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Modern rheology and electric induction:
multivalued index of refraction,
splitting of eigenvalues and fatigue
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Abstract

The modern constitutive equations of the theology of anelastic media and of the polarization in diclectric me-
dia are discussed in the time and frequency domains. It is seen that the most appropriate form of the constitu-
tive equations of these media is based on the convolution of the stress and strain, and of the electric field and
induction respectively, with appropriate functions representing the memory of the medium to previous stress
or induction. The most successful memory formalism in representing the observed phenomena is that of the
derivative of fractional order which allows a variety of problems to be solved by means of the Laplace Trans-
form. The consequent index of refraction, generally, is a set valued function which implies that a monochro-
matic wave generated in the medium is split into a set of waves with the same frequency but different wave-
lengths which interfere and have a quasi periodically varying amplitude. The eigenfunctions of these media,
associated to the ordinarily used principal values of the index of refraction, are split and so are the free modes.
The fatigue of anelastic media is studied using the new constitutive equations containing fractional derivatives;
a phenomenological method is introduced to compute the number of cycles which gives fatigue for a strain or
stress with given amplitude and frequency. The number of cycles which may cause fatigue is proportional to
the amplitude and frequency of the applied strain or stress, or inversely proportional to the rate of stress or
strain. A criterion is also established to see whether an applied cyclic stress or strain may cause fatigue. This
criterion is tested with experimental data on steel and rocks verifying that, in general, it is consistent with the
data although the data are not always in the linear range. It is tentatively seen that fatigue does not seem one
of the causes of the release of the elastic energy stored in the Earth.
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. ) these have revolution symmetry with respect to
Because of gravity mountain ranges may the axis connecting the centers of gravitation

sink or rebound in the Earth’s crust, glaciers of the two attracting bodies but are not sym-

and land slide down the valley adapting to the metric with respect to the center of gravity of

shape of the topography and in turn shaping it, the Earth; since they rotate relative to the body

sediments compact in the surface layers and of the Earth, the center of gravity follows the

rotation. Moreover the Moon and the Sun are

not in the equatorial plane of the Earth and

Mailing address: Michele Caputo, Dipartimento di have, different orbital planps, then the center of

Fisica, Universita «La Sapienza», Piazzale Aldo Moro 2, gravity of the Earth describes a non closed and
00185 Roma, Italy; e-mail: mcaputo@axcasp.caspur.it non planar line within the Earth itself.

941




Michele Caputo

The effect of gravity is dominant not only in
the dynamics of the stars and planetary sys-
tems but also in the long term evolution of the
universe since it causes the gravitational col-
lapse of the stars by means of which they be-
come neutron stars or give origin to super-
novae.

However, in the intermediate term evolution
of the universe, the dissipation of energy, through
anelastic phenomena, is also important.

An example very close to us is that of the
evolution of the Earth-Moon system. In fact,
the semiaxes of the orbits of the two bodies
change in time due to the action caused by the
lag of the tidal bulges relative to the direction
of the body causing them; eventually the two
bodies, in the long run, will fall on each
other.

The same is true for all the other planets of
the solar system due to their tidal interaction
with the sun and, for the same reason, for all
the other planetary or binary systems of the
universe.

Since the lag of the tidal bulges is deter-
mined by the rheology of the body, it is clear
that the rheology of anelastic bodies con-
tributes significantly to the intermediate evolu-
tion of all the planetary systems and of the
universe.

Obviously the rheology and the consequent
dissipation of elastic energy in the dynamic
processes is also important in shaping the dy-
namics of the interior of the Earth, of many
planets and of all stars.

It is therefore clear that the rheology of
anelastic media contributes significantly to the
intermediate term changes in the structure of
the universe; and that this poorly known but
very important phenomenon requires great at-
tention, a much greater attention than that
given in the past.

2. Why do we need new relations between
stress (applied electric field) and strain
(induction)?

The constitutive equations of the perfectly
elastic bodies, that is the law of Hooke, and of
the perfect dielectrics, that is the proportional-
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ity between the applied electric field and the
induction, imply that when one sets oscillations
in the medium, the oscillations will persist for
an infinite time and the energy is not dissi-
pated. Moreover the phase velocity of the
waves does not depend on its frequency or on
its wavelength; that is to say, when the
medium is homogeneous, the product of the
frequency of a wave times its wavelength is
constant.

However it is well known that the elastic
energy of all bodies decays in time and is in
part transformed into heat, through the so
called internal friction, in part used for the mi-
gration of crystal dislocation which, in turn, is
again in part transformed into heat.

It is easily verified that the law of Hook is
not satisfied when considering the bulges of
the Earth caused by the tidal fields of the
Moon and the Sun. In fact, the time variation of
these fields is so slow that inertial forces may
be neglected and the anelastic phenomena may
be considered static. The stress strain relations
of the Hooke type should represent the phe-
nomena with sufficient accuracy since these
fields cause deformations of the order of 1078,
which are generally accepted as linear. How-
ever it has been observed with sufficient accu-
racy (Slichter et al., 1964) that these bulges are
not aligned with the body causing the tidal
field but they lag (or in the Earth’s reference
system they lead) the position of the body
causing the field. This clearly implies that the
time variable must be present in the constitu-
tive equations in order to allow for the phase
difference between the effect and the cause.

The same considerations apply to solid,
fluid and dielectric plasmas and is verified for
instance in geoelectric prospecting when ob-
serving that a boxcar shaped electric field in-
jected in the ground is evidently received at the
recording instrument as a signal increasing at a
decreasing rate and then decreasing to zero at a
different decreasing rate.

In order to represent the above mentioned
phenomena, as well as others, Hooke’s consti-
tutive equations of elasticity, as well as the
classic proportionality relation between the
electric field and the induction have, since long,
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been changed to introduce the appropriate time
variable in these relations.

The simplest attempts at reshaping the law
of Hooke in order to accomodate anelastic phe-
nomena were those of Kelvin Voigt and of
Maxwell who wrote the stress strain relations
in the following form

T= (0 + yoldt) € Kelvin-Voigt  (2.1)

(0+n0/dr) T=y(d/dH)e Maxvell (2.2)

where 7 and € are the stress and the strain re-
spectively and ¢, 7, 0, y are parameters with
the appropriate dimensions.

In electromagnetic phenomena, for instance
in the study of the motion of the electronic
cloud around the nucleus, which is the usual
preliminary discussion made to introduce the
study of dielectrics, Debye suggested a relation
which may be written in the time domain in
the following form

oT = (0 + ndlor) € 2.3)
where now ¢ is the induction, 7 is the applied
electric field and «, 1, o are parameters with
the appropriate dimensions.

Since the relations of Kelvin-Voigt, Max-
well and Debye soon proved inadequate to rep-
resent even the dissipation of energy of anelas-
tic and dielectric media respectively, over rela-
tively limited frequency ranges, it was neces-
sary to consider more general relations be-
tween the stress and the strain or between the
electric field and the induction.

In elasticity the generalization was first
made extending the Maxwell or Kelvin-Voigt
relations by adding one more derivative as fol-
lows

(0 +ndlot) T= (a+ ya/dr) e (2.4)
which, in anelasticty, is the so-called standard
linear solid model.

However, the relation (2.4) was also shown
inadequate to represent the rheology, the dissi-
pation and the dispersion phenomena in anelas-
tic media, and new more comprehensive forms
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than (2.4) were necessary to represent the
above mentioned phenomena. The new forms,
which contain memory formalisms, will be
introduced and discussed in the following
section.

3. The constitutive memory relations of the
anelastic and the dielectric media in 3D

As already stated the introduction of the
first order derivatives in the constitutive equa-
tions of elasticity, leading to the so-called
Kelvin-Voigt or Maxwell or standard linear
solids models, or the introduction of deriva-
tives of higher order, were completely unsuc-
cessful in explaining the decay of energy and
dispersion.

In the first successful attempt at describing,
with memory mechanisms, the Q of many elas-
tic materials, which is frequency independent
(Knopoff and MacDonald, 1958) over wide
frequency ranges, Caputo (1966, 1969) and
Caputo and Mainardi (1971a) introduced the
derivatives of fractional order in the one-
dimensional stress-strain relation. It was soon
shown that these relations (Bagley and Torvik,
1983a,b, 1986) are causal and that they repre-
sent the decay of energy of a wide class of
anelastic media.

In order to study the dispersion, the O of the
shear waves and that of the purely dilatational
waves it was necessary to generalize further
the stress-strain relations and to consider them
in three dimensions; for this purpose Caputo
(1984) introduced in the relations more general
operators which, when necessary, may be spe-
cialized in derivatives of fractional order.

In 3D it has been customary to assume that
the quasi static purely dilatation phenomena
have a negligible dissipation of energy and dis-
persion relative to those associated to the shear
phenomena; therefore, the stress-strain relation
in the time domain are, in general, written in
order to satisfy this requirement as well.

However, rigourously, the assumption that
the dilatation is perfectly elastic, even in quasi
static phenomena, is a theoretical speculation
which is valid only when the inertia forces are
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negligible and it may be presented as the
asymptotic aspect of the dynamic case.

The stress-strain relations in 3D and the
time domain, considering that there may be
more than one dissipation and dispersion
mechanisms represented by different memory
functions, may therefore be written in a general
form which separates the anelastic phenomena
related to the dilatation from those related to
shear and then specialized to the different lim-
iting cases of interest.

Caputo (1984) wrote the constitutive equa-
tions in the following form
W T+ (T — 1,./3) = 2m* g+ §;l* g, (3.1)
where [(#) and m(t) have dimension gr’ cm™>
s73, h(7) has the dimension gr cm™! s!. There
are three different memory mechanisms here,
represented by the memory functions (), m(z)
and & (f) whose Laplace Transform (LT) are in-
dicated by L(p), M(p) and H(p) respectively
with p LT variable.

The equations of equilibrium, taking into
account the stress-strain relations, may be writ-
ten in the LT domain form by means of the fol-
lowing substitution

{A} = [W(L/H + 2M/3H) + pL1/( pH + )
(3.2)
{u} — pM/(pH + ).

In the LT domain the fourth order elastic
tensor c;;,,, represented by eq. (3.1), may be
written

Ciirs = [ W (L/H + 2M/H) + pL] 8, 6,,/( pH + 1) +
(3.3)

+pM (6,6, + O, 0,

ir Yjs Jr)/(pH+#)

From (3.1) and (3.2) it is seen that the effect of

the memory mechanisms (3.1) on the pure di-

latation is represented by
T=T,=[BL+2M)/H]A (3.4)

where A is the LT of the dilatation and T; are

the LT of the stress components.
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The effect of the memory mechanism on the
shear is clearly given by the second of (3.2).

When M and L are proportional to H then
the dilatation is not affected by the memory
mechanisms present in the stress-strain rela-
tions and, concerning the dilatation, everything
happens as in perfect elasticity.

When h = constant = 1] then H(p) = n/p and
the effect of the memory functions is due to
the combination 3M+2L, which gives

T = pRA or T; =1 (g,
(3.5a)
T;=2pME;/(u+1) or

Ty =2m (O)* g /(pL+m), i#j

where we have set R = 3M+2L and R(p) =
= LT (r(»)).

It is seen in (3.5a) that shear and dilatation
memory are independent and represented by
the independent functions r(f) and m(¢). In
fact, due to the presence of [(¢) in r(¢), since
[(1) is independent of m (), we may consider
the functions r(f) and m(¢) as independent.

The case H(p) = n/p is therefore appropriate
to represent the two required, physically differ-
ent, memory mechanisms acting in the anelas-
tic media.

The memory functions m(¢) and r(f) must
satisfy the requirements set by the laboratory
data or those observed in nature which, in gen-
eral, concern the dissipation of energy, that is
the Q, and the dispersion caused by the fre-
quency dependent velocity.

But we must also take into account the phe-
nomenon of dispersion forecasted for monochro-
matic electromagnetic waves travelling in ho-
mogeneous dielectric solids or plasmas, and
also for waves travelling in anelastic media;
the dispersion of a monochromatic wave is
caused by the new constitutive equations and
appears when they contain the imaginary fre-
quency elevated to a rational power. It consists
in a splitting of the wave into a set of waves
with the same frequency but slightly different
wavelength (e.g., Caputo, 1993a).

From an experimental point of view, the in-
dependence of r(7) and m(¢) is of great help for
their determination and one may envisage the
physically different laboratory methods to ob-
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tain the functions r(7) and m(¢). Concerning the
Earth, from an observational point of view, one
may theoretically obtain the two functions us-
ing separately the data on the dissipation of en-
ergy and dispersion of the free torsional modes
and of the purely radial modes.

The separation of the dilatation effect from
the shear effect, due to the presence of the
memory functions in (3.1), allows the indexes
of refraction of the P and S waves to be esti-
mated.

From (3.2) we find that

{A+2u} > [BL+2M) u +

+3(L+2M)pHI/3H (1 +pH) (3.5b)
and we may obtain from (3.5b) the index of re-
fraction of the P waves in the frequency do-
main

np(p) = [3H (+pH) (A+2W)/{(BL+2M) u +
+3 (L +2M) pH}]'”? (3.6a)

while for the S waves we find from the second
of (3.2)

ny(p) = [u(p+pH)/pM]'">.

In (3.62) and (3.6b) it is assumed unity den-
Sity.

Formula (3.6b) is also useful in the compu-
tations of the free torsional modes of homoge-
neous spheres or of spherical shells and of homo-
geneous layers limited by planes. For Raleigh
surface waves (spheroidal modes of homoge-
neous spheres or spherical shells) the expres-
sion of the index of reflaction is more compli-
cated but it may be obtained from (3.5a).

Other forms of representing the dissipation
of energy and the dispersion in anelastic media
have been used (e.g., Caputo, 1986, 1993b);
the form (3.1) is one of the most comprehen-
sive and, with H(p) = n/p, it may be reduced
to any of the other forms used.

Concerning the dielectric media it is gener-
ally accepted that the dielectric parameter, re-
lating the applied electric field vector E to the
induction vector D, is a tensor of the second
order.

(3.6b)
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The experimental data suggested (Cole and
Cole, 1941) that in one dimension and in the
LT domain the dielectric parameter is repre-
sented by

(a+yp)d=(c+np)e (3.7
where p = i®, d and e are the LT of D and E
respectively and z is a positive real number
generally less than one.

Equation (3.6a) is the LT of the corre-
sponding time domain relation (Caputo and
Mainardi, 1971a)

(a+y0%0t%) D = (6 + €99 E. (3.8)
A general expression of stress-strain relations
has been introduced by Caputo (1986, 1993b)
allowing it to be reduced appropriately special-
izing the parameters, to the old expressions of
Kelvin-Voigt or Maxwell, whatever this may
be useful for besides giving the feeling that the
new form contains as a special case the old un-
successful forms.

Caputo’s (1966, 1986, 1993b) expressions
for the memory mechanisms are formulated in
terms of fractional order derivatives; generaliz-
ing these expressions in order to allow more
flexibility in adapting the formulae to the ex-
perimental data we obtain

h* T,',+‘U(TU- (Slerr/?’) =
= AG;h* &), + 2uh* & + ni §; Ae,, + 2nf ue;  (3.9)

which gives in the LT domain

HpTy+p(T;—T,/3) =

= (AG;E,, + 2UE;) pH + N; (AS,E,, + 2UE;) (3.10)
which in turn allow the equilibrium equation in
the LT domain to be obtained with the substitu-
tion

{A} = LA +2u/3) (1 + Ny IpH) +

+A(pH + N/ p+ pH)

iy = (upH + N)/(p+pH).

(3.11)
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With (3.11) we obtain also the expressions

{A+2u} = [ (A+2u/3) (1 + N, /pH) +
+(A+2p) (pH + N))/(u + pH)
{34+2u} - BA+2u)(pH + N,)/pH.

(3.12)

Formulae (3.11) and (3.12) readily give the in-
dex of refraction of the P and S waves.

In (3.12) it is also seen that for N, = 0, the
expression of the incomprehensibility becomes
independent of time and there is no memory in
the quasistatic dilatation.

These formulae appear in different forms in
the article of Caputo (1993b) where derivatives
of fractional order are used for 4 (7) and n,(f)
(the latter with a slightly different expression)
and where the second order derivatives of the
strain are also considered.

The experimental data available do not yet
allow the three dimensional properties of the
dielectric tensor to be formulated; moreover, in
the field of studies of dielectric media, almost
all problems considered are reduced to the one-
dimensional form; the same is true also in the
applications to prospecting problems. In these
cases the relation between D ad E is of the

type
B®*D =F(@*E or d=[f(p)b(p)le (3.13)

where d and e are the LT of D and E respec-
tively. Equation (3.13) may be readily special-
ized in the simpler form (3.7) which is widely
used for field or laboratory research in the
frequency domain, although recently (Pelton
et al., 1983, Patella er al., 1987; Caputo 1993a,
1996b; Caputo and Plastino, 1996) the use of
the time domain form has become more fre-
quent. )

The index of refraction associated to (3.13)
is obviously

n=[f(p)b(p)]"lc

where ¢ is the velocity of light and it is as-
sumed that magnetic permeability be unity.

In the study of one-dimensional problems of
anelastic media the stress-strain relation is also
expressed in the form (3.9) or (3.7).
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b) butyl 70821 at 10°C (after Bagley and Torvik,
1983a); c) polybutadine at 10°C (after Bagley and
Torvik, 1983a).
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Many problems of anelastic and dielectric
media are solved by introducing the index of
reflaction; it is therefore obvious that these
problems of anelastic and dielectric media,
when in the latter the time variation of the cur-
rent density of free charges is nil, have the
same mathematical equations. Depending on
the boundary conditions, the solutions are
therefore expressed in the same mathematical
form and have the same properties.

. The constitutive equations with deriva-
tives of rational order (or the multivalued
index of refraction)

For a long time mathematics and physics
have focussed on the modelling of the dissipa-
tion and dispersion of waves, propagation of
energy and perturbations in solid anelastic me-
dia, plasmas, fluid and solid dielectrics.

Heaviside (1889), with his symbolic calcu-
lus, studied the propagation of electromagnetic
energy, later Cisotti (1911), introduced mem-
ory mechanisms to represent dispersion and
dissipation, followed by Graffi (1936) and by
Cole and Cole (1941) who studied induced po-
larization assuming a frequency dependent
complex dielectric parameter. In the studies of
the dissipation of elastic energy the work of
Bagley and Torvik (1983a,b) is fundamental as
shown in figs. la-e.

The use of derivatives of real order z which
were first systematically studied by Liouville
(1832), is now becoming more popular in ap-
plied physics especially in the formulation of
the constitutive equations of dispersive media
and description of diffusive phenomena. In fact
from problems of dissipation of energy in
anelastic media (Caputo 1969; Caputo and
Mainardi, 1971a, Bagley and Torvik, 1983a,b),
the use of fractional derivatives is now ex-
tended to the study of the rheology of the Earth
(Ko6rnig and Miiller, 1989), to diffusion prob-
lems (Mainardi, 1994; Caputo 1996a), to elec-
tric energy storage (Jacquelin, 1991), to geo-
electric prospecting (Pelton et al, 1983;
Caputo, 1996b; Caputo and Plastino, 1996), to
the dispersion and attenuation of waves in
plasmas and fluid media (Caputo, 1995a,b).
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Fig. 1d,e. The mechanical viscoelastic properties
of: d) Nitrile Rubber 1479 at 10°C; storage modules,
dissipation modules (after Bagley and Torvik, 1986);
e) Corning 10 at 10°C (after Bagley and Torvik,
1983a).

It is often, but not always (Caputo, 1986),
assumed that the memory functions described
in section 3 are represented by derivatives of
fractional order in the constitutive relation of
the medium. A most general form to introduce
these derivatives in the constitutive relations
(3.1) of section 3 is to assume

L@ =mAr>/Ir(1-z)

h(t) =mr=II(1-z,)

m(t) =1t/ (1 -z5) (4.1)
L(p) =mAp>~!

H(p) = mp>~"

M(p)=nsups~!
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where 1;, 17, and 7); have dimensions Ns“m™',
Ns®m™', Ns“m™ respectively.

In this case the LT of the equilibrium equa-
tions are obtained with the substitution

{A} = GAumn, p™ + 212 nyp™ +

A3 M APY T =)31,p% (U + Myp™)
(4.2a)
U} = s up® I+ 1,p™)

which give

{A+2u} = [uBn Ap™ + 215 up™) +

+31,p% (AN, p™ + 2unsp™)V[3n,p™ (p+ Mpp™)].
(4.2b)

Assuming unity density and remembering
(3.5b), the indexes of refraction of the P and S
waves are then

1y = {31p™ (p+ mp™GAN, p™ + 2ump™) +
+3 (A p™ + 2unsp™) n,p= 13
4.3)
ny = {(U+ Mmp=)unsp= 1" =

= [Winp™ + my/msp= 21",
From which one may obtain the velocities as
the inverse of the real part of the index of re-

fraction.
It is also clear that when we set

U=0=B3=2 M=h=n=1 {4

in (4.2a), as was done in Caputo (1984), then

{3A+2u} = 34 +2u (4.5)

and there is no memory in the quasistatic di-
latation; for the P and S waves the indexes of
refraction are

np = LA+ GG+ 200) (Wnp YA+ 2}
(4.6)

ng={(1 + u/np*Hluy'. 4.7)
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If in (4.6) and (4.7) z = r/m with r and m posi-
tive, integer and prime, then the z-th power of
p has m values. However there is the condition
1/Q > 0 which implies Re (n) > 0 since we take
Im(n) > 0; in general the two requirements
give about m/4 physically acceptable velocity
fields.

The 1/Q of the P and S waves are readily
obtained from (4.6). When np“/u < 1, setting
p=iwitis

1/Q, =4 (u/nw) sin ((0.5+2k)wz/2)  (4.8)

1/Q; = (u/nw®) sin ((0.5 + 2k) wz/2) 4.9)

Let us now go to the second model of
stress-strain relations presented in eq. (3.9) of
section 3. Assuming fractional order deriva-
tives for i (f) and n(¢) in formulae (3.11) and
(3.12) of section 3, that is

h(ty =nt*/F(1-z), H=np""!
(4.10)
n ()=mt*/I(1-z), Ny=np""
we obtain
{AY = (A +2w3) (1 +m,p% " Hmp*) +
+A(Mp* + 0y p DU+ npd) (4.11)
{u} = p(p + myp™ = Hi(mp* + (4.12)

{A+2u} > [uA+2u3) (1 +mp" 1)+
HA+20) (P + Mip™ " DI+ np*)  (4.13)

BA+2u > [uGA+2w) (1 +mpa 27 +
+(3A+2u) (p* + mp* "D+ Mp*) (4.14)

which reproduce Hooke’s law when setting
1M, = 0 and then taking the limit for n — oo,
From (4.12) and (4.13) the indexes of re-
fraction of the P and S wave are readily ob-
tained. The case when 77, = 0 is particularly
simple, it was successfully used by Kérnig and
Miiller (1989) to represent the rheology of the
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mantle of the Earth; its indexes of refraction
coincide with (4.6). It is to be noted that, when
n =0, (4.14) give

{3A+2u} - (3A+2w)

and there is no Thompson effect in quasi static
experiments; the same would be true for (4.2a)
when (4.4) applies; we note also that, when
(4.4) applies, (4.2a) coincide with (4.14) when
n =0.

The presence of the rational powers of p in
(4.6) through (4.14) implies that both n, and n
are multivalued functions and, therefore, in the
medium there is more than one velocity field
for the P and the S waves.

From a monochromatic source, in a given
direction and with a given frequency, is gener-
ated a set of waves with the same frequency
but different wavelength and velocity. Not only
the waves have different wavelength and ve-
locity but they have also different energy dissi-
pation.

The number of values of n, and n, for each
frequency, and therefore the number of differ-
ent velocity fields for each frequency, depends
on the value of z.

5. The dispersion in elastic waves

When z is determined experimentally, in
general, it is a rational number; but if, for some
reason, one must assume that it is an irrational
or transcendental number, then the physically
acceptable velocity fields are an infinite set.

In all cases the numerical values of each
physically acceptable index of refraction, for a
given frequency, are in a limited range.

This implies that a wave, originated with a
given frequency at the source, entering the
medium in a normal direction to the boundary,
is split into a set of waves with the same fre-
quency but with slightly different wavelength.
The different wavelength is the cause of the
dispersion. This is seen considering the ana-
lytic expression of the set of waves associated
to the physically acceptable velocity fields
given by the values of the rational power of p
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which are, in number, about equal to the near-
est integer to m/4, and expressed by

Pr=1plcos (0.5 +2k) mz/2) + sin (0.5 +
+2k) z/2)}

..... 6.1
set in the analytic expression of the index of
refraction.

The set of waves is analytically described
by

2 A (x, fsin[27f(xRe () =)+ @] (5.2)
k

where the sum is extended to all the values of
k corresponding to the physically acceptable
indexes of refraction n; and where A, (x, f) in-
corporates the decay of the amplitude of the
waves along the path, f is the frequency, x is
the length of the ray from the source to the
point where we assume that the k-th wave has
the same phase ¢, as at the initial time at the
source.

A wave of the set, with amplitude A, at the
source, at the distance x will have amplitude

Ay (x, ) = Ay exp (-mfxRe n, /Q) (5.3)
where the 1/Q of the wave appears.

Equation (5.2) may then be written

D' A, exp(~mRen,/Q) sin 27 (xRe (n,) 1) + .
k
(5.4)

In order to discuss the amplitude of the set of
waves at the distance x let us assume in (5.1)
and therefore in (5.4)

U =(0.5+2k)r/m (5.5
with
u2newt <« 1
1/Q = [(W/nw) sin ¥,] > 0. (5.6)

If the number of physically acceptable values
of k is sufficiently large, then we may reason-
ably assume that the values of

19](‘ 2qk7l' (57)
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with ¢, > O integer and with the appropriate
value of ¢, > O for each k, be uniformly dis-
tributed in the range 0, . As a consequence
we may write (5.2)

N lexp {(-mfx/u?) (1 +

k
+(u2n0°) cos B) (W2nw*) sin B }]

sin Qrf (/i) (1 + (u2nw?) cos %) — 1) + @) =
= sin (Qaf e/ = 1) Y A, (x. f)

cos ((mfxu"? Inw?) cos ;k + Q)+

+cos 2f (Iu' = 1) X Ay (x, f)

sin ((mfxu'? M) cos f?k +Q) =

= Vsin Quf(d/u'* - 1)) + Ucos Qmf (x /i~ 1)) =
= (U*+ V)" sin 2 f (/u'? — 1) +

+sin™ (U/(U*+ V*)'")]

U= Ek‘,Ak (x, f) sin [(@' ~“xu/21m) cos B, + @,]

V=3 A, (x, f)cos [(@ ~“xu/2m) cos &, + ¢, ]
k

Ay (x, f) = Ap exp [(~o' ~2xu'?/21) sin 8] (5.8)
where again the sum is extended to all the val-
ues of k corresponding to the physically ac-
ceptable values of the index of refraction,
which imply that sin ((0.5+2k) wr/m) > 0 and
that cos ((0.5 +2k) mr/m) > 0, in the expression
of the amplitude A(x,f); it is also assumed
that (/2nw* < 1 and therefore that (u/2nw?)*
be negligible.

In the expressions (5.8) it is confirmed that
all the waves of the set have the same fre-
quency and, with the assumption that the
waves at the origin have given phases, the for-
mula gives, at the distance x, the phases of the
single waves and the amplitude of their sum.

The group velocity is

W1 = (/@) [V (@Uldx) - U (dVIdx)Y(U* + V?)}
(5.9)

which shows that, if U = 0 (or V = 0), the
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group velocity coincides with the average
phase velocity u'? of the set of waves.

There are cases, as in the atmosphere of the
Earth, when the 1/Q of all the waves of the set
is almost negligible; if we assume that ¢, = 0
and that there is equipartition of energy among
them, then

A=A f)=A (5.10)

and the sum (5.2) is reduced to the simpler
expression

(U} + V)2 sin [27f (/U - 1) +
+sin”! (U, /(VE+ UD)'?)]
Uy =AY, sin[(o'~xu2/2m) cos 8,
k

Vi =AY, cos[(@' " xu'”/2m) cos B, ]
k

By (x, /) = (Ui +V))"? (5.1

where B, is the amplitude of the set of
waves.
Because of (5.10) we may write

[V(dUldx)— U (dVldx)] =
=AY, cos ¥, D (cos (o' ~*xu'?/2m) cos ¥,)
k J
cos((@' ~“xu'?/2m) cos V) +
+sin (@' ~*xu'?/21m) cos ¥,)
sin (@' ~*xp'2/2m) cos ¥))) + A Y, cos B, (5.12)
k
where we have extended the sum to all the
couples k and j, which give physically accept-
able velocity fields, and the last term of the

equation results from the terms of the sum with
k=j.
AY, cos B,
‘ (5.13)
[1+ Y, cos {(xa' ~*uM2/21) (cos B — cos B))}].
J
If the number of values of k, which give physi-

cally acceptable velocity fields is sufficiently
large, then (5.13) is nil and the phase and
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group velocities are equal. The same result is
verified considering that when the number of
values of k which give the physically accept-
able velocity field is sufficiently large, then
(5.12) may be written

U, = A(min) f sin (&'~ "2x/21) cos O) d9=0
0
(5.14)
2
V, =24 (mim) _[ cos ('~ x2m) cos ) dd
0

which imply that (5.2) is

V, sin 2f (x/u'? - ). (5.15)
The amplitude V,; (as well as V) is a quasi cosi-
nusoidal function of x with slowly varying
wavelength. The first four zeros of the ampli-
tude V, are at the values of x solution of the
equation

7 = (wl—zul/2/2n)x
(5.16)
Z=12.405, 5.520, 8.654, 11.790.

Note that the values of Z in (5.16) are sepa-
rated by something less than 7; the following
ones are separated by a quantity which is in-
creasingly closer to . In fact if the amplitude
Vi, is nil for a value of Z larger than those
given in (5.16), then it is readily verified nu-
merically that, for not too large values of the
integer g, which would cause instability in the
numerical integration because of the limited
number of digits in 7, one finds

/2
j cos (Z+qm)cos Hdd=0.  (5.17)
0

Increasing x, the amplitude of the sum of the set
of waves varies periodically, its wavelength is

A = 2nw¥fu'”? (5.18)
which decreases with increasing frequency and
phase velocity, while the average wavelength
of the waves of the set is p"%/f and their ratio
is simply p/2nw* which is relatively large
since we have assumed 2 no¥/u'? < 1.
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The beats and the zeros of the amplitude of
the sum of the waves of the set with the same
frequency and direction at the source are gen-
erated by interference. When ¢, depend on
time and/or there is variation in the partition of
energy among the waves of the set, then the
zeros of V), and its maxima as well, move
along the x axis; the same is true for the energy
and in each point there is an average energy
present which can, depending on ¢, vary be-
tween the maximum and zero.

The phases of the different waves of the set
with the same frequency, direction and phase
at the source will also arrive at the same dis-
tance at slightly different times.

It is seen that, due to the different decay of
the waves of the set, after some distance, some
waves may have negligible amplitude and give
no contribution to the average wavelength of
the set which will necessarily change with the
distance from the source. The disappearance of
the waves along the path will also change the
average velocity and the amplitude of the set
of waves.

6. The dispersion in dielectric media
and plasmas

The discussion of the dielectric media with
frequency dependent index of refraction fol-
lows the same pattern as that of anelastic me-
dia (Caputo, 1994); in the case of dielectric
media however the dielectric parameter is of-
ten used as a scalar with the following general
form

(o+nGow®)(o+ y(im)) (6.1)

where it is assumed in practice (Cole and Cole,
1941)

o=1, ola=¢g, nly=¢c., ylo=1t% (6.2)

The index of refraction is then readily found
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n=n,—in; =&y {[1+(1+a)oc,+ao*+

+io(a—1)5,1/[1 +20c + 0*1}"? (6.3)
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where
o= (tw?, a=E¢e.lg,

c=costh, s=sind, k=0,1,2,...,m-1

(6.4)
From (6.3) and (6.4) one obtains

ne=qeos Vi,  m=gqsiny,

_ 2
q=E&p

+0% (a— 1’2141 + 20¢; + 0212

[(1 + (1 +a)oc, +ao*) +

v =0.5tgh™ [o(a—1)s,/(1 + (a+ 1) oc, + ao®)]
(6.5)

where #, is the relaxation time. Relations (6.5) de-
fine the phase velocities and the Q for every k.

When the index of refraction of the dielec-
tric medium is known, the discussion on the
phenomena caused by its multivalued property
is the same as that presented for anelastic me-
dia. The case of propagation of waves in water
has been numerically discussed with some de-
tails in a paper by Caputo (1994).

In the case of water the index of refraction
at 5°C is (Hasted, 1973)

[& (1 + (£./8)) (ity @))/(1 + (it, w))]'"* =
=[9.2608 (1 +0.0499 (9. 582 1071 ; £)°-%65 )/
/(1 +(9.582 10711 jf)0-965)]12 (6.6)

which we may write for frequencies smaller
than 100 MHz

e (1 - (it, wy'/2)'"* =

=9.2608 (1 —(9.582107"" )093

(cos Uy + isin 9%;,)/2)
m=200, r=0,1,2,..., 193. 6.7)
It is to be noted that here the 1/Q is
1/Q = (t, w)* sin Y (6.8)

that is, the 1/Q is directly proportional to the z
power of the frequency while in the case previ-
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ously considered, of the S waves in solids, the
1/Q was inversely proportional to the z power
of the frequency.

The zeros of the first few wavelengths of
the amplitude V; of the sum of waves with the
same frequency and direction at the source are
at the value of x given by the equation

L=xfc(t,2nf) I c=xf' @t le =

=2.225x107"0 f1:96 (6.9)
where c is the velocity of light and the values
of L for the first four zeros are given in (5.16)
of section 5.

In fig. 2a we see the amplitude V, of each
of the three sets of waves with frequency
10 MHz, 50 MHz and 100 MHz travelling in
water in the case when the decay of each wave
neglected (dashed line) and in the case when it
is taken into account (solid line) (Caputo,
1995b). In fig. 2a one may note also that there
is only a scale change in the abscissa between
the three different frequencies considered and
that the beats and the decay of the maxima of
V, along the x axis depend only on the parame-
ter £ (27t,)/c.

One may note in fig. 2a that the difference
between the two cases, with dissipation and
without dissipation, is significant; however in
both cases there are beats and, in the case
when the dissipation is neglected, there is an
apparent decay due to the dispersion caused by
the different wavelength of the waves of the
set which may be considered a phenomenon of
self dispersion.

When at the source the phases ¢, and/or the
partition of energy among the waves of the set
depend on time, then there is a tunnel effect
since at a generic point along x there may be
more or less energy depending on the distribu-
tion of the ¢, and of the energy at the
source.

The different velocities of the waves of a set
with the same frequency and direction at the
source, will also cause ambiguities when the
waves are used for distance measurement in
media with non negligible dissipation. It is
found that in water at the temperature of
5°C, at 1 km distance from the source and at
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Fig. 2a. Amplitude of the set of waves with frequency /= 10 MHz in water at 5°C (z=0.965, 1, = 9.582
107", &, = 85.7633, €., 4.28 (Hasted, 1973)) as a function of the distance travelled from the source given in
the abscissa. The ordinate is percent of the total amplitude at the source where the single waves are assumed
to have the same amplitude and phase. The solid line is the amplitude of the real set of decaying waves. The
dashed line is the theoretical amplitude of the set of waves without the effect of their decay; note the apparent
space decay of this amplitude due to the different phases of the single waves of the set along the path caused
by their different wavelength. The top scale of the abscissa is for f = 10 MHz, the intermediate scale is for
f=150 MHz and the bottom scale is for /=100 MHz: in all cases the order of fractional differentiation is
z = 0.965.

10 MHz frequency, the space spreading of the It has been shown however (Caputo,
waves along the ray is about 1.22 m, while 1995c¢), that the differentiation of rational or-
the time spreading is about 38 ns (Caputo, der
1995b).
z=mlr< 1 (7.1)
7. The splitting of eigenvalues and the dis- . e .
persion in media whose constitutive equa- ~ With 7 and r positive, integer and prime, of a
tions contain irrational order derivatives  Single valued function gives a set valued func-
tion with r values. The consequences of this
7.1. Introduction phenomenon have been studied by Caputo

. (1990, 1995a,b), but thee case when z is real

In most problems involving the use of and not rational to my knowledge, has not yet
derivatives of real order z it is irrelevant that z been considered. It is the topic of the next
be a rational or an irrational number. paragraphs.
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7.2. The problems

When trying to fit the classic problems of
elastic media with frequency independent elas-
tic constants, or of dielectric media with fre-
quency independent dielectric parameter, to the
reality of dispersion and dissipation of energy,
it is now customary to consider that, phe-
nomenologically, the dispersion and the dissi-
pation of energy are a consequence of the pres-
ence of memory formalism in the constitutive
equation of the medium.

The most common memory mechanism
used is that of differentiation with real order z.
The limitation, set in the discussion of eigen-
value problems, to the case when z is a rational
number, is due to a fact that z is estimated ex-
perimentally and therefore is necessarily a ra-
tional number.

In the solution of the eigenvalue problems,
when z is rational, each eigenvalue of the clas-
sic case without dissipation or dispersion, is
split into a set of r eigenvalues (Caputo, 1990,
1993a, 1995a,b).

It is readily seen, following the same proce-
dure used by Caputo (1995c) for the case when
z is rational, that the differentiation of real but
non rational order z gives a set valued function
with an infinite number of values.

The discussion of the theoretical case when
z is real but not rational is the subject of the
following paragraphs, studying the propagation
of waves and the eigenvalue problems of these
media.

7.3. The propagation of the waves

In the following we shall refer indifferently
to anelastic or dielectric media considering
their complex, frequency dependent, index of
refraction in the form

n=n—in;=1+(0-2+M-7)2rif)/2=
=1+(0- 2+ [(n-7)2rf)/2]

[cos (0.5 +2k) zrw+ isin (0.5 + 2k) z7] (7.2)

where k is integer, z is real but not rational, f is
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frequency o, {, 1, y are constants with the ap-
propriate dimensions which appear in the com-
plex dielectric parameter, for the dielectric
case, or in the complex elastic parameter, for
the anelastic case; both parameters are here
represented by

A+ o+ NnQrfi))HI + {+ yQrfi)) (7.3)

assuming that there is a range of f where one
may assume

lol < LIl < ,Infl< Llyfi< 1. (14

When z is not rational since k may assume all
integer values in the range 0, oo, then n, and »;
are set-valued functions with an infinite num-
ber of values, in the ranges

L+(c-OR2—-n—yIfR2<n.<1+(c-5)I12+
HN = V2= In—yIf2<n; <In—-yIf72. (1.5)

Let us now recall that when z is rational as in
(7.1), the index of refraction (7.2) is a set-val-
ued function with r values, and a wave propa-
gating from the source with frequency f ne-
glecting the 1/Q of the waves of the set, is rep-
resented by (Caputo, 1995a)

r—1

b= Z sin[@(s(B+Ccos Q) —1] (7.6

k=0

where

a =0-g

s =distance from the source
w=2xf

B =(1+a)lc

C =Qrfy (n-yplc

¢ =reference velocity

(7.7)

and the sum is extended to the r values of
k=0,1, 2, ..., r-1 if z is rational as in (7.1); in
this case, for any given frequency, the waves
of the set (7.6) have slightly different wave-
length, and their sum (7.6) has beats and is de-
creasing in amplitude with increasing s; it is
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shown in fig. 2a as function of the distance
travelled by the wave in the case the medium
be water (Caputo, 1995b).

When z is real and not rational the sum (7.6)
over k is extended from zero to infinity and as-
sumes all the values in the range 0,2; the sum is
then substituted with an integral to give

f “Sin[0(s (B+ Ceos Q—n]dQ.  (1.8)
0

The integration of (7.8) is limited to the range
0, 7 because of the condition n; > 0 in (7.2) due
to the constraint that the Q > 0.

Considering that

J' "sin [(@sCcos)] dQ2= 0 (7.9)
0

formula (7.7) may be simplified to

@ = [sin (w(sB - 1))] _[Ocos [(wC)scosQ]dS2.
(7.10)

The integral appearing in (7.10) is the ampli-
tude of the wave and is shown in fig. 2b as a
function of

x=wCs. (7.11)

We should note that fig. 2b is independent of z;
however z is implied, with f in the abscissa x
through C.

Comparing figs. 2a,b it is seen that both
cases, z rational and z irrational the effect of
the dispersion gives very similar results. The
integral in (7.10) is a quasi periodic function of
s with decreasing amplitude.

7.4. The eigenvalue problem

It is seen that the eigenvalue problems of
the free oscillations of infinite plates and
spherical shells of anelastic and dielectric me-
dia are reduced to the solution of equations of
the type (Caputo 1990, 1993a)

ax** i+ B2+ {xt+ =0 (7.12)

Fig. 2b. Amplitude of the set of infinite waves
fined in (7.7) and is proportional to the distance
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generated by z real not rational. The abscissa is x = Cs, de-
from the source.
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where

xX=iw (7.13)
with @ frequency and we must consider all the
roots of (iw)*. When z is rational (z = r/n)

n

x=y (7.14)
eq. (7.12) may be written remembering (7.1),
as discussed by Caputo (1993a),

ay" By + '+ =0 (7.15)
which is an algebraic equation of degree 2n+r
and has, in general, 2n+r non multiple solu-
tions. In order to be physically acceptable,
however, the solutions must satisfy the condi-
tion Re (iw) < 0 in order to ensure time conver-
gence at infinite time.

When o =0, < ¢ (7.15) in general has no
multiple solutions, they are in the complex
plane and, in the first approximation, they are
on two closed curves, one in the Im y > 0 half
plane and one in the Im y < 0 half plane, they
have centers near * (¢/8)"; both curves have
n poles (Caputo, 1990). When o # 0 the solu-
tions are set in three closed curves: 2n solu-
tions are in the two closed curves centered near
+ (@/B)"?, as in the case o = 0, the other r
solutions are in the curve centered near the
origin.

When §{ < 1 the two closed curves are actu-
ally ovals; increasing « the two ovals approach
each other assuming the form of two beans,
then they deform in two concentric ovals, one
inside the other, which contain the origin of the
coordinates (Belfiore and Caputo, 1996).

a = 0 physically means that the induction is
due to the polarization charges and, in the rela-
tion D = P+E, where P is the part of the field
which is due to the polarization of the charges,
the term E is neglected.

When z is real but not rational eq. (7.15) is
not rigorously valid but considered an approxi-
mation; when z is not a rational setting
— i

X = pe (7.16)

we may write eq. (7.15)
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ap2+:ei(6+21n)(2+:) +ﬁp2€2i(9+2[n) +

+gpre @AMy =0 (7.17)
withk=%x1,+x2+3+4 ... + n... and, separat-
ing the real and imaginary parts of (7.18), we
obtain

ap**?cos (02 + 0) + 2km) + dp” cos 20+
+bp* cos (0+2km)z+c=0
ap®*<sin(6(2 + 6) + 2km) + dp? sin26 +

+bp* sin (0 +2km)z = 0. (7.18)

Since there is a solution for each value of / we
obtain an infinite number of solutions.

The increase in r implies that also n in-
creases because r < n. It is verified, in all the
cases which we have discussed numerically
(Belfiore and Caputo, 1996), that increasing n
and r the three curves, where the poles are lo-
cated, have centers in * (¢/B)"* and in the ori-
gin of the coordinates; however this property
has been verified only in the computer cases

considered and has not been mathematically
proved.

8. The fatigue of anelastic and dielectric
media

8.1. Introduction. The phenomenological model

In a 1966 note Caputo suggested the follow-
ing 1D constitutive stress (7)-strain (€) rela-
tion

T=Uue+nd‘elor 0<z<1 8.1
which implies an almost frequency indepen-
dent 1/Q and which was used later (Caputo,
1976) to represent the phenomenon of fatigue
of anelastic media.

Equation (8.1) leads to the following equi-
librium equation

0% u/or* = (U + M0*/F) 9 ulox* (8.2)
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Fig. 3. Saw teeth function used for the computation of the hysteresis loops of figs. 4 and 5.

Table 1. Analytic representation of the term in square brackets of (8.4).

T € 1 (I-9)! (d%e/dr?)
0, 1 0 =

0 , 1 7!
n=0 1 I, -1 1, 3

2 -1, 1 3,5
n=1 3 1, -1 5,7

4 -1, 1 7,9

where u is the displacement and p the density
of the medium.

In the 1976 note Caputo discussed the case
# = 0 which leads to the generalized diffusion
equation. In fact (8.2) may be written

(p/n) 3" ulor” = & u/ox* (8.3)
with v = z + 2.

The study of the time domain form eq. (8.3)
was made by Caputo (1976), in the case when
0 <z < 1, and more extensively by Wyss
(1986), Schneider and Wyss  (1989) and
Mainardi (1994) who also gave the Green
function in different forms for —2 < z < 0; the
formulation of the Green function given by Ca-
puto (1996a) for the study of porous media, in
our opinion, is very simple ad practical.

To see how eq. (8.1) leads to fatigue let us
consider an input signal £ = f(r) with the form
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121yt

1 =20- D 2 (1= 3)1 ¢

1 =20- 1) 4 2(-3) o2 (1 5)

B 2= 1) 4 2(1-3) = 2(1=5) " 2 (1—g)

of the periodic saw tooth with period 4a and
amplitude D shown in fig. 3. The stress re-
sponse of the medium is

T=uf(0)+nDla(1-z)!)

(' 2= 2 (=1 (t + a — 2ja)' ~7]. (8.4)
J

Neglecting the first term of the right hand
member of (8.4), which gives no contribution
to anelastic phenomena, for the first two and a
half cycles, the analytic expression of eq. (8.4)
is specified in table I and represented in figs. 4
and 5.

In figs. 4 and 5 it is clear that the successive
loops are not overlapping, and that an increas-
ing modules of the stress is associated with the
successive deformations € = + D,
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Fig. 4. Hysteresis loop response to the saw teeth
input shown in fig. 3, z = 0.1 is the order of differ-
entiation.

The successive increases in the stress
ZF (n), between the n-th and the n+1 cycle,

when € = D are expressed by
F(n)=MDla(1-2))[(4n+5)' "= (@dn+1)'* -
2(4n+4)' " +2(4n+2)' 77 (8.5)

which gives also the first increase for n = 0.

An estimate of the sum of the series made
with the terms defined by eq. (8.5) can be
made considering n as a continuous variable ad
integrating between zero and infinity, we ob-
tain

(D/a) ¢(2) =

=(Dnla)[1 =527 +2(4**=2279))/4(2 - 2)!
(8.6)

which is positive and limited for 0 < z < 1 and
plotted in fig. 6.

If there is a value n* of n for which 7 ex-
ceeds the yield stress of the material, this value
indicates the limit of the resistance of the ma-
terial to the fatigue of the vibrations. This limit
n* may be computed by considering it the un-

Fig. 5. Hysteresis loop response to the saw teeth
input shown in fig. 3, z = 0.5 is the order of differ-
entiation.

known upper limit of the integral mentioned
above; in fact the sum of the successive F(n),
forn=0,1, 2, .... , n*, would give the ob-
served yield point.

The value n* corresponds to the time
* = 4an* with 4a period of the vibration,
when yield would occur.

Of course it is quite possible that, for a
given observed breaking strength, the value of
n* does not exist because the integral is limited
for n — o and the limit is smaller than the
value of the stress giving fatigue for the as-
sumed deformation D. The computation of the

0.05—

0 0.5 z 1

Fig. 6. The function ¢(z) from formula (8.6).
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hysteresis loop for & = sin w¢ (instead of ¢ as
the saw teeth shown in fig. 3) would bring us
to the same conclusion considering the fact
that the loop does not close itself at £ = D since
the stress increases at the successive passages
at €= D.

One may estimate the sum of the first n+1
terms using the power series expansion of (8.5)
cut after the fourth order derivative. We as-
sume that 4n+3 is the initial point, + 2 and * 1
are increments and cut the series after the
fourth order derivatives; since even order
derivatives cancel out in each of the differ-
ences and the first order derivatives cancel out
because off the double difference of the terms,
we obtain

(Dnla(1-2)") Jw[(4n +5) " —(dn+1)' 7] -

2@n+4) " +2@n+2)""*)dn =
=—Dnla(1-2)Nz(z—1)(4n+3)"' 32 =

=—Dnla(-1-2))(4n+3)"-¢/2. 8.7)

The additional stress r** built in the first n+1
cycles is then

[(Dn/a) ¢ (z) = (Dnla) y (z, mI(2(-1 - 2)1)]

vz, n)=@n+3)"2 (8.8)
Obviously, in general, in order for the addi-
tional stress (8.8) to be significant to cause fa-
tigue it must be relevant relative to uD.

The total stress 7#*, after the first n-+1 cy-
cles, is then

T = (D) [9(2) + y(n) 2 (1 = 2)1)] + uD,

n>0
T = (Dn/a) @, (z) + uD, n=20
%o (2) = F(0) = (Dn/a) (-1 +5' %~
=24 =217 (1 = 7). (8.9)

Let the yield point of the material be 7*. If
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T* < 7% (g, %) then eq. (8.9) allows to esti-
mate the value of n* as function of a, 7, D and
u/n, where, when @¢ (M) sin (mz/2) < 1,
U/ m/ may be computed from the equation

1/Q = & (n/p) sin (z/2) (8.10)
obtained by Caputo (1976) for the case when
@7 sin (7z/2) < p.

The value of n*, the number of cycles giv-
ing fatigue, is obtained substituting 7** with
T* in eq. (8.8) and considering that w(z, n), de-
fined in (8.8), is a decreasing function of n for
the values of 7z assumed here (0 < z<1); set-
ting

T*anD = o (8.1D)
we see that when o < ¢, (z), the value of n* is

zero (in which case the fatigue would occur in
the first cycle); when

0@+ y(z, 0)/2(-1-2)!< T*a/nD — ualn

SP@+ Yz, ©)2(-1-)=p@k) (8.12)

the value of n* is positive and there will be fa-
tigue after n* cycles have elapsed. n* is ob-
tained from (8.9)

n* = (1/4){[-2 (-1 -2)!

(¥ —uD)amD + oI "' *2 -3}, (8.13)

The value of n* is very sensitive to small vari-
ations of x = a—pa/n. In fact, differentiating
n* we find

dn*ldx = —(4n* +3)2 (=1 = 2)! (x - 0 (2)) 4 (1 + 2)

(8.14)
and, since ¢(z)—x, near the point of fatigue, is
very small, then a small variation of its values

may cause large errors in the estimate of n*.
Formula (8.12) may be written

Yz 0)2(-1-2)!+ 9(2) + pain< o< 02+ poin
(8.15)
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or, after a few formal changes
(D, + t* oy (z, 0)2n(-1-2)'1"' >D>D,,

D, =nle@) +ul/t*)t*a (8.16)
which sets the limit to D in order to have fa-
tigue after the first cycle. If D < D,, then fa-
tigue occurs during the first cycle.

For the estimate of n* from eq. (8.13) we
write it as follows

n* = (U4){[A (@) a (% - uDynD + B @) 9 - 3}
A =[2(-1-2)1]>0,

B =[-2(-1-29'T9(z)>0. (8.17)
With algebraic considerations we obtain from
(8.17) limitations on D similar to those ex-
pressed by (8.16). In fact since A >0 and B > 0
formula (8.17) implies that in order to have n*
real and positive it must be

0< —Aa(t*—uD)ynD +B<3"'"¢ (8.18)
or, since A > 0,
©@)>a(t*—uD)nMD>@(z)—3" /A (8.19)
which may be more simply written
0.02n/a>7*/D—pu>0.0035n/a (8.20)

since @(z)—3"""Y/A, as well as ¢(z), are posi-
tive functions of z [0, 1] with lower limit O for
z=0and z = 1; @(z) — 37'"YA, has upper limit
0.0035 near z = 0.5 and ¢(z) has upper limit
0.033 near z = 0.5. The function @(z)—3"'"9/A,
is shown in fig. 7.

Formula (8.19)
(8.11).

When a constant stress 7; is applied to the
material in addition to the cyclic one and 7* is
the yield stress, the number of cycles n* giving
fatigue is

is more explicit than

n* =0.25{[A (1, + Ty — uD)a/nD + B *9 - 3}

T,=T%—1 (8.21)
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where we obviously verify that, when the static
constant stress 7; is larger, then the stress
needed to reach the yield point is smaller and
therefore fatigue will be reached in a smaller
number of cycles.

Experimental data on the phenomenon of
fatigue of anelastic materials as a function of
the deformation, or of the frequency or of the
temperature are very scarse in the linear field.
Only recently have some interesting data be-
come available (Yoshida et al,. 1978) which
have features which may be tentatively inter-
preted in the linear field and allow some
checks of formula (8.19). Also, an analysis
more detailed than that appeared in the paper
by Yoshida et al. (1978) allows some interest-
ing considerations.

The values of strain in all the experiments
of Yoshida et al. (1978) are very high and the
linear stress is mostly less than 40% of the to-
tal stress, therefore we doubt that a quantitative
test to our model may be significantly made
with these data; the model may be tested only
from a qualitative point of view.

We may say that, inspite of the fact that the
linear stress in the experiments of Yoshida

A

0.005

Fig. 7. The function [¢(z)— 37 (2 (=1 =2)N)]
appearing in (8.19), where ¢(z) is defined in (8.6) and
shown in fig. 6. The ordinate is in units of D/a.
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A
+ 33 _31
4000 - +38 ¥
2000 (922 1 l ey 2085 ”i%; L,
400 800 T

Fig. 8. Fatigue test data. The ordinate is the number of cycles to failure and 7 is the temperature in degrees

centigrades. The data are from Yoshida et al. (1978). The

number near the symbols give the percent of linear

strain. The material is Cr-10Ni-Ti-BIV steel. The meaning of the symbols in the figure is explained as

follows:
D f a D’
0.02 0.6 1.5 2/150 °
0.01 13 0.75 2/150 -
0.02 0.06 15 2/1500 A
0.01 0.13 7.5 2/1500 +

D f a D’

0.2 0.6 1.5 2/15 )
0.1 1.3 0.75 2/15 -
0.2 0.006 150  2/1500 A
0.1 0.013 75 2/1500 +

T=20°C, T=450°C, T=600°C, T = 700°C

et al. (1978) is less than 40% of the total
stress, most properties of the model presented
here are verified by the data of Yoshida er al.
(1978), which are rearranged and plotted in
figs. 8,9,10, 11 and 12 for several values of the
temperature and two values of the strain used
in the experiments.

One may note that the number of cycles to
failure is a decreasing function of D (the solid
circles are below the minuses and the triangles
are below the pluses) and that the number of
cycles to rupture increases with the elastic
fraction of the total strain, that is, when the
non linear and plastic phenomena decrease.

It is also worth noting that the percentual
part of elastic strain is a decreasing function of
the frequency and of the total strain.

In order to make further consideration on
formula (8.21) (or (8.13)) let us rewrite (8.21)
introducing the strain rate D’

n*=0.25 {[-A (nL+1 —uD)InD’ + B]~l/(l +2) _ 3}

T,=1T%-1, (8.22)
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from which it follows that n* is a decreasing
function of D’.

However this property of the model, which
was theoretically shown by Caputo (1979), is
not verified in the data of Yoshida et al.
(1978); the cause may be that the strain, in the
experimental data it is too large to be consid-
ered in the linear field and, according to
Yoshida et al. (1978), most of the strain is
plastic; therefore we could hardly expect that a
combination of non linear and plastic phenom-
ena be represented by a linear model in all its
features.

However the decrease of n* with increas-
ing D’ is verified in the laboratory experiments
on cyclic loads applied to rocks made by
Scholz and Koczinsky (1979). In fact these au-
thors found that the number of cycles to fa-
tigue is a function decreasing with the ampli-
tude and with the rate of the applied cyclic
stress, in agreement with the theoretical results
of Caputo (1979) and the formulae obtained
here.
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Fig. 9. As in fig. 8 for 18Cr-10Ni-Ti-CII steel from the data of Yoshida et al. (1978).

A
—26
n
+29 -29
4000
+34 =31
2000
:%% 022 =27
31 i5
| | A25 20*20 28%16 L,
Fig. 10. As in fig. 8 for 18Cr-10Ni-Ti-BII steel from the data of Yoshida et al. (1978).
A
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Fig. 11. As in fig. 8 for 18Cr-10Ni-Ti-BIII steel from the data of Yoshida er al. (1978).
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Fig. 12. As in fig. 8 for 18Cr-10Ni-Ti-CI steel from the data of Yoshida er al. (1978).

8.2. The use of the general stress-strain
relations

A somewhat more general study of hystere-
sis may be made with the same methodology
used but assuming that the stress-strain relation
is of the more general type, already considered
in section 2,

(0+Nd /o) T= (a+ YO /o) € (8.23)

whose LT gives

T'=(yIm[1+(-o/n+ aly)(oin+p)]E. (8.24)
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In order to obtain 7 from (8.24) we must de-
convolve it; we find (Caputo, 1984)

T=(0IMfO) +f(O* (—oIn+ aly) (1)
%0 = (Gin 72)/m2) 65! _[

0

oo

u]/:

(exp (—u'"1/1,)) dul(u® + 2u cos w7z + 1)

t, = (nlo)'~ (8.25)
where #, is the relaxation time and f(@) is the
input strain.

A case of geophysical interest, as shown by
Ko6rnig and Miiller (1989), is that when in the
stress-strain relation (8.23) it is assumed o = 0.
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In order to simplify the computations, let us as-
sume also that € = f(f) = D sin (wt/2a) we ob-
tain from (8.25)

= (Y [6@® - x O f(). (8.26)
In order to estimate the total increase in the
modules of the stress between two successive
points at the times f, = 4ma and t; = 4(m+1)a
respectively, that is in the m-th cycle, due to

the memory term in (8.26), we first compute
the convolution in (8.26)

Dt;! Jm(exp (—u= /1)) [ 11,) sin (72a) £ +

0
—(7/2a) cos (nt/2a) t + (7w/2a) exp (—u'=tlt) ) du/
[(72a)* + "< 11,)*] ? + 2ucos mz + 1). (8.27)

Assuming in (8.27) t = 4ma and t = 4(m+1)a
and then subtracting the two expressions ob-
tained we find the increase in the modules of
the stress in the m-th cycle

At, = ;' H (n/2a) (sin z7/zm) qullz 1+
0
—exp (-u'"4alty)) [exp (—u'"4malt,)]
du/ [(2a)* + (u"*1t,)*] (u® + 2u cos 7wz + 1)

H=Dyln (8.28)
which is decreasing to zero with increasing m

Formula (8.28) may be used for the estimate
of the number of cycles m* which gives fa-
tigue. For this purpose one may follow the
same procedure used in the previous paragraph
when the stress-strain relation was of the type
(8.1), which is a special case of (8.23) with
n =0 and o= 1, and the strain relation was of
the type (8.1), which is a special case of (8.23)
with 7 = 0 and o = 1, and the applied strain
had the shape of a set of saw teeth; in the case
considered now however, it is not possible to
render explicit m* and one should proceed
with numerical methods as follows.

The total increase in the modules of the
stress in an infinite number of cycles is ob-
tained assuming m as a continuous variable
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and integrating (8.28) with respect to m from
zero to infinity; we find

AT=HO()2n
D(z, 4alty) = W, (z, 4alty) — W, (z, 4alty)
Y, (z, 4alty) = (sin mz/7z) J:du/

[1 + ((4alty) u27)*] (u* + 2ucos mz + 1)
¥, (z, 4alty) = (sinwz/mz) I:exp

(_u1/34a/l‘4)du/[l + ((4alty) MI/Z/ZTL')Z] (uz +

+2ucos mz+ 1) (8.29)
In fig. 13 the values of ®(z, 4a/t;) are shown
for several values of z, as a function of the pe-
riod 4a of the input signal measured in units of
relaxation time t4.

As a geophysical application of the theory
developed we tentatively estimate the fatigue
accumulated by the tidal deformation caused
by the Sun and the Moon in the mantle of the
Earth.

Concerning the Earth’s mantle the discus-
sion may only be tentative because we have for
n/oc and z only average values over the very
wide range of temperatures of the mantle,
which does not fit the theory developed here
for homogeneous media. Only tentative con-
clusions may be obtained.

The task could be somewhat easier for the
crust because the temperature variations with
depth are more limited, but the reliable data
concerning the crust are even more scarse and
unreliable than those of the mantle.

The values of parameters describing the dis-
persion and the dissipation in the Earth’s man-
tle have been tentatively determined, for the
stress-strain relation of the type (8.23) and as-
suming o = 0, as suggested by the results of
the analysis of the rheology of the mantle
made by Kornig and Miiller (1989).

From the analysis of the Earth’s tide data of
Slichter er al. (1964) and of the Q of the free
torsional modes of Smith (1961), Alsop et al.
(1961), McDonald and Ness (1961), Bozzi
Zadro and Caputo (1968), the values of the pa-
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logy

3

Fig. 13. The function @(z, 4alty) = ¥, (z, 4alt,) -
=Y, (z, 4alty) for several values of z. In the abscissa
y is in units of 4 a/t,.

rameters appearing in (8.25) have been tenta-
tively estimated (Caputo, 1990); they are

no=3370s"%, z=0.6, t, = (n/6)" = 757500 s
(8.30)

and it is also assumed that in the mantle the
rigidity is u = y/n = 10° MPa.

The values of @(z, 4alt)) for the 24 and
12 h tidal periods are @(0.6,24/210) = 0.194
and @(0.6,12/210) = 0.140 respectively, where
210 is the relaxation time, f, = 7575005, mea-
sured in hours.

Assuming that the deformations of the
24 and 12 h tidal components are at most
5 10°% each, which is close to reality, then
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H/27w = 8 10* Pa in (8.29) and one may see
from (8.29) that the tidal deformations of the
mantle due to the Sun and the Moon may
cause a stress increase in at most 10 Pa, which
seems a negligible contribution to the stress
distribution in the Earth’s mantle.

In the Earth’s crust one may see that the
Earth’s tide data tentatively give H/27m
2.5 10% Pa, 1, = 300 years, z = 0.6 and u =
3-10* MPa (Caputo, 1993); applying for-
mula (8.29) one may see that the stress accu-
mulated is even smaller than that accumulated
in the mantle and that Earth’s tides may not be
considered a good candidate phenomenon for
the release of the elastic energy accumulated in
the crust by the tectonic activity.

However it is important to note that, since lab-
oratory experiments show that the yield stress is
decreasing with increasing temperature which in
turn is increasing significantly with depth, the
problem of the triggering of earthquakes by fa-
tigue should be revisited taking into account the
effect of the temperature.

As a final note, we suggest that the phe-
nomenon of fatigue in anelastic media, phe-
nomenologically and physically discussed in
this section, may be discussed in the same
manner also for dielectric media.
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