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Abstract

An autoregressive model was selected to describe geoelectrical time series. An objective technique was subse-
quently applied to analyze and discriminate values above (below) an a priori fixed threshold possibly related
to seismic events. A complete check of the model and the main guidelines to estimate the occurrence probabil-
ity of extreme events are reported. A first application of the proposed technique is discussed through the anal-
ysis of the experimental data recorded by an automatic station located in Tito, a small town on the Apennine
chain in Southern Italy. This region was hit by the November 1980 Irpinia-Basilicata earthquake and it is one
of most active areas of the Mediterranean region. After a preliminary filtering procedure to reduce the influ-
ence of external parameters (i.e. the meteo-climatic effects), it was demonstrated that the geoelectrical residual
time series are well described by means of a second order autoregressive model. Our findings outline a statisti-
cal methodology to evaluate the efficiency of electrical seismic precursors.

Key words time series — geoelectrical signals — lem: are the anomalies in the geoelectric mea-
earthquake prediction surements random fluctuations intrinsic to the
phenomenon or are they effectively related to
the underground charge motion induced by tec-

1. Introduction tonic activity? (Burton, 1985). The goal of this
work is to build a model to describe the self-
Earthquake precursory phenomena of elec- potential or geoelectrical time series, offering

trical nature have long attracted the attention an objective methodology, based on advanced
of scientists. Strong earthquakes in China statistical techniques, to evaluate the occur-
(Raleigh er al., 1977) have been forecast using  rence probability of the extreme events in the

geoelectrical measurements and a network de- electrical time series recorded in the seismic
voted to electrical field measurements has been areas.

experimented in Greece (Varotsos and Alex- Technically a geoelectric or self-potential
opoulos, 1984a,b; Varotsos et al., 1993). How- time series is a sequence of voltage differences
ever, up to now, a full comprehensive model to measured with a selected sampling interval us-
explain the physics of the process has not been ing a dipole with two unpolarizable electrodes.
available. Since the first recognition of natural In geoelectrical sounding, where a current is
electrical signals as earthquake precursors, injected into the ground, it represents the noise
many authors have pointed out a crucial prob- (Lapenna er al., 1994); when we use these
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measurements in a seismic area it is the sig-
nal.

A geoelectric time series can be modeled by
the following equation:

x(t) = s + z( (1.1)
where s5(f) is a deterministic component related
to the external effects (climatological variables,
anthropic activities, etc.) and z(f) is a stochas-
tic component related to the charge motion in
the ground.

The problem is to localize in the z(f) com-
ponent values above (below) a fixed threshold
to study, in a subsequent step, the possible cor-
relation with seismic activity.

In order to obtain an effective precursor sig-
nal we have to take the following steps:

a) the deterministic components must be
filtered;

b) a model to describe the z(¢) term must be
selected;

¢) on the basis of the model the occurrence
probability of seismic electrical anomalies SES
(i.e. electrical signals possibly connected with
seismic events) must be computed.

A suitable tool to analyze the probability of
abnormal values in the geoelectric time series
is the crossing theory or theory of runs
(Cramer and Leadbetter, 1967). Many applica-
tions of this methodology can be found in me-
teorological research (Macchiato et al., 1993).

The term crossing theory is used for contin-
uous series, whereas for discrete series the
term run theory is often used. According to
such theories extreme events are treated as rare
events, then such events can be modeled by
suitable stochastic processes. The crossing the-
ory has been successfully employed in the field
of flood frequency analysis (Yevjevich, 1972;
Bras and Rodriguez-Iturbe, 1985).

2. Data

In this work we use a multi-year geoelectri-
cal time series recorded by an automatic sta-
tion located in Southern Italy. In May *91 we
installed two arrays with copper electrodes in-
serted in the ground at 1 m depth, along the
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N-S and E-W directions, with spacing 100 m
and 120 m respectively, in the Area della
Ricerca of the National Council of Research
located in the Basilicata region, Tito [40°35'N,
15°44’E] (fig. 1). The sampling rate is At = 5
min and the time series x(#n) are built up with
the daily mean voltage values obtained from a
set with 288 measurements (fig. 2). Some data
are missing only during the period July '91-
September ’91 because we upgraded the sta-
tion, there are not other periods with a high
number of data missing, the global ratio be-
tween missing and measured value being 10%.
To check eventual polarizing effects we also
used unpolarizable electrodes, built of ceramic
vessels with a saturated solution of copper sul-
phate. A constant check between measurements
obtained with different probes is carried out. Dur-
ing the working period of the station no anoma-
lous patterns, possibly related to polarizing effect,
were detected (Di Bello et al., 1994).
Self-potential measurements can be influ-
enced by many geophysical parameters (i.e.
seasonal effects of the climatological variables,
magnetic storms, etc.), so a preliminary filter-
ing procedure is necessary to remove these ef-
fects on the data. In order to remove this exter-
nal noise a filtering procedure described in a
previous paper was applied (Di Bello et al.,
1994). The result was an estimate of the z(?)
component removing the s(f) term from x(#)
geoelectrical time series, in the following
section we use the discrete form z(nAr) with
At = 1 day. The residual time series z(n) was
characterized by zero mean and unit variance.
The station is located in a natural labora-
tory to study the electrical precursory phenom-
ena. In fact we monitored a mountain area with
very low anthropic noise, where there are no
big cities, railways, etc., so the measurements
are not affected by electrical noise. On the
other hand, the measuring station is located in
one of most seismic areas of the Mediterra-
nean region. On November 23, 1980 an earth-
quake (M = 6.9) occurred in the Irpinia-Basili-
cata Apenninic region. It was the largest and
most destructive earthquake to occur in this re-
gion for over 100 years (Westaway and Jack-
son, 1984). The historical seismicity pattern
(Pantosti and Valensise, 1990) confirms intense
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Fig. 1. The map shows the location of the measuring station.

seismic activity and related complexity in
crustal faulting. During recent years we have
not recorded strong earthquakes in the area un-
der study, but many low magnitude seismic
events (M < 4) occurred. The space pattern of
the events which occurred during the last three
years is shown in fig. 3.

3. The model

First of all we must demonstrate that the
geoelectrical time series can be considered a
realization of an autoregressive process.

We briefly summarize the main theoretical
aspects of autoregressive processes. A p—th
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Fig. 2. Plot of the voltage signals measured along the two directions N-S and E-W.
order autoregressive process (Box and Jenkins, the residuals) and w(n) a purely white noise.
1976), AR(p) can be described as: To fit the experimental data with an autore-

gressive process is to solve the problem of lin-
l . ear prediction, a forecast value Z(n) may be
z(n) = 2 ¢z(n=j)+wm),  B.1)  considered a linear combination of the previ-

j=1 ous terms:
where ¢;, ..., @, are the parameters of the ArN _ _
model, p is the order of the process, z(n) the ‘) =gzin—D+zn=2)+........ *
time series we must analyze (i.e. in our case, +¢,z(n—p), 3.2)
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where the coefficients ¢, ..., ¢, of the linear We fitted the data with an autoregressive
sum may be evaluated in a way to return an process with an upper limit of order p,. The
uncorrelated series given by: optimal order p, limited in the interval O, po),
was selected with the information criterion

wn) =z(m)—2(n)=z(n) - [¢,z(n—1) + AIC (Akaike, 1974). The choice consists in the

minimization of the following function:
+¢yz(n—2) +o..+9,z(n—p)]. (3.3)
AIC(p) = N log (G; (p)+2p  (3.4)
Equation (3.3) is equivalent to eq. (3.1), the
model parameters may be estimated in a way where 62 (p) is the white noise variance of the
to give completely independent values w(n). autoregressive process that can be calculated
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Fig. 3. Seismic events in the Apenninic area during the period May '91-May °93. The magnitude of the earth-
quakes varies within the range (2 < M < 4).
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from eq. (3.2) and N is the number of data
available.

The parameters of the process, the coeffi-
cients ¢y, ..., ¢, and 62 (p), are evaluated using
the recursive method of Yule and Walker (Box
and Jenkins, 1976).

On the basis of the previous techniques we
analyze the residual geoelectric potential ob-
tained from the time series of fig. 2, selecting a
second-order autoregressive process. There-
fore, both the residual time series (N-S and
E-W) can be considered a realization of an
AR (2) process:

z()) = Giz(i—D)+9z(i=2)+w (@) (3.5)

where ¢, and ¢, are the coefficients of the au-
toregressive process.

In order to check the AR(2) model the fol-
lowing differences are computed:

W) =z(@)—dzG— 1)~ Gz(i—2) (3.6)

where ($1 and (f)z are the coefficients of the au-
toregressive model fitted to the data. In our
case for an AR model (Box and Jenkins, 1976)
we have:

A pr(1=p2)
RS 37
o - 3.7
2
gy= 2P (3.8)
I_Pl

where p; and p, are the autocorrelation coeffi-
cients. The coefficients of the autoregressive
model fitted to the data result q) = 0.947 and
q) = —0.052, for the N-S data, and (]) = 0.971
and d) 0.190, for the E-W data. Our model is
an opt1ma1 choice when the W (i) obtained by
eq. (3.6) is a purely white noise. In the fre-
quency domain when a purely white noise is
analyzed a completely flat power spectrum is
obtained. In this case the values of the cumula-
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tive periodogram

J
1G) =Y P (3.9)

i=1

(where P(i) is the power for each harmonic
component), plotted versus the frequency num-
ber j, are aligned around a straight line. Ac-
cording to the classical Kolmogorov-Smirnov
test (Jenkins and Watts, 1968) we can consider
our data a realization of a white noise if the ex-
perimental values are inside a band, whose
limits are strictly related to the chosen proba-
bility level. In the case under study we selected
a 95% confidence interval. The results of the
test are plotted in fig. 4a,b: all the values fall
within the band, the residual obtained from eq.
(3.6) is a white noise. The geoelectric time se-
ries can be considered a realization of an
AR (2) process.

4. Occurrence probability of extreme events

In this section we study the statistics of the
extreme events in the geoelectrical time series
using the crossing theory. Generally this tech-
nique is applied to very long historical records
to obtain a good estimation of occurrence
probability curves of these abnormal values. In
many practical applications this condition is
not satisfied.

In our case, the length of the time series is
long enough to assess the structure of the geo-
electrical time series, but not sufficiently long
to have good statistics about abnormal events.
When a time series model is identified, it is
possible to simulate a time series with the
same statistical properties as experimental data.
In this way an estimate of the occurrence prob-
ability of extreme events can easily be ob-
tained from the simulated data. In section 4.1
we briefly summarize the theoretical aspects of
the crossing theory.

4.1. Theoretical background
A sequence of successive values above (be-

low) a threshold is defined run, different statis-
tics are associated with runs in many geophysi-
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Fig. 4a,b. Kolmogorov-Smirnov test on W (i) data. The figures a) and b) refer to the results for the N-S and
E-W array directions. The dashed lines delimit a band within which the values computed from a white noise
process should be included with a probability of 95%.

cal fields. In this work we deal with the statis-
tic related to the length, representing the period
in days, m, that the variable under study is
above (below) the selected truncation level 20
(fig. 5). The probability distribution P(m > j;
Z9) which for an arbitrary level z, gives the
probability that m is greater than a j-day pe-
riod. The function P(m > j; z,) is normalized
so that P(m > 1; z5) = 1. In this paper we use a
variable with unit variance, from which the de-
terministic component s(i) has been removed
and consequently the truncation level is not re-
lated with the time.
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Having a model that describes the empirical
time series, the run analysis proceeds straight-
forwardly. Analytical relations of distributions
of run length of the AR model are available,
but they are difficult to handle in practical
computation. It is easier to estimate P(m > j;
Zp) by simulating a very large residual time se-
ries from the selected AR process.

The above mentioned simulation approach
can produce artificial time series that reflect
any desidered run length compatible with the
set of observations. Finally, the P(m > 75 20)
value is estimated as the sample relative fre-
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Fig. 5. An example of extreme events or runs picked out in a time series.

quency of run lengths that are greater than
Jj-day periods:

(ZZ | Fz') ’

where F; indicates the number of runs below
(above) the threshold z, that are i days long. In
the previous equation a truncation point must
take the place of the theoretical infinity limit
appearing in the summations. An example
regarding the occurrence probability curves,
P(m = j; zp), for an AR(2) process is reported
in fig. 6. The curves are obtained computing

the runs from a simulated time series using
eq. (4.1).

(5,7)

P(mzj; zy) = “4.1)

4.2. Estimate of SES occurrence probability

A suitable application of the previous
methodology to the time series analysis de-
voted to earthquake forecasting is the evalua-
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tion of the occurrence probability of a se-
quence of abnormal experimental values in the
geoelectrical data. We use the following proce-
dure:

i) an AR model to describe the time series
is selected;

ii) a simulation is performed in order to ob-
tain a very large amount of data;

iii) the theoretical occurrence probability
curves are computed according to eq. (4.1);

iv) for each run length we selected on the
experimental data, an occurrence probability
(i.e. easily obtained using the theoretical
curves) is associated.

In such a way an objective methodology to
discriminate the SES anomalies from the ran-
dom fluctuations is determined: we consider as
SES anomalies only the runs with a very low
occurrence probability (i.e. rare events).

Finally we give an example using the geo-
electrical time series recorded by our automatic
station in Tito (Southern Italy) (fig. 7). In the
graphs of fig. 7 the runs above (below) 20
truncation level are picked out and the earth-
quakes in a circular area, with a radius of 20 km
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centered in Tito, are indicated by arrows. Obvi-
ously the choice of the radius is empirical, but
it is necessary to mark the boundary of the area
in which variations in geophysical field in-
duced by the seismic events are detectable
(Dobrovol’skiy, 1993).

During May *91 and May *92 many abnor-
mal values were picked out from residual geo-
electrical time series, the length of the selected
runs (i.e. the number of consecutive values
above (below) the fixed threshold) is so large
to give a very low occurrence probability for
each of them. Using the selected AR (2) model
and eq. (4.1) it results lower than 10%. It is

certain that the anomalies are not random fluc-
tuations of the stochastic process under study,
but they are related to deep underground
charge motion.

In the same period, many seismic events oc-
curred in the area, therefore it seems there is a
possible correlation between anomalous elec-
trical signals and seismic activity during these
two particular periods. On the other hand dur-
ing early April there was an earthquake and we
did not observe runs.

Obviously, the above possible correlation is
only an example, our goal being to build an
objective methedology to select extreme events
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Fig. 6. The probability occurrence curves for an autoregressive process; the different lines refer to the se-

lected thresholds.
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Fig. 7. Residual potential time series during the period May *91-May ’93. The arrows refer to the earthquakes
in a circular area (r = 20 km) surrounding the station.

in the geoelectrical time series. Actually we do
not have enough run events and seismic events
to study the efficiency of the SES precursory
technique in this area from a statistical point of
view. In the near future, on the basis of the
methodology discussed above, we will be able
to evaluate the efficiency of electrical precur-
SOrs.
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5. Conclusions

In this work we demonstrate that, after re-
moving the periodic components related to me-
teo-climatic parameters, the self-potential time
series can be considered a realization of au-
toregressive processes. A complete statistical
check of the proposed model is performed us-
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ing the time series recorded by an automatic
station located in Southern Italy. On the basis
of this model and using the crossing theory an
objective methodology to evaluate the occur-
rence probability of extreme events in the geo-
electrical time series is discussed. Finally, the
selected extreme events and the seismic events
which occurred in the area are correlated.
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