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Abstract

When considering functions on the Earth’s (spherical) surface, mean-square values are often used to indicate
their (relative) magnitude. If a function is separated into its (essentially) spherical harmonic components then,
provided these individual harmonic components are orthogonal over the surface, the concept of spatial power
spectrum can be introduced, with each harmonic contributing separately to the total mean square value; this is
true for the geomagnetic field vector B, its horizontal component vector H, and its vertical component Z.
However, because of the lack of orthogonality this concept is not applicable to the horizontal X and Y compo-
nents individually; problems which arise from this are discussed.
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1. Introduction

In current-free regions the scalar potential V
of the internal geomagnetic field B can be ex-
panded in spherical harmonics:

had ¥

V(r, 0, )=a- Z (%)Hl z[g;f cos mA+
n=1 m=0
+hy sin mA] P} (cos ),
(1.1)

where 6, A are geocentric colatitude and longi-
tude, r is the distance from the centre of the
Earth, @ = 6371.2 km is the Earth’s mean ra-
dius, P;" are the Schmidt semi-normalized as-
sociated Legendre polynomials, g, h™ are the
Gauss coefficients; n, m are the degree and or-
der of the spherical harmonic expansion. In
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practice, the degree n is truncated at a maxi-
mum value N, after which the contribution of
the harmonics with higher degree is considered
negligible.

The expression (1.1) for the magnetic po-
tential arises in the physical context as a solu-
tion of Laplace’s equation.

To enable us to use compact expressions we
will ignore terms involving A (except where
the sum over m is made explicit), so at r = a
(a good approximation to the Earth’s surface)
we can write

V(a, 6, ))=a- Y g cos mAP]'(cos 6) =

n, m

_ m
=a: Z &n

n,m

(6. A),
(1.2)

where the W, are surface harmonics.

These surface harmonics form the solution
of the angular part of Laplace’s equation so,
from Sturm Liouville theory (e.g. Arfken,
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1985), they form a complete orthogonal set
over the sphere; this important property is ex-
pressed by the following relation (e.g. Chap-
man and Bartels, 1940):

2
g0 = J- cos mA cos m'AdA
0

¥4

4

1
() P (x) dox = —TF
< | Proppmas S

(Sm, m’ 6n, n
(1.3)

where 6, ; is the Kronecker delta, and Q is
the solid angle at the centre, such that
dQ = dAd (cos 0) = d\ dx, where x = cos 6. In
particular, eq. (1.3) is an orthogonal relation of
the kind

[ feae=umrs,.  as

where this integral is the scalar product be-
tween functions f, g integrated over the space S
and || f|| is the Euclidean norm of f.

Mathematically, eq. (1.3) derives from the
reciprocal orthogonality of Fourier functions
cos mA, cos m'A over the interval [0,27],
and that of associated Legendre Polynomials
P (x), P} (x) over [—1,1]:

J~27r
0

jl P () P (x) dx =
-1

cos mA cos m'AdA = 16, v (1+ 6 ),

2

2n+1

6n, n (2 - 60, m) .

If values of the potential V were known on a
sphere, then for a sufficiently uniform distribu-
tion, the orthogonality of the spherical harmon-
ics permits the use of either least-squares or in-
tegration methods to estimate the values of the
Gauss coefficients. We will see more details in
section 4.

The property of orthogonality suggests that
the surface spherical harmonics constitute the
natural spectral representation for the poten-
tial and any other function that vary over the
sphere. In this way «spherical harmonics are a
device for studying variations over the spheri-
cal surface analogous to Fourier series for vari-
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ation in time» (Kaula, 1967). Therefore, in a
way similar to Fourier analysis, it is possible to
introduce the concept of a (spatial) power
spectrum of the potential, of the magnetic field
and, if possible, of its components.

In practice the potential is not a direct
observable, and we have to determine the
Gauss coefficients from the geomagnetic field
B = -VYV, or its components based on a local
coordinate system:

)
XY, Z)=|—, -
( ) (rae

0 i)
rsin 694" or

We can expand the magnetic potential

V=Y g v,

with the obvious definition of V" Conse-
quently the magnetic field B can be expanded
as

BI'=

B=) g'Bl, A

Analogously we can write:

X, ¥, Z) =Y gr (X, Y, 27

where we introduce the decomposition into
spectral elements X", Y., Z" defined as:

_(a

X! (—

“\r

m

n+Za
9 pmeg, 2 =
) e,

(%)Hz cos mﬂ,%P,j"(cos 0),

ay+2 1 9¥"(6, A
yr=—(2 TP (s
(r) sin 6 oA e

a\n+2 . P (cos 6)

—m(7) S mlw

Zy=—(n+1D)(@/ry*? (6, A) =

=—(n+1)(al/r)"*?* cos mAP" (cos 0).
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These expressions are not themselves all
orthogonal: in particular those for X" (i.e.
d'¥,"/06; this fact does not explicitly emerge
from sect. 17.14 of Chapman and Bartels,
1940), and for Y (which are of the form
¥,"/sin 6). We will see in the next section the
consequences of this when deriving X and Y
components, and their mean-square values,
from the magnetic potential V.

In literature, these same spectral elements
are also denoted as 9/0g; (X, Y, Z) (eg.
Langel, 1987). Sometimes they include only
their 6-dependence (e.g. Schmidt, 1935;
Chakrabarty, 1954).

For a particular pair (1, m) the relative value
of g,' and A depends on the choice of the
A =0 origin, but the sum [(g”)*+ (h")?] is in-
variant to the choice of this origin. For a given
n all the coefficients change if the 8 = 0 axis is
changed, but the sum Y [(gr')* + (A")*] is in-
variant. We will see in the next section that it
is this sum which is relevant to the mean-
square values.

In many papers the mean-square values over
the sphere r = a of functions such as V, B, H,
X, Y, Z are determined, often with the aim of
resolving the total mean-square value into a se-
ries of parts, each of which depends only on
the corresponding degree n, or spatial fre-
quency, so giving a (one-dimensional) spatial
power spectrum. This resolution is certainly
possible for V, B, H and Z, but it is not for X
and Y.

Physically, the difference between V, B, H,
Z and X, Y, is that the former group have val-
ues, and hence mean-squares, which are invari-
ant with respect to the choice of axis 6 = 0,
while the latter are not. Mathematically the dif-
ference is that if the former are expanded in
terms of surface harmonics, the individual v
etc. are orthogonal, while for the latter they are
not.

This paper discusses some of the problems
resulting from this difference. Even though
much of this work is based on already pub-
lished material (especially the fundamental
works of Chapman and Bartels (1940),
Mauersberger (1956, 1959), Lucke (1957,
1959) and Lowes (1966, 1974)), it tries to give
a simple and organic view of the matter to
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clarify some concepts that could be otherwise
misinterpreted or disregarded. Section 2 de-
rives expressions for the mean value (over the
sphere) of products of the different spectral el-
ements and total mean-square values, section 3
applies these results to the power spectra, and
section 4 will recall some general results on in-
tegral and least-squares methods, and the pos-
sible use of X sin 6 and Y sin 6; section 5 com-
pletes the work with a general discussion.

2. Scalar products of spectral components
of B,Hand X, Y, Z

When writing eqgs. (1.2) and (1.5) we intro-
duced a spectral decomposition for V and B:
our problem is that of computing the scalar
products of their spectral elements or, which is
the same (apart from a proportional factor), the
mean value over the sphere of their products
and, as a special case, their mean-square val-
ues.

Let us denote < @ > as the mean value of a
function @ (r, 6, 1) on the surface r = a:

<o>=1 [ w@ 6 1)40.
ar

4

The mean value of the product between two
functions f(a, 6, 1), g (a, 6, A) is directly re-
lated to their scalar product:

<fe>=—=- | f 6. nsG. 6 naa,
4 darx

with the obvious generalization if f and g are
vectors.

If f =g, we have the mean-square value
<f?>.

We are now going to discuss whether the
spectral components introduced in expressions
(1.5) are orthogonal or not, i.e. whether < fg >
is zero when f and g are different spectral-com-
ponents.

The expression for < V?> comes directly
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from the orthogonality of spherical harmonics N+ )2 S .
(eqs. (1.2), (1.3), = Z Z[(g Y] (24
n=1
Vi>=< N gnen vives=
n, 'y m, m’ These results were given in the geomagnetic
context by Lucke (quoted by Mauersberger,
_ 2 my2 2 1956) and independently by Lowes (1966).
-4 ”z:nf(g") <(FD">, But if we express B as (X, Y, Z) we ob-
' tain

which can be expanded as

= Z 2n+1 Z[(g')z)2+(h:1)z]; .1

<F?2>=<X’>+<Y?’>+<Z%>=

= Y XX < 5 <22 ),

note that the value of the sum over m is inde- n ol m,

pendent of the choice of axis. (25)
Just as the potentials V" (r, 6, A) are orthog-

onal over the sphere, so also are the corre- and, as we now show, the X, are nor all or-

sponding B, = —VV" If we define the field thogonal over the sphere, nor are the Y. From
magnitude F = | B|, then because of the or-  eq. (1.5) we have for X:
thogonality we have

, 1 1 dapP
<F?’>=<B-B>= ‘<B!"-B">= X)Xy >=—0p, w J 1-x3)—=dP}| =
2 (g ) < n > < n n > 4 m, m . ( X ) dx n

n, m

m=0

—Z(n+1)2[(g P 22)
= [j PrrL (1— 4 ) ];

The first general proof we can find of this is in
Stratton, 1941 (page 417), with the first proof (2.6)
in a geophysical context by Jeffries (1942).

Although it is not explicitly stated, Stratton
(1941) also includes the result that the surface Remembering the associated Legendre equa-
(horizontal) vector components H,” = (X", Y™ tion:
are also orthogonal over the sphere giving

_ m m me _ de 2
<H'H>—2(g”)2<H” > = ((1— 0o ) ___lm sP'=n(n+ 1) Py
n,m —X

n o

N

1
Z nn+1) 2[(g Y+ (W21, (2.3) the right side of (2.6) can be expressed as the
2n+1 sum of two parts, so:

It is obvious from their definition (1.5), and <X'XW>=
also follows from (2.2) and (2.3), that the verti-
cal components Z;" are also orthogonal, giv- m? (1 PMPY nn+1)
i - 5m m J. 4
e [ PR R Pan
22>= ) (&) (7 =
n,m (27)
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The first term in the right side of (2.7) can be
called C, » ,, (Lowes, 1975):

1 PmPl}‘l
71 Il m= 4 J

11—-x
and is non-zero even when n#n’. Similarly,
for Y and Z:

<YYEs=
2 o1 pmpm
= 5m m'ﬂ J‘ — dx = 6m m’ Cn n,m
SR S N ’ o
(2.8)
and
, n+1)?
<Ly >=— O, s 2.9
n “n 2n+1 m, m’ Yn, n ( )

giving (2.4).

Because C, , ,, is present with opposite sign
in X and Y (egs. (2 7) and (2.8)), it does not ap-
pear in the expressmn for <H-H> of eq.
(2.3), and for < F? > in eq. (2.2), as it is clear
looking at (2.5).

Here we are just interested in the existence
of this term, so we will not calculate it (details
are given in Lucke, 1957); some idea of its

magnitude is given by its value for n = »’
(Lowes, 1966): C, , ,, = m/2.
We therefore have
N N N
XK= NN N e <XIXY>=
m,m' =0 "=M =y
N n
nn+1) 1 2
-% 3| an e
n=1m=0
N N n-l
_Z z Z Cn n, mg;ln g?a (210)
m=0nN=Mm y -y
N n
2 - £ my\2
<Y >—Zl Z‘B 5 mg) +
N N n-1
DN Covmsrgr. @11
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where it is understood that the Gauss coeffi-
cients are defined to be zero if any index is
less than zero.

Although when n#n” C, , , is less than
unity (Lucke, 1957; Lowes, 1975), the second
series of sums in (2.10) and (2.11) is not negh-
gible with respect to the first one, g1v1ng a sig-
nificant contribution to <X?> and < ¥?>.

The scalar products of the form < X" X >
contained in expressions (2.7), (2.8) and (2.9)
are well known approximations to the elements
of the normal equation matrices when data are
equally distributed by area over the Earth, or
when discussing the weight to give them (All-
dredge and Kawasaki, 1981; Schmitz and Cain,
1983; Langel, 1987; Kawasaki et al., 1989);
other details will be given in section 4.

Unfortunatelly Lowes (1966) only gave
these results (2.7) and (2.8) for individual har-
monics (i.e. for n =n’, m = m’), and this has led
to some later authors assuming orthogonality
of the X, ¥,". For example Langel (1987, page
355) assumes the three components are indi-
vidually orthogonal (and there are also some
typographical errors in his eqs. (122a-c)); in
fact his numerical experiments used the full
field vector (X, Y, Z), so this did not matter.

3. Spatial power spectra

The concept of a spatial power spectrum
in geomagnetism was in effect introduced
by Lucke (1957, 1959) and independently by
Lowes (1974). This concept, and its use for the
interpretation of the different contributions
(crustal and core) was extended by McLeod
and Coleman (1980), Langel and Estes (1982)
and Cain ef al. (1989).

The spectral component R, (B) is «the mean-
square value over the sphere of [that part] of B
produced by harmonics of degree n» (Lowes,
1974). This was possible because on the sphere
r = a, the degree n specifies the smallest wave-
length 27wa/n of the corresponding spherical
harmonics, and because the B, were orthogo-
nal. It is evident that this concept can be ap-
plied to a field E (or scalar E) only when the
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E," are orthogonal; so that
<IEP>=7) @ <IE'F>= R, (E).
where R, (E) ’is defined as follows:
R, (B) =Y [(g )+ (P I<|E! >

It is therefore sensible to apply the concept
only to V, B, H and Z. The existence of such
spectra is possible because the physical varia-
tion of these functions over the sphere does not
depend on the choice of coordinate system, i.e.
to the directions of the 6 = 0 axis and A = 0
plane.

The concept of spatial power spectrum
should not be used for the components X and Y
separately, because the C, , , terms of egs.
(2.10) and (2.11) mean that the separation into
contributions from individual degrees is not
possible (the values of X and Y do depend on
the choice of coordinate system).

James (1968,1969) introduced the concept
of <X?> and < ¥?> when he was considering
the total field of degree n as coming from a
single n-th order multipole. The values of
<X?> and <Y2> in his table 2 are valid for
each multipole separately, but he does not say
exp1101t1y that they cannot be added to give the
total <X?*> and < Y?>. Similarly Nevanhnna
(1987a) also calculates individual < X?2> and
< Y?> and plots them as «power spectra» in his
fig. 1b. Of course, caution should be used
when transferring the interpretation of the
slope of the power spectra of V and B in terms
of the apparent source- layer depth (e.g. Meyer,
1985), to the slopes of <X?> and < ¥?>.

The concept of spatial power spectrum was
introduced also for subperiodic functions
(Haines, 1991, page 243), but again the prob-
lem of non-orthogonality was not considered.

4. Integral and least-squares methods,
and the use of X sin 6, Y sin 6

Given a knowledge of, say, V (a, 0, 1) over
the sphere then, because of the orthogonality of
the ¥," we can obtain the values of the coeffi-
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cients g’ in a spherical harmonic expansion of
V by the classical integration

v 6 16, a0

[ 190, DT de2

_ dan VW¥dQ

4.1

A< (P > @D
V itself is not observable, but the same tech-
nique can be applied to any of the observables
B, H or Z, but not to X or Y. For example, for
Z we have (Chapman and Bartels 1940;
Kawasaki et al. 1989, where there is a typo-
graphical error in their eq. (2.2)):

2n+1
dn(n+1)

m _
n =

Z(a, 6, 1) \P,)"(6, 1)dQ.
4
4.2

In practice we do not know the field (com-
ponent) over the whole sphere, but only at dis-
crete points; some workers use a numerical ap-
proximation to the integration of the classical
approach, but most workers prefer to use a
least-squares approach. We now show how
these two methods are related for a uniform
distribution of data.

Consider a set of M data B,, taken at the
measurement points x; = (6;, A;), where B is
one of the field components, or all of them (i.e.
all the complete vectorial information).

In the least-squares method we look for
those coefficients that minimize the square of
the Euclidean norm S of the difference be-
tween data and model:

DNEWT

m, n
We need to solve a system of normal equa-
tions which has as many equations as the num-
ber of unknown coefficients; the (n, m) — th of
them is (here the couple (n, m) represents a
single index):

)2. 4.3)

gIZBl () B () + .

i=1
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M M
Y BB () +. .= Y BB (x),
i=1 i=1
4.4)

The eq. (4.3) can be written in matrix nota-
tion:

S=|B-Agll, (4.32)
where g is a column vector of the g, B a col-
umn vector of the observations, and A is the
matrix of the B," (x;). The normal eqs. (4.4) are
then

ATAg=A"TB, (4.4a)

where the (n, m), (n’, m’) element of AT A is the
sum

M
D Bl ) BY ().
i=1

In the ideal case of uniform (i.e. equal area)
distribution over the sphere, the sums are es-
sentially integrals, so

M
47y B () BY (o)

i=1

N j B (A )BY (A, 6)dQ2=4n<B" B >,
¥ 4

where dQ = 47/M.

We have seen that for each of B, H or Z the
value of < B™ B! > is zero unless B"=BY. So
A" A is, to our approximation, diagonal, and
each g can be determined separately, giving
(almost) (4.2) again, for example using B; = Z;.

If instead we use X or Y separately, the
discussion of section 2 shows that AT A is no
longer diagonal, with all the resulting compli-
cations such as correlation and possible ill-con-
ditioning.

Even for B, H or Z, if the data are not uni-
formly spaced, orthogonality is lost, and A7 A
becomes non-diagonal. For example, if the
data are equally spaced in latitude and longi-
tude, to restore diagonality we need to weight
the observations by sin 6, in effect allocating

the appropriate d€2 in our approximation to the
integral of (4.2) (Lowes, 1976; Langel, 1987).

Although using Y gives a non-diagonal ma-
trix, it is clear from (1.5) that ¥ sin 6 gives or-
thogonal functions ¥,”sin 6, and so can be used
in an integral approach; for equiangular data,
this corresponds to weighting Y data by sin® 6,
and this is what Alldredge and Kawasaki
(1981, page 511) suggested for data equally
spaced along a meridian. Because of its orthog-
onality, ¥ sin 0 could be used to give a sort of
power spectrum.

Similarly X sin 6 can be useful for an inte-
gral approach (Schmidt, 1889; Chapman and
Bartels, 1940, page 637; Mauersberger, 1959,
page 132; Kawasaki et al., 1989), but not in a
direct way:

Xsin 0= Z g cosmAsin 9% P (cos 6) =

= " g cosmAA Py~ Bl Pl 1,
n,m

where (Chapman and Bartels, 1940):

s oo N
A= T Bl= 5 (e D

If we develop X sin 6 with a finite number of
harmonics, i.e.:

N+1 n

Xsin 0 = 2 2 e, cosmA P (cos 6),

n=0m=0

then we can evaluate the coefficients g using
the relation

m _m m m —_ pn
An &n +Bn+2gn+2"‘en+] =

\/(n+ 1) —m? n \/(n+2)2—m2
el e m+5

m

(n+3)gn+2=

_2n+3
T4

J. Xsin@P), | (cos O)dcos 6,
4r

which is the same expression given by Kawa-
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saki et al. (1989). This is a linear problem of
the kind e = Cg:

m _ pm m
€m _Bm+1 Em+1

m _ Am m m m
| _Am gm+Bm+2 Em+2

m — m m m m
€m+2 _Am+1 Em+1 +Bm+3 Em+3

The first equation involves an isolated coef-
ficient (g, ) so, starting from it, we can eval-
uate all the terms g, .., (A =0, 1, 2, ..).

In theory, assuming that there are only a
known finite number of harmonic terms, a so-
lution for the remaining terms can be found by
making a backward iteration (Mauersberger,
1959) starting from the last terms of the har-
monic expansion (i.e. all the terms with order
n = N—1, N, which are isolated as the coeffi-
cient g, seen before). But the truncation we
use is subjective, and in practice the high de-
gree term we first evaluate will be very uncer-
tain, and in both cases the iteration will add in-
creasing error, so the situation is very far from
that of (4.2).

5. Discussion

The orthogonality of spherical harmonics is
fundamental in geomagnetic field analysis.
Spherical harmonics represent a complete and
orthogonal set of functions that can be used to
expand the magnetic potential satisfying
Laplace’s equation (e.g. Chapman and Bartels,
1940). A central role in the context of this
paper is that their derivatives 0/060 and
(sin ) '0/04 are not orthogonal over the
sphere. In Chapman and Bartels (1940, sec.
17.8) it is affirmed that any partial derivative
of a spherical harmonic is still a solution of
Laplace’s equation, but it is more correct to
say that it is true for derivatives with respect to
fixed cartesian coordinates x, y, z or, when us-
ing spherical coordinates, for /04 (i.e. effec-
tively Y sin 6), for which the expression of
Laplace operator is linear. Similar confusion
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can also arise from works by Schmitz and Cain
(1983, page 1225) and Haines (1991, page
244) where it is said that 6-derivatives of Leg-
endre functions of degree n can be expressed
simply in terms of Legendre functions of de-
grees n+ 1 and n — 1, omitting the importance
of the term sin 6 in the relation (56) of Chap-
man and Bartels (1940, page 622). Similarly,
to give a compact expression of the spatial
spectrum of secular variation, Nevanlinna
(1987b; his eq. (6) at page 369) neglects inte-
grals with terms like 0X/dA - dX/d0, invoking a
fictitious orthogonality.

However the total horizontal vector H =
(X, Y) is orthogonal.

Because of orthogonality, the concept of
(one-dimensional) power spectrum in terms of
spherical harmonic coefficients can be intro-
duced for V, B, H and Z because each har-
monic degree contributes separately to the total
power of the considered quantity. The shape of
these spectra have been used to infer some
properties of crustal and/or core contributions
(e.g. Lowes, 1974; Langel and Estes, 1982).
But the concept should not be extended to the
X and Y components which are not orthogonal
over the sphere.

(X, Y) sin 6 are useful when analysing only
one of the two components, otherwise, the vec-
tor H being orthogonal over the sphere, it is
better to analyze X and Y simultaneously. Simi-
larly, using only X or Y individually, for exam-
ple in a (X, Z) or (Y, Z) least-squares separa-
tion of the internal and external parts of the so-
lar quiet daily variation, will give significant
off-diagonal terms in the normal-equations ma-
trix. The resultant ill-conditioning might con-
tribute to the inconsistencies (e.g. Matsushita,
1983) between the (X, Z) and (Y, Z) analyses.
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