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Abstract

In the framework of a cylindrical symmetry model for convective motions in the asthenosphere, a new profile
for the viscosity coefficient depending on depth is suggested here. The numerical elaboration of the above
mentioned model leads to interesting results which fit well with experimental observations. In particular these
continuously varying viscosity solutions probably describe the convective motions within the Earth better than
simple constant viscosity solutions. Consequently the temperature values seem to be a realistic representation
of the possible thermal behaviour in the upper mantle.

Key words convection currents — viscosity lieved to be more likely due to the pattern of
convection currents rather than to inhomo-
geneities maintained by finite strength in the

1. Introduction Earth. Furthermore, convection has frequently
been invoked to explain the magnitude and dis-
The study of convective motions is of re- tribution of heat-flow anomalies on oceanic
markable interest to explain important aspects ridges and other regions.
of geodynamic processes. The presence of cur- Another fact is the raising of the crust fol-
rents in the mantle has been demonstrated by lowing the melting of the glaciers at the end of
many arguments in several sectors of geo- the ice ages, as for example the Scandinavia
physics. A very important argument is the con- zone. These motions offer an indirect evidence
tinental drift, as strongly implied by palaeo- of the material presence in the upper mantle
magnetic studies, and the closely-related sup- which, under particular conditions of stress and

position of a «mobile» and young ocean floor temperature, has features very close to those of
(plate tectonics). Where upward-moving limbs newtonian fluid and can be transported from
of convection cells diverge, tensional forces in one location to another. However, an analysis
the Earth lithosphere would be expected, and of these motions provides an estimate of the
has frequently been used to explain rifts on viscosity of the mantle underneath the crust.
continents and median valleys on oceanic The Earth mantle has a rheologic behaviour

ridges. which varies with respect to depth: the upper
Several studies show that low degree har- part, which shows a discontinuous thickness
monics of the Earth gravitational field are be- in different areas, is fundamentally rigid and
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cohesive to the crust whereas the middle part
(asthenosphere) has a somehow «fluid» be-
haviour. From this point of view the litho-
sphere is the upper part of a single external
layer of the Earth, which is more or less rigid.
In the layer just below the velocity of trans-
verse waves is strongly attenuated. Since labo-
ratory experiments show that seismic waves
can be attenuated and absorbed by a liquid
crystal mixture, it is reasonable to think that
the asthenosphere behaves like a viscous fluid
where convective motions exist.

The simpler model of convection motions is
the Benard layer; consider a newtonian fluid
confined between two horizontal planes sepa-
rated by a distance. The fluid is heated from
below and cooled from above, so that in equi-
librium state of no motion a temperature gradi-
ent is maintained between the top and bottom
boundaries. The motions have been widely
studied both theoretically and experimentally
(Turcotte and Oxburgh, 1972; Oxburgh and
Turcotte, 1978). Conservation equations for
mass, momentum, and energy are required.
The viscosity v, coefficient of thermal expan-
sion « and thermal diffusivity K are taken to
be constant; in the body force term of the mo-
mentum equation a linear relation is assumed
between the variations of temperature and den-
sity:

p—pPo=—poot(T—Tp)

where T is the temperature at which the den-
sity p is equal to the reference density p,. In-
troducing 6 = T-T, and P = p+p,gz we can
write the equations for conservation of mass,
momentum, and energy, namely continuity,
Navier-Stokes and energy equations,

AN
V-u=
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—— +V
p
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@ - V)0=KV20.
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The condition that there be no flow through
the boundaries requires that v =0 at y = 0 and
y =d. A second velocity boundary condition is
required on the horizontal boundaries. These
studies show that the equilibrium state in the
fluid exists until a critical value of a parame-
ters set in which temperature is fundamental:
indeed, when this value is overcome a convec-
tive current starts up in the medium. Instability
condition is characterized by an adimensional
quantity that varies with respect to both fluid
features and boundary conditions, namely the
Rayleigh number.

Detailed discussions on convection in the
mantle can be found in the literature (Richter,
1978; Jarvis and Peltier, 1989; Peltier, 1989).
The mathematical model that we consider in this
work has already been introduced in the studies
on «Earth dynamo» which try to explain the
origin of the Earth magnetic field and the basic
lines of its structure (Busse, 1970, 1975).

2. Discussion of the model

The convective model of the «Earth dyna-
mo» is related to a substantially cylindrical
geometry for the Earth nucleus. The same ap-
proach can be used for the whole globe, if we
think of it as a rotating sphere, with a kind of
approximation that wouldn’t take polar caps
into consideration.

The cylindrical model that has been consid-
ered seems to be an interesting one if exam-
ined between the two Tropics (fig. 1). Convec-
tion is bounded within the external ring that ro-
tates around its own symmetry axis; at a first
approximation, convection appears to be char-
acterised by concentric circles having an axis
parallel to the rotating one, insofar as the small
inclination y of the upper and lower limits
of the ring ensures that the Proudman-Taylor
Theorem (PTT) proves to be valid (Taylor,
1974).

We consider the constraint imposed by rota-
tion upon convection of a Boussinesq fluid
driven by buoyancy forces.

The motion is governed by Navier-Stokes
equations, adding terms considering the Earth
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Fig. 1. Geomeitry of the rotating annulus model.
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where T, is a constant, f3 is the temperature
gradient, U is a typical fluid velocity and the
dimensional less perturbation temperature, ¢, is
zero in the absence of motion. If we let % =
= Uit be the fluid velocity and adopt L and Q'
as our units of length and time respectively, the
linear equation governing marginal convection
is (Busse, 1978)

<)

2 —
%—+22 Xu=—-VP+EV*i+B0O i
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where
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The boundary condition that the normal ve-
locity vanishes implies that, since P and 6 are
almost independent of z the result is

(%—EVZ) w-B( - V)0=—4nGi - 1)

where
- 2 N
W=k -VXu and n=tan v < 1.

The governing equation admits separable
solutions and yields the following algebraic
equations, with P and 6 integration constants,

(~iS + Ea®) P+2i0 8 = — 4ioam P

(—iS+ %f) b=Ligp
where

4111

T p . and a* =y o

S =

N

In this case the viscous dissipation is over-
come by boundary forces when the Burger

number is
2 2 2
B=p(2)| 1 (&)+E_a4.
o (1+p)2 at P?

When L/D is so large that E(L/D)* >
Pn/(1+P), where D is the unit of height, we
have
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since R = P/E’B then

6 _ L
R=94 RC-658(D)
In the case of one free and one rigid sur-

faces (Fanucci and Santini, 1995), the critical

In the case of both free surfaces, the critical value of Rayleigh number becomes

value of Rayleigh number is

L\4
R =277‘E4<£)4 RC=1100(5).
¢ 4 \D

corresponding to 3. Convection in rotating sphere
To have a complete identification with the

2 2
a= 3 (ﬂ) and o= 1 (ﬂ) annulus model shown before, we have to write
the Burger number and the Ekman number in

Mantle

Crust

Litosphere and
Astenosphere

Fig. 2. Convection in a truncated rotating sphere. In this model the preferred mode is a motion confined in a
thin annulus (H is its maximum thickness) surrounding the cylinder shown in fig. 1.
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the following way
B=Bsin®¢ and E = E,/(4 cos’9)
where
Ey=VvI[Q(2R,)*]
By = (afgo)/Q°
g =8 (7/Ro)

then we obtain

Bo= — [4PE3 {_fM_}“F
sin“ ¢ (i+P)cos¢

The By, absolute minimum is defined by
the value ¢ = ¢, and these become when
sin ¢, = I3, ie.

¢, = 27°.

Considering the previous treatment, the
sphere can be approximate as a rotating annu-
lus in which D is defined by the ray R, in-
clined by 27° with respect to the polar vertical
axis. Now we must subtract the lithosphere and
asthenosphere thickness from D to study the
mantle convection. Furthermore we must mul-
tiply L by the complementary angle of ¢, that
is about -241:, to have the real Earth circumfer-
ence arc (Cathles, 1975):

L = 2R0% 7=15000 km

D’ =2710 km.
The new Rayleigh critical number will be
’ ’ 4
R, =1100 (£> ~ 106,
D
We have, by Rayleigh critical number defi-

nition,

2-107% 2*/v > R’ — convection
C
2107 */v < R, — no convection

and then
z =560 km.

If we call H the thickness in which the con-
vective motions existence is proved, we can
obtain by adding z to the lithosphere and
asthenosphere thickness and subtracting the
mean crust thickness from the result (fig. 2):

H = (560+ 175 -35) ~ 700 km.

Following these considerations we built a
convective cell, with an approximately rectan-
gular section, the sides of which are respec-
tively 700 km and 2000 km (a value reason-
able enough to involve oceanic ridges as as-
cending points).

In this case that basic equations of the
model (Houston and De Bremaecker, 1975) have
been conveniently adapted to the stated modifi-
cations; the energy equation (the heat transfer
equation) and the momentum equation (the
Navier-Stokes equation) lead to a system of
partial differential equations which are strongly

— Linear broken function
(Km) — Gamma function
B * Experimental point

21
Viscosity (logarithmic scale)
Fig. 3. Viscosity as a function of depth: points repre-

sent experimental data; solid lines show two selected
functions approximating the viscosity behaviour.
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coupled. For numerical integration and draw- adapted through FORTRAN. The results ob-

ing of isothermal lines (which is the final re- tained at a first numerical approach by linearly
sult) we have used library routines (namely the varying viscosity on depth with two different
Runge-Kutta method for resolution of differen- slopes (that is obtaining a broken line: see

tial equations and the Paw graphic software) fig. 3) seem to be satisfactory; this model, with
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Fig. 4a,b. a) Convective cell temperatures in the I'(x) continuously variable viscosity case with bottom heat
flux. b) Convective cell temperatures in the constant viscosity case with bottom heat flux (after Houston and
De Bremaecker, 1975).
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a heat flow coming from the bottom, displays
very close isotherms in the region near the bot-
tom of the convective cell, but this situation is
not found on the layer just under the surface
(Oxburgh and Turcotte, 1978).

With respect to the previous results, we
have now obtained a better approximation by
varying viscosity with depth according to a
Gamma function distribution suitably trans-
lated according to experimental data:

T(x) = c(d—x)° [M - (d - x)]°
where

c=28/10%
d=2000

x = depth
M =2000
6=54
o=0.7

The plot in fig. 3 shows this (better) fit to
known values; in particular, it removes the un-
reasonable break at the transition between
lithosphere and asthenosphere.

4. Conclusions

From a strictly geodynamic point of view
the results obtained in this study show the fol-
lowing major points (fig. 4a):

a) the numerical model in which viscosity
varies according I'(x) suggests that the lateral
expansion of ascending hot material may be
produced too deep to significantly affect the
plates motion;

b) the high temperature body (the central
area that is not hatched in fig. 4a), is situated at
the minimum depth of 280 km and detached
from the asthenosphere base. Leaving apart
other considerations, this element could repre-
sent a feeding zone of an active hot «body»;

¢) a continuously variable viscosity solution
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correctly maintains symmetry in relation to the
central line of circulation. This performance
has already been showed in constant viscosity
studies (Mckenzie et al., 1973, 1974), fig. 4b;
but the temperature profiles of our present
model provide a more realistic representation
of the upper Earth mantle.
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