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Abstract

We highlight the fractal behaviour of marine measure
netic field and the spatial trend of the field itself. Thi
ing the coverage of an area by a set of measurement

ment networks when determining the Earth’s total mag-
s approach is a convenient alternative method of assess-
s whenever the environmental situations do not permit a

regular distribution of the measurement points. The Earth’s magnetic field is sampled in marine areas when
the measuring apparatus is moving, even at low speeds, whilst attempts are made to respect the spatial plan-
ning which has been pre-determined on the basis of the resolution sought after. However, the real distribution
of the measurements presents numerous disturbances which are mainly due to environmental factors. In the
case of distributions containing vast areas with no measurement points it is no longer possible to apply Shan-
non’s theorem in 1-D and 2-D. In our paper we apply the fractal theory to certain 1-D and 2-D measurement
distributions order to obtain a coverage estimate of the area and the capacity of reconstructing the field. We
also examine the trend of the power spectra S of numerous magnetic profiles noting that almost all of them il-
lustrate the dependency with the frequency fin the form S ~ f~8 which is characteristic (necessary condition)

of self-similar or self affine fractals.
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1. Non uniform sampling of limited
bandwidth signals

Regarding the sampling of a function Jfx)
with limited bandwidth W and with all the
sampling points outside the interval (—X, X) at
exactly zero, Shannon’s theorem states that
J(x) can be specified by 2WX sampling points.
It must also be noted that the points do not
necessarily have to be equidistant and therefore
uniformly distributed. Let us now see which
conditions are necessary in order to effectively
recognise the signal. According to Cauchy, if a

signal is a function of a variable x whose set of
values is divided into equal intervals in such a
way that each division includes a value X —
where X is less than half the period corre-
sponding to the most significant frequency pre-
sent in the signal — and if an instantaneous
sample is taken from each interval in any way,
then the knowledge of the instantaneous mag-
nitude of each sample as well as the knowl-
edge of the instant (inside each interval in
which the sample was taken) contains all the
information of the initial signal. Various au-
thors have considered several methods to re-
construct a continuous signal from its non uni-
form samples. They have proposed a variety of
techniques using step-by-step filtering and
Sline and Yen’s interpolation (Yen, 1956).
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Spline’s interpolation method, or hill-function
type, is a recently designed special develop-
ment of polynomials. By using simulations it
was shown that the Yen method is superior to
the others as it is both insensitive to the migra-
tion of samples and it has a noise signal ratio

Sy
2 S
DS~ F;)

where S; equals signal samples and F; equals
the samples taken from the reconstructed sig-
nal. Finally, Yao and Thomas (1967) derived a
sampling representation for limited bandwidth
functions when the sampling points are not
necessarily equidistant, but where each one
deviates less than 1/ * In 2 ~ 0.22 from its
corresponding Nyquist instant, as required by
the sampling theorem. The above authors
called such a representation «semi-uniform»
and used Fourier’s non harmonic series to de-
rive it. They remarked that a sampling repre-
sentation is not possible when every sampling
instant demonstrates a non-uniform deviation
of 1/4 of a unit from the corresponding
Nyquist instant, or if an arbitrary but finite
number of sampling instants is positioned arbi-
trarily or if additional points have been added.
More recently, other authors (Bucci et al.,
1993) proposed a highly efficient algorithm for
the interpolation of limited band-width func-
tions beginning with samples which are not
uniformly distributed on the plane. The algo-
rithm can be applied wherever 1) the average
sample density is higher than the Nyquist aver-
age and 2) there is a one-to-one correspon-
dence between the non uniform samples and
those of the uniform network associating the
nearest uniform sampling to each non uniform
sampling point which has shifted by less than
25%. This procedure proves to be more effi-
cient from a computational point of view than
optimal linear estimation algorithms. The need
to deal with non uniform distribution cases ob-
viously derives from the practical circum-
stances which hinder samples from being taken
from the pre-established points. The problem
of interpolation from samples which are not
uniformly distributed was well tackled in the

Sur = (1.1)

case of limited bandwidth functions defined on
the real axis. In actual fact, a function which is
square integrable, with a limited bandwidth W,
can be obtained from its samples in the points
where it was picked up (x;) if the set of expo-
nentials e/®% is closed within Hilbert’s space
L? (=W, W) of the functions which can be inte-
grated to the power of four in the interval
(~W;, W) (Bucci ef al., 1993). The stability in a
non uniform sampling process, ie. the condi-
tion that slight sampling errors lead to slight
errors in the reconstructed function, was con-
sidered thoroughly by Landau (1967) and by
Yao and Thomas (1967). In these papers it was
shown that a «stable» sampling cannot be
made with an average «cadence» which is
lower than Nyquist’s, irrespective of the posi-
tion of the sampling points. When the average
sampling velocity is actually equal to
Nyquist’s — in order to guarantee stability — the
sequence of sampling points must be suffi-
ciently regular:

1) it must be possible to associate one uni-
form point to each non uniform point of the
distribution;

2) the distance between the non uniform
and corresponding uniform sampling points
must be linked by a constant C which is
strictly lower than Q/4, where 1/Q represents
Nyquist’s sampling speed.

When the sampling speed is strictly greater
then Nyquist’s, the constant C of condition 2
can be chosen arbitrarily, provided that the dis-
tance between the samples is greater than zero.
Yen (1956) reports some closed form expres-
sions which allow the interpolation of limited
bandwidth functions from samples which are
not uniformly distributed.

However, what has been said above is only
valid in the following particular cases of distri-
bution:

a) a distribution obtained from the migra-
tion of a finite number of sampling points to
any other uniform distribution;

b) a distribution obtained by translating all
the samples of an arbitrary quantity from the
same quantity;

¢) a recurring non uniformity distribution.

However, in the first case and in the case of
highly non uniform distributions the sampling
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function can have very high values in the inter-
mediate sampling values. The case of 2-dimen-
sional non uniform sampling has been dealt
with less in literature and no analogous results
are available as for 1-dimensional sampling.
Landau (1967) demonstrated that even in the
2-dimensional case stable sampling is not pos-
sible at speeds lower than Nyquist’s. Recently,
(Rahmat-Sami and Cheung, 1987) two basi-
cally similar sampling techniques were pre-
sented (Sankur and Gerhardt, 1973), starting
off from Yen’s results — for the interpolation of
limited bandwidth functions from irregularly
distributed samples. Another important result
which was highlighted in a recent paper (e.g.,
Bucci et al., 1993), demonstrated that in order
for the interpolation algorithm to be optimized
from the point of view of computational relia-
bility and efficiency — and also to prove stable
and accurate — it is preferable to recover the
uniform samples from those which are irregu-
larly equidistant rather than using a direct in-
terpolation formula. In further studies it would
be worth considering sensitivity to error. Let us
consider the interpolation from non ideal sam-
ples, i.e. those which are affected by random
amplitude and phase errors, by simulating a se-
ries of real measured data. For this purpose the
stability of the algorithm developed can be
tested by adding uniformly distributed random
errors to the calculated samples of the function
in such a way that relative and absolute errors
are both simulated. It is taken for granted that
there is background noise and that each sample
is affected by a percentage error. For example,
an error of 1% or 0.1% is taken as the mea-
surement uncertainty. The error maximum will
be observed as the number of repetitions in the
interpolation calculation and is varied when-
ever the latter is recursive. A positive result is
obtained when the reconstruction error is fairly
near the accuracy of the samples.

2. Fractal geometry

Euclidean geometry studies the forms of
natural objects by using their likeness to ab-
stract geometric forms of whole topological di-
mensions. Fractal geometry, on the other hand,

admits dimensions which are not whole, i.e.
between 0 and 1, between 1 and 2 or between
2 and 3 for objects which can be included in a
curve, a plane or a cube respectively since the
fractionary dimension is intuitively linked to
the capacity of the object to fill out the points
of the embedding space. So the greater the
fractal dimension of any set of points, the
greater the coverage of a Euclidean space ap-
pears by such a set. Given a Euclidean set in a
metric space S one can consider covering this
set by means of spheres whose radius is r, SO
the following definitions of fractal dimensions
can be introduced:

1) fractal dimension of contents (of Haus-
dorff-Besicovitch).

This is the value D for which we have

if  d<D lim,_,inf, _, 2 rl=o (2.1)

and if d>D  lim, inf, _, Z rd = oc

where r equals the radius of the sphere whose
centre C is used to cover the Euclidean set and
d equals the Euclidean dimension (Mandelbrot,
1987);

2) fractal dimension of covering:

y 10 N () 22)
1m, _, o 1n m)— ( .

where N(r) equals the lower number of spheres
with radius r used for the covering;

3) fractal dimension of concentration for a
measurement (Mandelbrot, 1982): usable in
spaces where a measurement m is defined as
«dense» everywhere:

. e . Jog(N(r, 1)
hmr_>0 inf lim r—0 lnfw (23)

where [ equals m, the measurement of the
space which is not covered by the spheres of
radius r;
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4) fractal dimension of correlation Dc
which, by indicating as c(x) the function which
defines the number of pairs of points belonging
to the set whose distance is lower than a length
x, is defined as follows:

B log c(x)

= Tog® 24
the latter is linked to the fractal dimension with
the relation Dc < D.

A characteristic of fractal sets is that
they are similar to themselves in that they are
invariant (statistically) compared to scale
transformations. Another property of fractal
objects is their self-affinity which allows them
to present invariance in the trend compared
to scale transformations, which are different
with respect to the coordinates. Fractal be-
haviour was also noticed in function signals of
one (v(x)) or more coordinates (Vv(r), with
Dr=\/Dx2+ Dy*+..... ) as in Brownian mo-
tion. If v(x) is a signal with fractal characteris-
tics the properties of self-affinity result in:

Av ~ Ax Av ~ AP (2.5)

(in the case of more than one dimension)
where H equals the scale factor.

For self-similar and fractal Brownian mo-
tion it results that D = 2-H, D = 3-H and
D = 4-H in the case of one, two and three di-
mensions respectively. If the motion is one-di-
mensional, where 1 < D < 2, its intersection
with the x-axes can be considered by obtaining
a fractal dimension set D-1. From the point of
view of the spectrum in frequency f, a fractal
Brownian signal shows a power-like spectrum
which varies according to f 7 where f3 is called
the spectral exponent. It is possible to link the
spectral exponent to the scale factor H by
means of the following equation:

_B-1
H= 50— (2.6)

Generally, the above relation is extended to all
fractal signals, although it does not always
strictly apply.

3. Applications of fractal geometry
in geophysics

As described in section 1 it is not always
possible, to reconstruct a function, such as the
Earth’s magnetic field, defined on a continuous
space by a reasonable set of its samples which
were obtained using a certain law. In general,
deterministic type rules may be used which of-
ten place limits on the topology of the set of
samples in order to obtain the conditions to re-
construct the field function up to certain fre-
quencies. Fractal geometry is an alternative
way of dealing with the problem as it identifies
useful new statistical parameters in order to es-
tablish the order of scale magnitude within
which it is possible to reconstruct the function,
and it also supplies the criteria to reconstruct it.

In geophysics, the patterns of the function
which represent the magnitude measured are
generally made to correspond to the values of
geophysical signals. This operation is per-
formed using an electronic processor which
permits a visible representation of the signal in
question by following various procedures. The
intrinsic scale, the resolution and the radius of
the reconstruction margin of the represented
signal are subject to interpretation and assess-
ment according to several applications of the
theory of fractals. There can be various topolo-
gies of a set of geophysical measurements.
Generally, regular lay-outs are preferred (grids,
equal intervals) but very often uncontrollable
factors intervene which upset the regularity of
the set (e.g., figs. la and 2a) making it neces-
sary to carry out an interpolation scheme in or-
der to obtain the regularity of the spatial sam-
pling again. The irregular and uncertain com-
ponent of the distribution character of a real set
of measurements would hint at fractal type be-
haviour by the points of measurement. Korvin
et al. (1990) and Lovejoy et al. (1986) consid-
ered the fractal character of sets of measure-
ments by establishing the fractal dimensions of
the South Australian network of gravimetric
measurements and of the world meteorological
network, quantifying them with the values of
1.4 and 1.75 respectively. They also compared
the fractal dimension of a network of fixed sta-
tions with the covering efficiency of the same.
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Fig. 1a,b. a) General map of the magnetic survey area; b) correlation dimension function of measurement
point distribution along the lines 1, 2, 3 and 4. Horizontal axes show the distances L from the line starting-
point; vertical axes show the number of distances less than L.
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tively.



The fractality of marine measurement networks and of the Earth’s sampled magnetic field

It also turns out that many geophysical quanti-
ties behave like fractals in both their temporal
and spatial trend. Turcotte (1989) pointed out
the fractal character of the trend of the Earth’s
magnetic field over time. Mareshall (1989)
used the fractal theory in the topographical re-
construction of sea-floors.

4. Fractal characteristics of sets
of measurement points

Over the past few years we have been car-
rying out small scale measurements of the
Earth’s Magnetic Field (EMF) on the surface
of the sea in one (measurements along profiles)
and two (arrays) dimensions. The sea condi-
tions and the inaccessibility of some places due
to the presence of ships, islands or rocks have
led to the set of measurement points appearing
slightly irregular and incomplete in places. In
the reconstruction phase of the magnetic field
function, the conditions of Shannon’s theorem
often fail and there is the necessity to use new
statistical parameters to define the order of
magnitudes within which the actual scale
lengths of the measurement points can be de-
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Table 1. Scaling values obtained for the measure-
ment’s lines.

Lines D L in(m) L o (m)
1 0988+0.006 140+35 20000+ 12500
2 0977£0.004 140+35 20000 £ 12500
3 0972+0.003 120+35 20000+ 12500
4 0976+0.004 222445 20000+ 12500

fined (Giordano, 1992). The fractal dimension
is one possible parameter as it allows a min-
imum and a maximum scale magnitude to be
identified. Figure la contains a few sets of
measurements, which are one-dimensional:
lines 1+4 and the relative dimension functions,
fig. 1b. A scaling regime can be deduced from
the latter in an interval L,;-L,.. of approx-
imately 200-20000 m. The lower limit Lin
identifies the actual spatial resolution of the set
of measurements. Table I summarizes the val-
ues obtained for several of the sets of measure-
ments.

D is the fractal dimension estimated in the
linear part of the log-log plots of fig. 1b.
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Fig. 3a,b. Dimension correlation fuction: a) for sub-area «A» distribution points and b) for sub-area «C», an-
gular coefficients of the two interpolating lines are respectively D, = 1.567+0.008 for distribution «A» and

D, =1.78+0.01 for distribution «C».
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Fig. 4a-d. Two synthetic distributions, with the same number (1000) of measurement points, with their corre-
lation dimension functions: a) an ideal topology of network of marine measurements with a step of 150 m in
vertical and 660 m in horizontal respectively; b) the corresponding correlation function with dimension
D.=1.82; ¢) a uniform random distribution of points and d) corresponding correlation function with D, =2.

We also developed the same type of analy-
sis for sets of two-dimensional covering mea-
surements (for the order of the distances at
stake the Earth’s surface can be considered to
be flat) and these were both real (fig. 2a,b) and
synthetic (fig. 4a,c).

In order to create the latter we tried to re-
produce the ideal topology of a network of ma-
rine measurements by presenting different
spacings in the two directions with respect to
the coordinated axes (fig. 4a). The trend of the
correlation function, fig. 4b, presents a much
more obvious inclination as the scaling differ-
ence increases along the x-axes with respect to
the inclination along the ordinates. The length
values at the lower knees of both slants corre-
spond to the sampling values along the two di-

rections of the coordinated axes. When the
sampling rate along x equals that along y (uni-
form grid) the fractal dimension is close to the
Euclidean embedding dimension (D = 2). If a
minor uncertain disturbance is introduced into
the sampling module on the points of a regular
measuring grid, the fractal dimension decreases
as the disturbance module increases. However,
this behaviour is maintained as long as the
measurement topology prevails over the topol-
ogy of the uncertain disturbance; if the charac-
ter of the topology becomes totally random,
fig. 4c, the fractal dimension approximates the
Euclidean dimension, fig. 4d. Figure 2a,b
shows the topologies of two real sets of mea-
surements (sub-areas «A» and «C» of fig. 1)
from samplings of the Earth’s magnetic field
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on the the surface of the sea, between the is-
lands of Ischia and Procida (fig. 2a) and in the
gulf of Pozzuoli (fig. 2b) and here the fractal
dimensions are 1.56 and 1.77 respectively (fig.
3a,b). In these cases the phenomena of dimen-
sions less than 0.44 and 0.23 in the first and
second case respectively, cannot be recon-
structed (Lovejoy et al., 1986).

5. Spatial trend of the Earth’s
magnetic field

In general, an s(x) type phenomenon can be
said to be fractal if the relation As ~ Ax is re-
spected, ie. if there is a parameter H which is
the index of the intrinsic scaling of the phe-
nomenon. In a paper in progress we demon-
strated how the examined values of the Earth’s
magnetic field possessed a scaling regime of
their own. The spectral power function of the
EMF values measured along linear routes pre-
sents a behaviour according to £ #in the same
way as for fractal signals. The fractal dimen-
sion of the phenomenon was assessed from the
slants of these spectra on the frequency inter-
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Table II. Values of 8 and scale factor calculated
with two different methods (see text).

Lines B H’ H
1 240+0.08 0.70£0.04 0.704 +£0.004
2 21 %0.1 0.57+£0.06 0.631 £0.002
3 1.8 02 04 0.2 0.721 £ 0.005
4 20 £03 0.5 £0.2 0.634 £ 0.004

vals corresponding to the wavelengths identi-
fied by the scale regime of the EMF values.
Table II shows the B values with a 95% ap-
proximation and the calculated values, by eq.
(2.5), of the scale factor, H’. The last column
of the table shows the H values of the scale
factor calculated by linear interpolation on in-
tervals which are congruent to the frequencies
being examined on the results obtained by
means of a suitable algorithm working on the
relation (2.5) to determine the scaling factor,
H, straight for measured field values. The
forced approximization on the values of B de-
pends on the fact that the signals being dealt
with were not filtered. However, the scaling
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Fig. Sa,b. Power spectra of the Earth’s (total) Magnetic Field sampled along lines | and 2, respectively. The

spectral analysis highlights three regions: the first, «1

», concerns the frequencies of the regional field; the

second, «2», corresponds to waveforms with fractal regime, the third «3» shows the region where the

noise predominates.
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values H’ calculated from them are comparable
— in the context of the approximations adopted —
with the H values which were extrapolated in
the field of the wavelengths. The spectral anal-
ysis, fig. 5a,b, highlights three regions: the first
concerns the frequencies of the regional field
«1»; the frequencies of the second, «2», corre-
spond to wave forms with a fractal regime; the
third, «3», demonstrates signals of disturbance
as noise predominates.

6. Conclusions

The considerably irregular topology of a set
of EMF marine measurements can be analysed
using the fractal method and this has been
highlighted by establishing the validity of rela-
tion (2.5) in a paper currently being prepared.
This allows a minimum scale length, L;,, and
a maximum scale length, L., to be identified,
and both of these can be correlated to the mini-
mum and maximum wavelengths which can be
obtained and used in the interpolation of the
EMF values measured. The spatial trend of the
EMF shows fractal behaviour in the context of
a specific bandwidth of wavelengths and this
allows the EMF spectra signals to be analysed
by evaluating their slopes to determine the
spectral coefficients in the corresponding fre-
quency intervals. The values of the spectral co-
efficients can be compared with the EMF am-
plitude scaling coefficient values and allow
three types of field components to be identi-
fied.
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