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Abstract

The use of 1D or pseudo- 3D ray tracing techniques in linearized tomographic problems leads to solutions for
which it is difficult to assess the true resolution and error distribution. For this reason, we employ a revised 3D
bending algorithm (Moser ef al., 1992) and show that it can be used efficiently for a non-linear inversion in a
stepwise scheme. Initial paths are determined from graph theory in order to avoid local minima in bending.
The importance of 3D ray tracing in inversion studies and the limitations of the standard 1D approach are
demonstrated through synthetic examples. The speed of the ray tracing and the simple scaling scheme allow
for an implementation in large-scale tomographic problems.

Key words non-linear inversion — arrival times — rithm used depend on the way the model is

graph theory — bending — 3D ray tracing represented. Usually, after linearization of the
problem, we need to solve a linear system of
the form:

1. Introduction
r=As (1.1)
Since the first tomographic results were pre-
sented (Aki and Lee, 1976; Aki er al., 1977; For the arrival time tomography, r is the travel
Dziewonski et al., 1977), various researchers time residual vector, A is the appropriate Jaco-

have studied different aspects of the tomo- bian matrix and s is the slowness perturbation
graphic problem. These studies have focused matrix. Even in the case of a local model rep-
on the three main stages of the tomographic al- resentation the inverse problem (solution of

gorithm, namely the parameterization of the eq. (1.1)) cannot be considered overdeter-
model, the computation of the matrix elements mined. A unique solution can only be obtained
(the ray tracing algorithm in the case of arrival by assuming additional constraints on our

time tomography) and the solving the final sys- model. If we accept the Bayessian point of
tem of equations together with obtaining esti- view, we do this by imposing an a priori co-
mates for the errors and the resolution of the variance matrix for our solution (Tarantola,
final solution. The first stage significantly af- 1987). This results in defining a «least-normy»
fects the latter two, since both the ray tracing solution (Franklin, 1970; Tarantola and Nerces-
technique employed and the inversion algo- sian, 1984; Constable et al., 1987) by minimiz-

ing not only the data misfit but also additional
constraints like the model norm or the model
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used in arrival time tomography. Usually this
step represents the heaviest computational ef-
fort. The traditional approach is either to rely
on Fermat’s principle and ignore the effect of
3D structure on rays (Aki and Lee, 1976) or
employ a fast pseudo-3D ray tracing technique
(Thurber and Ellsworth, 1980; Thurber, 1983).
In very few cases, a 3D ray tracing technique
has been applied in arrival time tomography
(Sambridge, 1990). The usual 3D ray tracing
approach is to the two-point boundary value
problem with shooting or bending (Julian and
Gubbins, 1977). Both techniques have draw-
backs; shooting techniques as well as other al-
gorithms (e.g. Sambridge and Kenett, 1989)
fail to converge or converge too slowly in
shadow zones where ray theory breaks down.
On the other hand, bending frequently fails to
find the global travel time minimum, unless an
initial ray close to the global minimum is pro-
vided as a first guess. However, bending meth-
ods have no problem finding rays in shadow
zones or even identifying a diffracted wave as
the first arrival and therefore annealing the
Wielandt effect (Wielandt, 1987) of biasing to-
wards positive velocity anomalies.

In this paper we are concerned with the sup-
pression of errors introduced in the elements of
matrix A by inaccurate ray geometries. We ad-
dress this problem using an efficient but accu-
rate 3D ray tracing technique proposed by
Moser et al. (1992), which has been shown to
have very good convergence and accuracy
properties. Global minimization is virtually as-
sured by incorporating initial ray paths derived
from graph theory (Moser, 1991). Moreover,
we explore the significance of 3D ray tracing
for tomographic purposes.

2. Non-linear arrival time inversion using
3D ray tracing

In order to trace rays in a three-dimensional
medium we employed a bending algorithm
as revisited by Moser et al. (1992). In this
algorithm, rays are represented by [-splines
which are defined by a series of support points.
Our model was parameterized by a 3D carte-
sian grid, where velocities are determined at
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each node and the velocity at each point is esti-
mated by trilinear interpolation. Since we use a
bending method, shadow zones or the Wielandt
effect represent no problem. Details about the
efficiency and accuracy of the method and
comparisons with other techniques can be
found in Moser et al. (1992).

As mentioned earlier, the most important
problem in bending is that, if our starting ray is
far from the global minimum, we may find a
secondary arrival. Usually initial paths are cal-
culated in a 1D model which is an average of
our 3D structure. A better alternative is to use
rays for a 1D model determined by locally av-
eraging our 3D model in a limited area around
the source-receiver cross-section (Thurber and
Ellsworth, 1980) or use a ray derived by a
pseudo-3D ray tracing technique. However,
this does not necessarily solve our problem, es-
pecially in areas of strong heterogeneities. For
this reason we employed initial paths as de-
rived in a 3D medium from graph theory using
a recent modification by Moser (1991). Graph
theory systematically searches in a network of
nodes for the shortest path to a specific point.
If we measure the «lengh» of a path by its
travel time, we can use graph theory to find
minimum travel times from every node of our
model to a given point, and therefore estimate
seismic ray paths in accordance with Fermat’s
principle. Each resulting ray consists of line
segments connecting different nodes. A limita-
tion of this approach is that the accuracy of
graph theory depends on the node density.
Since our model consists of nodes between
which velocity is estimated by trilinear interpo-
lation, we need a much denser grid for the
graph theory in order to simulate a bending
ray. This is further illustrated in fig. 1a, where
a possible ray geometry (dashed line) and the
ray determined from graph theory (solid line)
are shown, when the original velocity grid and
the grid used in graph theory coincide. In this
case, the minimum travel time path is con-
structed by examining the minimum paths
from each point to its eight closest neighbors
(which is referred to as forward star in graph
theory). When we use paths only to such a
small number of neighbors, we impose a spe-
cific angle discretization on the directions that
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Fig. 1a-c. An example ray (dashed line) and three
approximations (solid lines) by graph theory for dif-
ferent velocity-graph theory grid configurations. a)
Ray approximation when graph theory is applied us-
ing the original velocity grid. The ray derived from
graph theory cannot follow the true ray path. b)
Same when graph theory uses a grid with a more
dense spacing. The graph theory ray is improved, but
the number of nodes incorporated increases drastically.
¢) Same when only nodes lying on the velocity cells
are kept. We retain the same accuracy but the number
of nodes used is significantly reduced.

the ray can take (45° in our example). This is
the most serious limitation for the accuracy of
graph theory. One possible alternative is to es-
tablish a denser grid only for the graph theory
calculations, by decreasing the node distance by
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a factor r, as shown in fig. 1b, and increasing
the total number of nodes by a factor =~ 3,
However, the number of operations involved is
proportional to n log n (Moser, 1991), where n
is the total number of nodes, therefore this
change would result in ~ O(r) increase of the
total CPU time. To reduce this inefficiency, we
only keep the nodes that lie on the surface of
the velocity-node cells (fig. 1c). This configu-
ration allows the same angle discretization and
increases the CPU time by a smaller factor of
3 r (r—1), resulting in an almost 80% CPU re-
duction for a typical value r = 4. Unfortu-
nately, because of the intrinsic limitations of
graph theory, we cannot completely rely on its
results. Further bending of the initial ray pro-
vided from graph theory allows an increased
accuracy, which could not be achieved by
graph theory without a very heavy computa-
tional effort.

The combination of initial paths from graph
theory and further ray improvement by bend-
ing give excellent results. In a series of 2D
tests in velocity structures where an analytic
solution could be determined we found a very
good agreement of the ray paths and an accu-
racy of 1 in 10°-10* for the travel times. The
highest accuracy can be achieved by a careful
study of the parameters involved in the two al-
gorithms. For models which involved a number
of nodes of the order of a few thousands, an
additional improvement of the order of 0.5-4%
was achieved by bending, when graph theory
with r = 4 was used. For bending, there is an
optimum number of support points, corre-
sponding to approximately one support point
for each cell that the ray penetrates. Below this
number, the error starts to increase because we
do not have enough points to maintain a flexi-
ble ray, whereas above this number errors
gradually accumulate because of round-off er-
rors and the increasing difficulty of travel time
minimization in a larger model space when we
are already close to the minimum. In addition,
the CPU time increases with the number of
support points involved. The minimization also
depends on how close to the minimum the
starting ray is, as estimated from the graph the-
ory. This is especially important for an effi-
cient application in 3D arrival time inversion
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studies as the two algorithms are used in a dif-
ferent way: since graph theory provides initial
paths from every point in our model to a given
location, we can choose to use the receivers as
these locations, as we usually have many more
sources than stations. Then the initial paths that
correspond to events recorded at the receivers
can be updated by bending. Hence, we can de-
termine an optimum CPU time (for the same
travel time accuracy), by «tuning» the two al-
gorithms, depending on the specific configura-
tion of our inverse problem.

3. Synthetic example for 3D ray tracing

In order to test the significance and effi-
ciency of the 3D ray tracing proposed we show
a second synthetic example. The model used
was a nine-layered model with 200 virtual seis-
mic events randomly distributed throughout the
model. The horizontal and vertical node spac-
ing were fixed at 40 km and 10 km, respec-
tively, and 20 virtual stations were randomly
distributed on the top side of the model (sur-

face). The final model consists of 2178 P and S
nodes. The 1D background P velocity model is
shown in table I and § velocities were calcu-
lated using a constant Vp/Vs ratio of 1.76.
The velocity model we used was identical to
the 1D model except for layers 3 and 4 where
a low velocity square block was put in the cen-
ter of our model, as shown in fig. 2. The size

Table I. One dimensional model used in the syn-
thetic tests.

Layer Depth (km) P velocity (km/s)
1 0 5.5
2 10 6.0
3 20 6.5
4 30 72
5 40 7.9
6 50 7.95
7 60 8.0
8 70 8.05
9 80 8.1

Synthetic model
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Fig. 2. Velocity model used in the synthetic test to demonstrate the effect of 3D ray tracing. Velocity anoma-
lics are confined in the 3rd (20 km) and 4th (30 km) layers.
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of the block is 3x 3 grid nodes (80 kmx 80 km)
and the corresponding P velocities are 6.1 km/s
and 6.8 km/s for layers 3 and 4, respectively.
At the same time the velocities outside this
block were increased to 6.8 km/s and 7.9 km/s.
This velocity structure is trying to simulate a
crust which is locally thickening from 30 to
40 km. In total, 7400 synthetic travel times
were calculated by 3D ray tracing in the true
model. Since we only wanted to study the ef-
fect of 3D ray tracing, we added relatively
small random errors to the P (0.1 s) and S (0.2 5)
travel times. In order to test the effect of differ-
ential travel times we used S-P arrivals for
three of the stations. Therefore, the P and S
problems are not decoupled. Including event
perturbations in the inversion will further in-
crease the coupling between the P and the §
solutions, although some of the velocity
anomalies could creep into the event reloca-
tions.

We used the background model (table D) as
the starting model and initially inverted eq.
(1.1) only for velocity perturbations, using
LSQR (Paige and Saunders, 1982). Figures 3
and 4 show the retrieved velocity anomalies
for the top six layers (0-50 km) when 1D trac-
ing (one iteration) and 3D ray tracing (after
four iterations) are employed, respectively. We
limit our result presentation only in the top six
layers since practically no anomaly is retrieved
for the three bottom layers. The contrast ob-
served between figs. 3 and 4 is quite large: in
the area of interest (layers 3 and 4) both the
amplitude and the shape of the velocity anoma-
lies are significantly improved by the non-lin-
ear inversion. Moreover, the noise introduced
in the shallower and deeper layers almost dis-
appears in the 3D ray tracing case. The arti-
facts in fig. 3 are quite interesting: some of the
anomaly of the 4th layer creeps into the 5th
layer and the pattern is flipped in the 6th layer
to compensate for waves travelling deeper in
the model.

The upper two layers show a distribution of
mainly positive anomalies which matches
perfectly with the station distribution, also
shown in fig. 3 with solid circles. The three ar-
eas that exhibit negative anomalies correspond
to the three stations for which only S-P differ-
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ential travel times were used. The positive
anomalies are mainly due to the fact that 1D
rays are slower than real 3D rays. Therefore,
1D rays systematically exhibit negative residu-
als that are mapped as high velocity anomalies
beneath the stations, in a form of station cor-
rections. The initial r.m.s. misfit is 0.767 s
and is reduced to 0.145 s after one iteration
(1D ray tracing) and to 0.03 s (after 3D ray
tracing).

The misfit after one iteration is quite com-
parable to the misfit expected from the random
errors added in the data (~ 0.13 s). However,
this is not accurate: this misfit is estimated
from the linear approximation (eq. (1.1)) and
not from the real non-linear problem. This is
clearly seen in fig. 5a where we plot the misfit
(arbitrary scale) as a function of the number of
steps performed in LSQR (circles-solid line).
LSQR minimizes the misfit of the linear Sys-
tem by updating the model at each step. Be-
tween two iterations we recalculate the deriva-
tive matrix A by performing 3D ray tracing
and recalculating the misfit for the solution de-
rived from the previous iteration. Hence at
these points we can compare the linear and the
non-linear misfits. It is quite clear (see the
blow-up in fig. 5a) that at the end of iteration 1
we are underestimating the misfit, which is at
least 30% higher. This is due to the fact that
we are using a derivative matrix, A, which was
calculated for the 1D model. Hence, as the
model is updated and deviates from the starting
solution, the search directions determined by A
are inadequate and the linear approximation
residuals give us a false image of convergence
of the non-linear problem. This behaviour veri-
fies the suggestion (Tarantola, 1987) that, when
solving a non-linear problem with a local lin-
ear approximation, all resolution and error esti-
mates should incorporate the non-linear residu-
als. As we get closer to the true model, A is
more accurate and this phenomenon practically
disappears between iterations 2 and 3. We
should also notice that the slope of the misfit
curve changes between successive iterations,
indicating that the new matrix A provides bet-
ter search directions for the updated model. If
instead of recalculating A we allow LSQR to
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Fig. 3. Results of the inversion when 1D ray tracing is used. Hypocentral relocations were not included. The
vclocity anomaly is relatively well resolved in the 4th layer and partly in the 3rd layer, although a Jot of noise
is present. Notice the strong artifacts in the Ist and 2nd layers where no anomaly exists in the true model (sce
text for explanation). Stations arc denoted by solid triangles in the first layer.
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3-D ray tracing
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Fig. 4. Same as fig. 3 when 3D tay tracing is used. The velocity anomalies in layers 3 and 4 almost match the
corresponding images of fig. 2. Morcover. the artifacts in the rest of the model almost disappear.
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Fig. 5a,b. Breakdown of linearity in travel-time tomography. a) Plot of the travel-time misfit against LSQR
steps in different iterations. The transition between the first, second and third iteration is seen in detail in the
blow up. At the end of the first iteration the linear misfit underestimates the true misfit by ~ 30%. The slope
of the curve changes between successive iterations as the updated A matrix provides new search directions.
b) Comparison between the linear and the non-linear (real) misfit for the first iteration. The real misfit de-
creases less rapidly than its linear approximation and after some LSQR step it gradually increases.
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continue up to thirty steps in the first iteration
(dashed line), we have a significantly smaller
misfit reduction, as we are approaching the
least-squares solution.

Although we would prefer to calculate the
non-linear misfit at each step, non-linear esti-
mation of the residuals is computationally very
inefficient, since it requires full 3D ray tracing
for the updated solution. Driven by the discrep-
ancy between the linear and non-linear misfit,
we performed these calculations for some solu-
tions of the first iteration. The resulting curve
(fig. 5b) verifies the breakdown of linearity:
the real misfit (solid squares) decreases less
rapidly than the linear approximation (solid
triangles) and after a specific step in LSQR
(= 10) it gradually increases. After 25 steps we
reach an almost constant misfit value, since the
model norm does not change significantly. The
final misfit (30 LSQR steps) is =~ 120% larger
than our linear estimation, and 60% larger than
its minimum value at the tenth iteration. This
indicates that for similar non-linear problems,
iterative solving of the linear approximation
should stop well in advance before conver-
gence. It is not clear how to identify the exact
point at which we should stop iterating, since
in our case we might consider performing all
thirty LSQR steps in the first iteration and ob-
tain an additional 20% misfit reduction. How-
ever, it is noteworthy that we made these cal-
culations after we had obtained the final non-
linear solution, shown in fig. 4. At the first it-
eration, we chose to stop LSQR at the specific
step (= 10) because the misfit curve shows a
prominent kink at this point due to a sudden
decrease of the rate of the misfit reduction with
LSQR steps. A similar change was observed in
the P and S velocity model norms and this was
attributed to the fact that matrix A had no more
«power» to provide useful search directions to
LSQR.

The inversion became more complicated
when we simultaneously allowed event reloca-
tions and velocity perturbations in our model
vector. The corresponding results are shown in
figs. 6 and 7. Since a part of the velocity
anomaly has crept in the event relocations,
both figures look more «noisy» when com-
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pared with the corresponding results without
event relocations (figs. 3 and 4). However, in
the case where 3D ray tracing is used (fig. 7)
we clearly have much better resolved anoma-
lies, especially in the area of interest (layers 3
and 4) compared with the 1D results (fig. 6).
This is further demonstrated in fig. 8a-c where
cross-sections of different models are pre-
sented along a specific ray path. Figure 8a
shows our initial model and fig. 8b,c presents
the recovered model when 1D and 3D ray trac-
ing is employed, respectively. Again our final
model is very close to the true one. The solid
line in fig. 8c represents the final ray in the 3D
model and the dashed line represents the origi-
nal ray in the 1D model. Since in the 3D case
the surface projection of the ray deviates more
than 5 km from the great circle plane, we pre-
sent its projection on the cross-section. The
two rays have quite different paths and the 3D
ray is faster than the 1D one. Therefore, when
1D ray tracing is used a systematic bias is in-
troduced towards higher velocities. Since, in
the 1D case, different rays will try to map
these positive residuals in different places, the
most convenient way for LSQR to explain
them in a minimum norm way seems to be
by putting higher velocities in the cells right
beneath the stations, as observed in figs. 3
and 6.

Incorporation of 3D ray tracing in tomogra-
phy is traditionally prohibited by computa-
tional inefficiency. However, the proposed
method is quite efficient: on a SunSparc
10-Model 20, a regional model (dimension
1000x 1000200 km®) with more than
12000 P and S nodes required an average CPU
time of 1.5 s per ray. An additional CPU time
of 10 min is necessary for initial ray calcula-
tions (both P and S) for each station from
graph theory. By distributing the computations
on eight CPU’s, a regional tomographic prob-
lem including 10° arrivals could be solved (Pa-
pazachos and Nolet, 1997) in =~ ten hours. The
use of supercomputing and efficient program-
ming could make the application of 3D ray
tracing and non-linear arrival time inversion in
global problems with O(10°) arrivals a feasible
target.
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1-D ray tracing
(Hypocentral corrections included)
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Fig. 6. Same as fig. 3 when hypocentral relocations are included in the inversion. Notice the amplification of
the artifacts and the smaller amplitudes of the recovered anomalies since some «energy» has crepl into
‘hypocentral relocations.

94



Non-lincar arrival time tomography

3-D ray tracing
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Fig. 7. Same as fig. 4 when 3D ray tracing is used, Although the introduction of hypocentral corrections re-
duces the amplitude of the anomalies observed, we still have a much better resolution in the area of interest
(3rd and 4th layer).
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Fig. Ba-c. Cross-sections along a specific source-receiver path for different reconstrucled models. a) Input
model. b) Inversion result when 1D ray tracing is used. No additional constraints were used in the inversion of
the linear system. ¢) Same as (b) when 3D ray tracing is used. A significant improvement of the recovered im-
age is observed. In both (b) and (c) the ray paths for the 1D (dashed line) and 3D (solid line) case arc also
plotted. The two paths are quite different. Moreover, the 3D ray deviates more than 5 km from the vertical

source-receiver planc.

4. Conclusions

The results presented in this paper focus on
the effects of non-linearity on the inversion of
arrival times. The problem is addressed by in-
troducing three-dimensional ray tracing in the
inversion and a significant improvement of to-
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mographic images is demonstrated through a
synthetic example. The estimation of a global
minimum in our ray path calculations is as-
sured by incorporating initial paths from graph
theory. The performed tests suggest that 3D
ray tracing cannot be considered a small sec-
ond-order effect in tomography, The limita-
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tions of linearity as exhibited in fig. 6 imply
that the proposed approach is necessary if we
want to obtain reliable quantitative results.
Moreover, as the effects of the starting solution
are important and because iterative methods
rely on the misfit of the linear approximation,
we should probably perform a large number of
iterations and update our solution very slowly.
This approach avoids introducing large solu-
tion perturbations based on linear approxima-
tions far from the global minimum, which
might introduce «phantom» anomalies in our
final solution.
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