a steep anticline, with a low velocity anomaly at its top.

i

i

Fig. 5. A few ray paths across the model in fig. 4.
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Figure 6 displays (at left) the first step of sion for the estimated reflection points. Their

the inversion along a 2D profile to reconstruct different colours denote their different offsets:
the third interface. Starting with a wrong sur- from blue for the smallest ones to red for the
face (green line) and a wrong velocity in the largest. After some iterations, we obtain the de-
third layer (3.2 km/s), we obtain a large disper- sired minimum dispersion for all interfaces

Fig. 6. First step (lett) and final estimate (right) of the 2D reflection lomography procedure at the uppermost
interface.

km/s

18 2,0 e 2,4 26 28 3,0

Fig. 7. Velocity field estimated by the 3D tomographic inversion using a nearly regular grid.
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(fig. 6, at right): all points at different offsets
provide the same image of the Earth.

We notice in fig. 6 that only the central part
of the model is adequately covered, and that
this coverage is poorer as the depth increases.
This is due to the steep flanks of the anticline,
which shift the reflection points towards the
anticline top. As a result, the interfaces at the
model boundaries are just extrapolated from
the central part, and so their reliability is much
lower.

Figure 7 shows the velocity field estimated
by the tomographic inversion of reflected and
transmitted arrivals using a nearly regular grid.
The reconstruction is quite good in the central
zone, and poorer elsewhere. This is mainly due
to the not very precise reflectors’ shape at the
boundaries.

4. Regular and irregular grids

Our model is composed of a few homoge-
neous domains irregularly shaped. Let us sup-
pose that this a priori information is available

to us. (Naturally, this is not true in general;
vice versa, sometimes the available indepen-
dent information may be wrong, and so mis-
leading). We can exploit this extra knowledge
by adapting the grid to the velocity field esti-
mated in sequence (B&hm and Vesnaver,
1996). Figure 8 shows the final result so ob-
tained, that is very good and much closer to the
actual model (fig. 4) than that provided by the
conventional approach (fig. 7).

We can appreciate better the differences of
these images by taking a horizontal slice at the
level of the hydrocarbon trap (fig. 9, top).
Looking at the image provided by the conven-
tional approach (top, at right), we see that the
zone surrounding the central anomaly is quite
homogeneous, but the anomaly boundary is
quite blurred. According to our a priori infor-
mation we expect sharper boundaries, but we
do not know their shape. So we merged the
outer voxels into larger ones, and introduced
smaller ones around the anomaly. Doing so
(bottom, at left), its actual shape becomes
much clearer. Our final step (bottom, at right),
obtained by merging the unnecessary small

7,8

20

km/s

2z 28 3.0

Fig. 8. Velocity field estimated by the 3D tomographic inversion using an irregular grid.
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Fig. 9. Horizontal slices at the level of the hydrocarbon trap: true madel (top left), lomographic image
obtained by a regular grid (top right) and by irregular grids at an intermediate step (bottom left) and the final
result (bottom right).
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voxels into larger ones, obtains a nearly perfect
reconstruction of this 3D object.

Figure 9 allows us to note a basic problem
of parametric inversion: the true shape of an ir-
regular anomaly cannot be well approximated
by a coarse grid composed by regular rectan-
gles. We obtain a noticeable improvement
when the local resolution changes in space, al-
though when rectangles (with a variable size)
are used.

Our last result is so good because our model
is quite simple and our a priori information is
correct. As we said before, unfortunately this is
not often true. So the following problem arises:
how can we adapt our grid to the actual veloc-
ity field using only the data, i.e. without any a
priori information?

S. Adaptive regridding

If we do not have any information about the
features of the velocity field, a regular grid is
an acceptable choice: we distribute the local
resolution uniformly, because our ignorance is
uniform. But this is not more true after the re-
lated tomographic inversion: then we can re-
cover at least some trends of the geological
structures. These trends can be exploited to up-
date automatically the initial grid and match
better the available rays with the voxel distri-
bution.

Defining a procedure for adaptive regrid-
ding, we have to consider different limits.
First, the voxel number should be lesser.than
or equal to that one of the available rays: oth-
erwise the inversion results are affected by the
ambiguities due to the null space. Then, we
have to increase the local resolution in the
zones where the velocity changes; on the other
hand, this increase should not introduce a rank-
deficiency in the tomographic system (2.1).

Figure 10 is a block diagram of the proce-
dure we propose. Its basic steps are the follow-
ing:
1) We analyse a preliminary velocity field,
obtained for example by a regular grid inver-
sion. (However, any independent geological
model or a rough estimate provided by velocity
spectra could be used as well). The velocity
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gradient is computed to reveal possible sharp
interfaces, but also the slow spatial changes.

2) We choose some reference points defin-
ing the irregular grid, with a density that is
higher where the velocity gradient is larger.

3) We check whether these reference points
are placed in domains adequately covered by
ray paths, and accept only those such that the
local reliability in the surrounding domain is
high enough.

4) Using the new reference points, we build
a new grid and estimate a new velocity field.

5) If the obtained resolution is satisfactory,
we stop the procedure, otherwise we go back
to step 2 for a further grid refinement.

Given a set of arbitrary reference points, we
can define a grid by using two interesting types
of voxel shape: the Delauny triangles and the
Voronoi polygons. Both may be set up effi-
ciently and are characterised by particular
properties. For example, joining the reference
point in a Voronoi polygon with those of its

REGULAR GRID INVERSION

| velocnv mels wiknrolaTion | |

| MaNUAL CHOICE OF INMAL POINTS ]

TRIANGULATION
NULL SPACE
FIELD GRADIENT l oSt i

ADDING NEW POINTS
IN THE BARICENTER OF TRIANGLES

g
- NEW grdlmsmsmwtew
U

. DELAUNAY TRIANGLES | |

Y

_ VORONO| POLYGONS

INITIAL. VELOCITY

Fig. 10. Block diagram of the procedure for the
adaptive regridding.
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adjacent polygons, we obtain a (unique) De-
launy triangulation. For further details, we
refer the reader to Preparata and Shamos
(1985).

6. Delauny triangles and Voronoi polygons

We can build a Delauny triangle selecting
three points in the set, such that for each of
them the two others are the nearest neighbours.
An equivalent definition is that the circle pass-
ing through the three points does not contain
any other point of the whole set. Repeating this
operation for all our reference points, we ob-
tain the Delauny triangulation, i.e. an irregular
grid that can be used for the travel time inver-
sion.

Given a single reference point, the related
Voronoi polygon is the domain composed of

WIDTH (Km}

o 1 2 3 5 8 7 a 19
o Y R Y TR Ve | N GO N | IO 0
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& 1.5 Km/s o
29 =

DEPTH (Km)

Fig. 11. 2D synthetic model.
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Fig. 12. Tomographic image obtained by a regular grid.
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all the points that are closer to it than any other
reference point of the set. This polygon is con-
vex, and its boundary can be obtained by a
simple procedure. We can take all possible
couples composed of our fixed reference point
and any other point of the set. They define a
line that is equidistant between them, and a
half-space that includes the fixed reference
point. The intersection of all half-spaces so ob-
tained is its Voronoi polygon,

7. Synthetic example
Figure 11 shows a 2D synthetic model,

composed of two horizontal layers overlaying
three domains divided by dipping interfaces.

We placed 42 source at the left boundary and
42 receivers at the opposite side, all regularly
spaced, simulating a cross-well recording of
transmitted waves.

A regular grid of dimensions 21 x 21 pro-
vides the tomographic image in fig. 12. For the
inversion, we adopted a SIRT algorithm with-
out any hard bound, smoothing, or damping
factor. Although the major trends are well re-
constructed, the interfaces are blurred. For the
horizontal ones, this also happens because the
voxel limits do not coincide with the interface
depth. For the dipping ones, the mismatch be-
tween the grid and the actual model cannot be
avoided at all.

Figure 13 shows the first part of the pro-
cedure for the adaptive regridding. At left we
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Fig. 13. First iteration for the adaptive regridding.
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TRIANGLULATION

INITIAL VELOCITY FIELD

DEPTH i}

Fig. 14. Second iteration for the adaptive regridding.

see the velocity field obtained by smoothing
that one provided by the regular grid. We
chose some reference points (top) and, by
evaluating the null space energy (right), we
add new reference points (bottom), since all
present voxels are well constrained by the ray
paths.

Repeating the procedure (fig. 14), we notice
that some voxels are affected by a too high
component of the null space (right), and so we
reject the new possible reference points within
them. We can go on with the same procedure
(fig. 15), increasing the local resolution as far
as the null space energy does not exceed a de-
sired threshold.

Figure 16 displays the tomographic image
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obtained by the Delauny triangles. The two up-
per horizontal interfaces are well resolved, but
the lower dipping interfaces are quite blurred.
Much better is the image provided by the
Voronoi polygons (fig. 17): all interfaces are
clearer and the different domains are much
more homogeneous.

We remark that in the last two images the
resolution is higher in the central zone, because
the ray coverage is better. The voxel number is
the same. The regular grid inversion (fig. 12)
with a smaller voxel number obtains a much
worse image: this happens because the null
space is not controlled and the vertical or hori-
zontal voxel sides cannot approximate [airly
the dipping interfaces.
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Fig. 15, Third iteration for the adaptive regridding.

8. Conclusions

3D tomographic inversion is a good tool to
reconstruct realistic geological structures, Dip-
ping and curved surfaces are usual in structures
like synclines and anticlines, direct and reverse
faults, salt domes, diapirs and so on. In these
cases, the ray path geometries cannot be repre-
sented by a 2D model without introducing se-
vere distortions in the travel time estimates,
and so in the related tomographic image.

Irregular grids allow the local resolution to be
fitted to the available ray paths and to the initially
unknown velocity field. These three elements are
very closely related: the velocity anomalies bend
the rays; the rays crossing the grid provide the to-
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mographic equations; their inversion gives the
sought velocity field. This apparently vicious cir-
cle can be broken by an iterative procedure. In
the standard approach, the ray paths and the ve-
locity anomalies are computed in sequence, leav-
ing the tomographic grid constant and regular.
We propose instead to extend this loop by includ-
ing the adaptive regridding.

Two basic criteria guide our algorithm to
search for an optimal grid: first, the null space
energy should be minimum; then, we have to
reduce the mismatch between the grid shape
and the spatial variations of the velacity field.
In this way, we defeat the two major causes of
blurring, instabilities and ambiguities that are
commonly encountered in other approaches.
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Fig. 16. Tomographic image obtained by the Delauny triangles.
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Fig. 17. Tomographic image obtained by the Voronoi polygons.
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