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Abstract

power of deviatoric stress, and describes a medium which is elastic with respect to normal stress, but relaxes
deviatoric stress. Power-law exponents equal to 2 and 3, which are most often found in laboratory experi-
ments, are considered. The equation is solved by a perturbative method for a viscoelastic layer subjected to a
constant, extensional or compressional, strain rate and yields stress as a function of time, temperature and rock

Key words -lithosphere rheology — viscoelasticity — sition takes place over a depth range depending
plate boundaries largely on lithology and thermal conditions and
limits the depth to which earthquakes normally

occur.
A number of microscopic processes may
produce ductility. If diffusion of crystal impu-

state of stress at plate boundary zones. Stress rities prevails, the strain rate is.p rop o'rtional to
- and rheology are also responsible for seismic stress. -The motion of crystal dISIOC.aUOHS pro-
activity (Meissner and Strehlau, 1982; Sibson, ~ duces instead a power-law creep, with a strain
1982; Dragoni et al., 1986; Handy, 1989). Lab- ~ Tate exponent (n) usually ranging from 2 to 3
oratory experiments show that, at sufficiently ~ (Kirby and Kronenberg, 1987). At shallow
high temperatures, brittle behaviour in crys-  depth, the mechanism  of pressure - solution,
talline materials gives way to ductile behaviour based on the change in solubility of the solid at
(Jaeger and Cook, 1976: Paterson, 1978). As a the sites of. high normal stress, again entails a
consequence, it is inferred that brittle faulting ~ linear relation-sheep between strain rate and
at shallow depth gives way to ductile deforma- applied stress (Rutter, 1976). The local condi-

tion at greater depth (Scholz, 1990). The tran-  tions of pressure, temperature and strain rate
control which process is going to dominate

(see Dragoni, 1993 for a brief review).
d n
Mailing address: Dr. Stefano Santini, Istituto di Fisica, The state of stress at a plate boundary ca

iversita di Utbino, Via S. Chiara 27, 61029 Urbino, ~ be evaluated by assuming  that the boundary
Italy; e-mail: FIS@UNIURB.IT zone is subject to a strain rate which is con-

1. Introduction

Rheology has a chief role in determining the
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stant both in space and time. This assumption
is equivalent to considering a steady-state mo-
tion of rigid plates. The value of this strain rate
can be calculated from the relative plate veloc-
ity and the horizontal width of the boundary
zone. The link between strain and stress is pro-
vided by the constitutive equation of the
boundary zone material, which depends on
temperature, pressure and rock composition.
Solving the constitutive equation then yields
the stress as a function of time and depth.

Parmentier et al. (1976) showed that a non-
linear rheology can be approximated by a lin-
ear theology with appropriate parameters. In
fact, the main features of the mechanics of
plate boundary zones can be explained by a
linear constitutive equation. Analytical solu-
tions for a linear viscoelastic (Maxwell) rheol-
ogy were found both for transcurrent (Dragoni
et al., 1986) and compressional or extensional
(Dragoni et al., 1993) plate boundaries.

For a nonlinear, power-law viscoelastic rhe-
ology, analytical solutions were found only in
the case of a transcurrent plate boundary, for
power-law exponents equal to 2, 3 and 4
(Dragoni, 1988). The case of a transcurrent
boundary is particularly simple, since only one
stress component is relevant to the problem
and the constitutive equation is greatly simpli-
fied. The effects of nonlinear crustal rheology
were recently studied by Reches er al. (1994)
for the earthquake cycles on the San Andreas
fault.

In the present paper we consider a nonlin-
ear, power-law viscoelastic theology for plate
boundary and solve the constitutive equation
by a perturbative method. Power-law expo-
nents equal to 2 and 3, which are most often
found in laboratory experiments, are consid-
ered. We show stress profiles for an ideal, ex-
tensional boundary zone, and make a compari-
son between linear and nonlinear rheologies.

2. Solution of the constitutive equation

The rheological behaviour of any material is
described by a constitutive equation relating
strain, stress and their time derivatives. Crustal
and mantle rocks behave elastically for short

stress cycles; in fact they propagate seismic
shear waves. For long stress cycles, rocks may
undergo large, permanent shear strain, while
normal strain remains elastic. Different consti-
tutive equations have been proposed to de-
scribe such a behaviour (e.g., Peltier et al.,
1981). We consider here a nonlinear general-
ization of the Maxwell constitutive equation, in
which the viscous deformation depends on the
n-th power of deviatoric stress. This equation
describes a medium which is elastic with re-
spect to normal stresses, but relaxes deviatoric
stresses:

E n
Gy + 2uA,e RT (O'ij - % Ok 517) =

where o is the stress tensor, g; is the strain
tensor, A and g are the Lame parameters, A, is
a theological parameter, E is the activation en-
ergy, R is the gas constant and 7 is the absolute
temperature. Dots indicate differentiation with
respect to time. The dependence of rheology
on pressure can be neglected at lithospheric
depths.

We consider a cartesian coordinate system
xyz and a layer 0 < z < h, representing the
lithosphere, subject to a strain rate

£,=-R 22)

where R > 0 for compression and R < 0 for
extension. The model is two-dimensional and
the surface z = 0 is traction-free. The surface
z = h (base of the lithosphere) is also taken as a
free surface since we consider time scales
much longer than the typical relaxation times
of the asthenosphere. The solution of (2.1) in
the linear case (n = 1) is (Dragoni et al.,
1993)

I3 t
ol (z, ) =—2Rn [1 + % (€ w— 352)] 2.3)

0% (z, 1) = —4Rn [1 - % -3¢ )] 2.4)
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where 7 and 7, are characteristic relaxation
times:

n
T == 2.5)
1= (
Tz = 2’ + ;‘u TI (26)
A+ 3

and 7 is viscosity, given by the Arrhenius for-
mula

2.7)

In order to study the nonlinear case, we intro-
duce a nondimensional time

t

T= ?1 2.8)
and a nondimensional stress
Ojj
0; = i 2.9

Accordingly, the linear constitutive equation
can be written in a nondimensional form as

do; 1 dey de;;
i (e-Lg (si.)zhsi.u — @10
dt (’3""’ a T 210
in which
=K 2.11
Y 1 (2.11)

Nonlinear solutions can be studied by introduc-
ing a real, positive €xponent n in the second
term of the left side of (2.10):

do;
(o-

dey,
—+

dat

Denoting by 0,5-) the linear solution, we put

1
1 s
dr "’

P 2.12
+ —_— .

O 55/) =

6;= 63+ (n—1) 56, (2.13)

and substitute this expression in (2.12).
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Under simple conditions, up to the first or-
der in the binomial expansion, we obtain the
two coupled equations (see Appendix for de-
tails):

(n— 1)% 6, +
Hn—-D)n [66)&.— %(5@n+ 59yy)J (Rys,)" "By =
=Ryn)B(D~(Ryn)" B(1)" (2.14)

(n— 1)(% o, +
+n-1n [6% - %(59,“ + 80, )] Rymy ' [2+

+B(T)]"‘1 =(-Ry1)) [2 +B (T)] -

—CRyny' [2+B(@]" (@15
where
T

B(D)=@Ben—€¢"). (2.16)
We consider the cases n =2 and 5 = 3. By sep-
arately studying short and long times, we ob-

tain the (dimensional) solutions:
Oy = 0% + 00, (2.17)
Oy, = Oy, + 80, (2.18)

below specified:

Short times t < T

n=2
oo, [ (w -]
2 2
(2.19)
A 11 ~-RI (754 L
s, [ (x| 117 4

(2.20)
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22 [s6 373 (nn)
5"”‘%[5 W(Rz)]

RV 3923 —40) L
[1 —e (RA) (v2923 - 40) 11]

2.21)
2 [52 357 (mn)
5%‘%[5 W(Rz)]
[1 A7) ”m“”)%]. (2.22)

Long times t > T
n=2

86, =2RN-\2|R|ni sgn R (2.23)

80, = 4RN-2\2|R|nA sgn R (2.24)
n=23

50, = 2Rn-\2RnA*  (2.25)

80, = 4RN—-2N2Rn22.  (2.26)

To obtain the total stress field in the boundary
zone, we add the lithospheric pressure p to oj;.
The differential stress Ao is defined as the dif-
ference between the maximum and minimum
principal stresses. In our model
Ao =0y . (2.27)
The asymptotic value of Ao (t — o) is given
by
AG=2\2|R|nA,

n=2 (2.28)

and
n=3

A =2N2| R |02, (2.29)

while in the linear case

Ac=4|R|n, n=1. (2.30)
The differential stress can be compared with
the frictional resistance over a fault in order to

estimate the extent of the seismogenic zone.

3. Application to an extensional plate
boundary zone

Previous theoretical models have shown that
the differences in mechanical behaviour be-
tween compressional and extensional boundary
zones are due to different structures and
geothermal profiles, rather than to different
boundary conditions. Compressive zones usu-
ally have a thick lithosphere and lower
geothermal gradient, while extensional zones
have a thin lithosphere and a higher geother-
mal gradient (Dragoni et al., 1996). We present
graphs of the stress evolution in an ideal exten-
sional boundary zone, according to the nonlin-
ear solutions found in section 2.

The boundary zone is composed of three
layers, an upper sedimentary layer, a crustal
layer and the lithospheric mantle, with the elas-
tic, rheological and thermal parameters shown
in table I, where k is thermal conductivity. The
geotherm for a recently stretched lithosphere is
constructed as in Dragoni et al. (1996), assum-
ing a radiogenic heat production in layer 2 and
the base of the lithosphere at the isothermal
surface T, = 1330°C (fig. 1):

0y
T+ —
0 klz
0,- DH D*H, _ra
T(2) =4 T(q)) + ————(z~2,) + ——(1—€ D
ky ky
Ta_T(Z)
Tep) + = (= 22)
3.1
in
0<z<7z, 71 £2< 2, <783

respectively, where T, is the temperature at the
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Table I. Elastic, thermal and rheological structure of the extensional boundary zone considered in the text.

Layer Z Al k; E An
@) (km) (GPa) (Wm™! °K™) (kJ mol™) n (MPa™ s71)
1 5 20 2.0 155 2.0 2.6x107
2 25 30 24 155 2.0 2.6x 107
3 40 60 - 260 3.0 2.0x107*

|

800

1000

1200 1400

Temperature [°C]

Fig. 1. Geotherm for the extensional boundary zone (after Dragoni et al., 1996).

Earth’s surface, Q, is the heat flow density at
the Earth’s surface, Hj is the radiogenic heat
productivity at the top of layer 2 and D is a
scale length. We take T;, = 20°C, Q, = 130 mW
m> Hy=3 uW m™> D = 8 km.

A rheological discontinuity is assumed at
the boundary between crust and mantle, with a
change both in the activation energy E and the
power-law exponent n: the values are taken
from characteristic rock parameters given by
Kirby and Kronenberg (1987). We assume Y=1,
a tipical value for the Earth’s crust, and a
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strain rate R = —107 7,

The stress components o, and 0, are shown
in fig. 2a,b, for the case where the deformation of
the plate boundary zone start at 7 = 0. Stress pro-
files show the general features already found in
previous works (e.g., Dragoni e al., 1996): a
stress concentration in the upper crust, a low vis-
cosity zone in the lower crust, another stress con-
centration, although of lower amplitude, below
the base of the crust.

It is interesting to compare these results with
the solution of the linear (n 1) constitutive
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Fig. 2a,b. Stress components o, (a) and o, (b) versus depth z and for different times #; the dotted curves are
the linear stresses 0, and 03,
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equation. Such a comparison is meaningful if we
assume that the linear and nonlinear curves in a
graph of stress versus strain rate intersect at a
point representative of laboratory conditions. Ac-
cordingly, the linear solution (dotted curves in
fig. 2a,b) has been calculated assuming for each
layer a value

A] :Ano.:¥l (32)
where 0, is a typical value of deviatoric
stress used in laboratory experiments (we take
0, = 100 MPa). The main effect of nonlinear rhe-
ology is evident in fig. 2a,b: the asymptotic stress
curves are different from the corresponding
curves of the linear case, entailing that the stress
values at a given depth are higher than in the lin-
ear case. Only in the uppermost layer the stress
curves are not affected by the choice of the expo-
nent n. This can be understood since the effective
viscosity is high enough for the characteristic re-
laxation times of rocks to be in the order of 10°
years or more. This entails that, for shorter times,
the behaviour is still predominantly elastic and

viscous effects are absent, no matter how com-
plex the rheology is.

Figure 3 shows a comparison of the asymp-
totic differential stress AG with a typical fric-
tional resistance Op, assumed as linearly increas-
ing with depth with a gradient of 10 MPa km-..
Nonlinear rheology allows rocks to accumulate a
greater amount of stress at depths greater than a
few kilometres, making seismic activity possible
at greater depths than those predicted by linear
theology. This is of particular relevance to re-
gions with high heat flow, where the assumption
of a linear rheology would confine seismicity to
an extremely shallow layer. For the same reason,
subcrustal seismicity may be also favoured by
nonlinear rheology, but only in the case of lower
geothermal gradients than those considered here,

4. Conclusions
A nonlinear, viscoelastic constitutive equa-

tion has been solved for a model lithosphere
subject to a compressional or an extensional

10—
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200

1 l l
250 300 350 400 450

Ao [MPO]

Fig. 3. Asymptotic differential stress A

G as a function of depth (the dotted curve corres{ponds to the linear
case). The straight line Oy is a typical frictional resistance with gradient of 10 MPa km~
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strain rate, which is constant in space and time.
The solution is the same in the two cases, apart
from the sign of strain rate.

A comparison between linear and nonlinear
rheology, in the case of an ideal extensional
plate boundary zone, shows that nonlinear rhe-
ology allows rocks to accumulate a higher
stress at depths greater than a few kilometres,
i.e. at temperatures greater than 450°C, mark-
ing the transition of crustal rocks to ductile be-
haviour. As a consequence, in the presence of
nonlinear rheology, the base of the crustal seis-
mogenic layer may be lowered by a few kilo-
metres or more, depending on the geothermal
gradient.

In addition to temperature, the solution is
strongly dependent on the rheological parame-
ters. The uncertainty in the values of these pa-
rameters remains a weak point of any applica-
tion of theoretical models to specific boundary
zones. Reches er al. (1994), in modelling the
San Andreas fault, found that only models with
viscosity values 10-100 times lower than the
experimental viscosity of quartzite fit the field
observations, suggesting that the in situ viscos-
ity of crustal rocks may be orders of magnitude
less than the viscosities determined in labora-
tory.
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Appendix
\\ 

In order to use a perturbative approach for nonlinear constitutive equations, it is suitable to transform these
equations in nondimensional form: this is the Wway to overcome any dimensional problem when performing a
power series expansion. Introducing 0 as given by (2.13) into the nonlinear equation (2.12), we obtain the fol-
lowing equations for the unknown functions 66y

., 1 i 59M—%(50XX+5QVy) !
~[0£x+(n—1)50,¢J+[9x‘1—~(9)?x+6%)] Hlt-D——=— | =L ye g
dt 3 y e)g_%(e)?x_'_ey(;) dt

1 n
86, = (86, + 56, de,,

dt

d 1 " d
E[eyoy”"_1)59”]+[3g’_§(93+ Gv"y)} +{1+@-1) =E[eyy+£m]+2y

1
9)('_)\2 - g (9& + 9)0))
(A.D)

Remembering that 9,? is the solution for the linear case and using the same strain tensor &; as in Dragoni
et al. (1993), under the hypothesis that

(1= 1188, - (80,,+ 66,1 <1 69— 1 (66, + 60
(A2)
1 0o_1 50 g0
(= 1)1 88, ~ 3 (86, -+ 56,,) | <| 65, - 3 (00+63)]

in order to limit the binomial expansion to the first order, we obtain

(=)< 80+ (= 1) [aem -1 (30, + 6%)] Ry )™ 'B(2y ™" = (Ry5) B - (Ryn ' B(ey (A3)

(n—1) 4 80, +(n—1)n [59w -1 (66, + 5%)] Ry '[2+B(@ ' =
dr 7~ c3 k

(A.4)
=(Ry1) 2+ B(D]- (-Ryt)I" [2+ B(D]"

where B(7) was given in (2.16). Consider now short times (7 < 1, i.e., r < ;). With a very crude approxima-
tion we may write (A.3) as

dX 2 1
Zinl2x-2v)k =k
dT+n(3X 3Y) 1n 2n
(A.5)
dy
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where
X=mn-1)090, ; Y=(n-1)66,
ki, = (Ry7)"~'B"~' (0) i k= (Ry7)BO)—(Ryr)"”'B"~' (0) (A.6)
ki, = (Ryn)' 'Q+BO)' " ;5 kiy=CRy1)2+B(0) - (Ryn)" 2+B(0)"

We look for a solution in the form

X(T) = C, + CyeM 7+ Cye™®
(A7)
Y(T) = Cy+ Cseh T+ Cye®

where the C;(i = 1, ... 6) and 4; (j = 1,2) are constants. We must require that (A.7) do not diverge throughout
the interval 0 < 7< 1 and that in the same interval they satisfy conditions (A.2). With the initial conditions
X(0) = Y(0) = 0, it is a simple matter to obtain

1 k2n k4n
= 2
Cl n (kln i k3r1)

k k
C4=l(2_2£+ 4")

A (A8)
Cy=Co=0
¢, =-C,
Cs=C,

Furthermore A, is the smaller of the two solutions of the equation obtained by the simple requirement that sub-
stitution of (A.7) in (A.5), with constants (A.8), leads to a non-zero solution:

%nkln+/1 —%km
) =0 (A9)
- % k}n g nk311 + A

Thus we obtain (7 <« 1)

n=2

Ligyd BTN 5y
5%:5[3+§(Ryrl)] [1-¢3 ]
(A.10)
RYTy o
59V‘,=l|:3+_1§1_(j{y1-]):| [l —e T3 (V79—4)T]

)
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n=3
1 [56 373 > _ RN s ayr
200, = —— |2 _ 212 1=
0, Ry [21 51 (Ryr,)][ e 4 ]
(A.11)
260 -1 E_ﬂ(gw 2 [l_e—(RZT‘)Z(\/m—mn]
YO3Ryr 21 21 !

It is easy to verify that conditions (A.2) are fulfilled by (A.10) and (A.1 1) when 7 < 1, in agreement with the
hypothesis of short times.

If we consider now long times (7 > 1), it is difficult to prove that the (A.2) are always satisfied by solu-
tions of (A.3). It is better to treat directly the native equations (A.1) in which asymptotic &6 are inserted:

6;= 0)+ (n—1) 565 (A12)

Imposing that general asymptotic conditions, as expressed in Dragoni et al. (1993), are to be satisfied, we
obtain

n=2
86, =2Ry6, —~\2|R |76, sen R
I (A.13)
86, = 4Ry6, - 2\2| R[y6, sgn R
n=3
260, =2Ry6, - \2Ry6,
(A.14)

266, =4Ry6, -2 \2Ry0,.

Multiplication by A and substitutions (2.4) and (2.6) bring (A.10), (A.11) and (A.13), (A.14) to the dimen-
sional forms presented in the text. For clarity, in our (dimensional) forms, 7 is the linear (first order), An the
second, A*n the third order viscosity and so on, thus determining the value of A, in (2.1).
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