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Abstract

An instability of frictional sliding driven by tectonic stress is assumed to be the source of earthquakes. Empiri-
cal slip laws indicate that, under constant ambient conditions, friction depends on time, slip rate and slip his-
tory. Regular stick-slip behaviour is induced by velocity weakening, a decrease of friction with slip rate. Ve-
locity weakening is introduced into a model for a propagating Somigliana dislocation under slowly increasing
shear stress in an elastic space. Two distributions of static friction are considered, characterized by asperities
with sharp borders and smooth borders respectively. The instability occurs when the rate at which friction de-
creases becomes greater than the rate at which the applied stress must increase to produce an advance of fault
slip. The possibility that this condition is fulfilled depends on the velocity dependence and on the spatial distri-
bution of friction on the fault. In the case of sharp asperity borders, instability can take place only when some
amount of slip has occurred on the fault, while this condition is not required in the case of smooth bor-
ders.

Key words dislocation — earthquake — friction — across a fault. The nucleation, the propagation
instability — weakening at finite speed and the final arrest of a fault
dislocation are necessarily associated with in-
homogeneities in friction and/or applied shear

1. Introduction stress. Lithological or geometrical changes
along the fault are the main causes of spatial
Laboratory experiments and theoretical con- changes in friction. Laboratory experiments of
siderations suggest that earthquakes arise the kind initiated by Brace and Byerlee (1966)
through an instability of frictional sliding on show that friction of rocks depends mainly on
pre-existing rupture surfaces (e.g. Scholz, ambient conditions: temperature and pressure
1990). Experiments show that in frictional slid- in the first place and, in addition, rock type,
ing of rocks a dynamic instability can occur, porosity and pore pressure, thickness of the
resulting in a sudden slip and an associated gouge layer. Frictional sliding may also in-
stress drop. This phenomenon can occur repeti- clude the surmonting of obstacles and local
tively: the instability is followed by a station- processes of fracture or plastic flow (Paterson,
ary period during which stress is recharged, 1978).
followed by another instability. This behaviour In general, a dynamic slip instability occurs
is called stick-slip and was proposed by Brace when the frictional strength decreases at a rate
and Byerlee (1966) as the mechanism of earth- that exceeds the capability of the applied stress
quakes. Earthquakes are recurring slip instabil- to follow (Stuart, 1981). The simplest picture
ities on lithospheric faults. of frictional sliding is that a static friction T,
It is commonly assumed that friction 7 is lo- must be exceeded for slip to commence. Once
cally proportional to the effective normal stress slip has started, it is resisted by a dynamic fric-
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tion 7, which is smaller than 7,. Experiments
show however that 7, and 7, are not constant in
time. If the surfaces are held in stationary con-
tact for a time ¢, 7, increases approximately as
In ¢. During sliding, at constant slip rate v, T, is
observed to depend on v, being lower for
higher slip rates. Moreover the instability does
not occur instantaneously at some threshold
stress, but after an interval of accelerating slip,
and takes place over a finite displacement, the
characteristic slip distance (Dieterich, 1979a,
b; Ruina, 1983; Rice and Ruina, 1983; Rice,
1983; Gu et al, 1984; Weeks and Tullis,
1985).

The frictional behaviour in which friction
falls with slip is called slip weakening and may
result in stick-slip. However it does not pro-
vide a mechanism for the frictional resistance
to regain its initial level and so does not lead to
the regular stick-slip behaviour which is re-
quired to explain earthquakes. The basic phe-
nomenon which leads to regular stick-slip is
velocity weakening, a decrease of friction with
increasing slip rate v. If v is an increasing func-
tion of time, slip weakening is just a conse-
quence of velocity weakening.

Under constant and uniform ambient condi-
tions, fault strength depends on time, slip rate
and slip history (Dieterich, 1978; Ruina, 1983;
Weeks and Tullis, 1985). The experimental ob-
servations can be represented by constitutive
relations including slip rate and slip history ef-
fects: the sliding history effects are usually
represented by a state variable that evolves
with displacement toward a steady-state value.
Okubo (1989) worked out a dynamic rupture
model with laboratory-derived constitutive re-
lations. Earthquake nucleation on a fault with
slip-rate dependent strength was studied with a
numerical model by Dieterich (1992) and Mat-
su’ura et al. (1992). Shibazaki and Matsu’ura
(1992) developed a numerical simulation for
the process of nucleation, dynamical propaga-
tion and stop of earthquake rupture.

In the present paper, we introduce an empir-
ical constitutive equation into a model repre-
senting a Somigliana dislocation (or crack)
propagating on a fault with nonuniform fric-
tion, under a slowly increasing ambient shear
stress. Two distributions of static friction are

studied, characterized by asperities with sharp
borders and smooth borders, respectively. The
penetration of an aseismic dislocation into as-
perities with sharp borders was studied in
Dragoni (1990, 1992). The case of asperities
with smooth borders was considered in Drag-
oni and Piombo (1993). Here we study the
conditions under which sliding instability may
take place as a consequence of such an aseis-
mic dislocation process (e.g. Dragoni, 1993).

2. The model

We assume that faults are pre-existing rup-
ture surfaces in the Earth’s lithosphere and that
fault slip is controlled by friction

T=x(0,—p) 2.1

where K is the coefficient of friction, o, is the
applied normal stress and p is fluid pore pres-
sure. Friction may vary in space as a conse-
quence of changes in x, o, and p. Such a func-
tion includes the effect of lithologic and geo-
metric inhomogeneities of the fault as well as
of all the other factors controlling the resis-
tance to slip, like fluid pore pressure (Rice and
Simons, 1976), fault gouge (Wang, 1984) and
possible lithification processes (Angevine et
al., 1982).

We consider a planar fault surface in an
elastic space and describe the spatial depen-
dence of friction by a combination of weak and
strong patches. Fault slip takes place in re-
sponse to a gradually increasing ambient shear
stress. If the ambient stress is uniform, slip
starts in the weakest patch of the fault. A
Somigliana dislocation (or crack) is produced
(Bilby and Eshelby, 1968).

To make the problem amenable to an ana-
lytical solution, a 2-D model is considered,
where friction is variable only in one direction
x on the fault plane, taken as the horizontal di-
rection. We assume that the fault is stationary
for ¢ < 0. At ¢ = 0 the static friction is 7,(x): in
particular, we assume that there is a weak zone
of the fault plane, — d < x < d, with friction 1,
included between stronger zones with friction
T) > Ty (fig. 1a,b), that we call «asperities». We
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Fig. 1a,b. Static friction 7, (x) around the weakest fault zone at time ¢ =
fault. We consider two distributions characterized by asperities with sharp

-D -d 0 d D X

O is the ambient shear stress, increasing with time z. It is assumed that ¢ = To at t = 0.
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borders (a) and smooth borders (b);
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Fig. 2a,b. Fault slip u as a function of coordinate x along the fault, for different values of parameter T (corre-

sponding to different times), in the two cases of sharp asperity borders (a) and smooth asperity borders with
D = 2d (b).
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consider two cases: asperities having sharp
borders with

x| <d

=" 2.2)
7, (x) = )
¥ {Tl, x| >d

and asperities having smooth borders, with

T]s leZD
T x| <d
T (x) = (2.3)
T—x+d)f, -D<x< —d
+x—-d)f, d<x<D
where
T—%
f= 35— 2.4)

is the friction gradient of the asperity borders,
having width D — d. We assume moreover that
the ambient shear stress o reaches the value T
at t = 0: at that time the fault starts sliding and
releasing a stress

Ao(x, H=oc(®)—1(x, ), |x|<a(® 2.5)
where a is the dislocation half-width and we
admit that friction 7 may vary as a function of
time. Under equilibrium conditions, the in-
crease of dislocation amplitude u and width 2a
is controlled by the increase of ambient stress
o, the dislocation being confined by the sur-
rounding asperities. The solution technique of
the Somigliana dislocation problem is summa-
rized in the Appendix.

In the absence of velocity weakening, the
various quantities of the model are usefully ex-
pressed in terms of a nondimensional, time-de-
pendent parameter

T(f) = o0-%n (2.6)

)

which is a measure of how much the ambient
stress o exceeds the friction level 7, relatively
to the step 7; — 7. As o increases from 7, to 17,

the ratio 7 increases from 0 to 1. If o is lin-
early increasing with time, 7 is equivalent to
time and will be used in the following instead
of z.

In a Somigliana dislocation, fault slip u# and
slip rate v are functions of position and of time.
Figure 2a,b shows the slip profiles along the
fault for different values of parameter 7 in the
two cases of sharp and smooth asperity bor-
ders; we note that slip is proportional to 7, — T
and, for a given value of T, u is remarkably
larger in the case of smooth asperity borders.
In fig. 3a,b the slip rate profiles are shown on
the fault for the same values of T; also slip rate
is larger for smooth borders at any given value
of T. Slip rate is however independent of
T; — Tp. In figs. 2a,b and 3a,b and in the fol-
lowing, D = 2d is assumed as an example for
the smooth border case; u and v are suitably
normalized: u is the rigidity of the elastic
medium and A is another elastic constant
which is defined in the Appendix. At any time
t >0 (or T > 0), the maximum fault slip and
the maximum slip rate are at x = 0, the centre
point of the weak zone.

The fault can be characterized by an effec-
tive stiffness (Dieterich, 1986), defined as the
derivative of ambient stress with respect to
fault slip. At fixed ¢, the minimum stiffness K,
is found at x = 0, where the slip is maximum.
Therefore the centre point x = 0 may be as-
sumed to control the onset of instability for the
entire fault patch and we define

_do
K, = 30 2.7
where
U®H=u(,1. 2.8)

A graph of o as a function of U is shown in
fig. 4, whence it can be seen that K, > 0: K,
represents the increment of ambient shear
stress which is needed to produce a corre-
sponding increment of fault slip. This slip
hardening effect is produced as a consequence
of the propagation through adjacent higher
friction zones which resist the motion of dislo-
cation fronts. The dotted line in fig. 4 and in
the following refers to the case of smooth bor-
der asperities and corresponds to the condition
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Fig. 3a,b. Fault slip rate v as a function of coordinate x along the fault, for different values of parameter T

(corresponding to different times), in the two cases of sharp asperity borders (a) and smooth asperity borders
with D = 2d (b).
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Fig. 4. Stress-slip curves. Two kinds of friction distribution are considered: sharp asperity borders ((7; — 7o) /
7o = 2) and smooth asperity borders (71=19) / 179 =2, D = 24d).

a = D, when the dislocation front has passed
the asperity border.

It can be seen that K; depends on Ty and T;
only through the nondimensional stress release
T. Besides, it depends on the elastic constants
and on the weak zone half-width d. A graph of
the nondimensional quantity AdK/ U as a func-
tion of T is shown in fig. 5: K, is a bounded
function of 7 and has a maximum

u

KO' = -ZA—d (29)

at T = 0. The existence of a maximum K, takes
into account the possibility that fault slip starts
at £ =0 on a zone with finite extension 2d and
not just at a point.

3. Velocity weakening and instability

There are various forms of constitutive
equations, which differ in detail, depending on

1421

the approximations employed, but all share the
same approach and provide similar representa-
tions of the data. A typical form of constitutive
law, yielding the coefficient of friction K in
terms of slip rate v and a state variable W, is
the following:

K=Ko+ Alngv)+ By 3.1
where K is some basic friction, A4 and B are
empirically determined constants and g(v) is a
function of v. The constitutive equation is ac-

companied by an equation for the evolution of
the state variable y:

v _

s 3.2)

—% [y+ In g(v)]

where ¢ is the characteristic slip distance which
is measured in the laboratory (e.g. Scholz,
1990). A more general formulation may in-
volve several state variables, each obeying to
its own constitutive equation (Horowitz and
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Fig. 5. Effective fault stiffness K, at x = 0 as a function of T for sharp and smooth asperity borders.

Ruina, 1985; Tullis and Weeks, 1986); how-
ever the basic effects can be discussed using a
single state variable and characteristic slip dis-
tance.

We assume that the present model can re-
produce the early stage of fault slip originating
from a weakly coupled zone. Slip is externally
driven: the dislocation area and slip enlarge
due to increasing ambient shear stress. Now let
us assume that slip is governed by egs. (3.1)
and (3.2). A graph of slip rate at the centre of
the fault V(7) = v(0, 7) is shown in fig. 6,
where it can be seen that the slip rate is fairly
constant or slowly increasing for values of T as
large as about 0.8, resulting in steady-state
slip. During steady-state slip, it is assumed that
the state variable y is constant in time (e.g.
Ruina, 1983). Hence from (3.2)

y=-Ing(v) (3.3)
Using (3.3) in (3.1), we obtain the simplified
law:

k= Ko+(A-B)Ing(v) (3.4)

where we choose

gW)=k(wv—vy)+1 3.9
where v =v(x, T) and vy, = v(x, 0). The form of
g (v) has been chosen in order that the rate-de-
pendent term vanishes on the fault at 7 = 0.
Therefore it takes into account the case v, # 0,
occurring in the weak zone |x| < d, and the
case vy = 0, occurring in the asperities | x | > d.
We choose as a reference velocity the initial
slip rate V,, at x = 0 and define

k=—

7 (3.6)

If A — B < 0, the behaviour is velocity weak-
ening and slip may become unstable (Rice and
Ruina, 1983; Gu et al., 1984). In this case, fric-
tion is a decreasing function of slip rate. Multi-
plying (3.4) by (o, —p), we obtain

T T)=1x)[1-yInhgwl (3.7
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where
B-A
Ko

V= (3.8)

In fig. 7, friction 7 on the fault is shown for
some values of T in the case of asperities with
sharp borders and for two values of ¥. The val-
ues of ¥ measured in the laboratory are com-
monly in the range 0.01-0.001 (Dieterich,
1980, 1981; Okubo and Dieterich, 1986). Note
that the shape of friction distribution is rela-
tively unchanged with time with such small
values for 7. The same result holds for asperi-
ties with smooth borders.

This enables us to approximate the constitu-
tive eq. (3.7) for y< 1. Actually the amplitude
of the friction step 7, — 7, decreases with time:
however this effect is small if Y< 1 and is ne-
glected. At x = 0, (3.7) reduces to

V(T)
Yo

70, T) = 1, [1 —7In ] 3.9)

where V and Vj, are slip rates at x = 0. Follow-
ing the previous considerations, we adopt (3.9)
for the whole fault surface and write

T, T) =1, (x) F(T) (3.10)
where
F(IT)=1-yIn 1(2 3.11)
Vo

This means that, at each point on the fault,
friction is a decreasing function of 7 (or time),
but the initial spatial profile remains un-
changed. This approximation allows us to em-
ploy the same solution as in the absence of ve-
locity weakening, with a remarkable simplifi-
cation of calculations. Velocity weakening is
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Fig. 6. Fault slip rate V
borders.
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Fig. 8a,b. Friction 7 as a function of fault slip U for some values of yin the two cases of sharp asperity bor-
ders (a) and smooth asperity borders with D = 24 (b).
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generally expressed by:

drt
v <0 (3.12)

From (3.10) and (3.11)

ar _ YT ()C)
oV (3.13)

Note that | d7/d V| is a decreasing function of
V and has a maximum at V = V.
We search for the instability conditions as a

20 T T T T
L (11=7T0)/To=1

instability

0.5

0.0
0.0

2.0 T T T T
(14=70)/T=0.1

15F | instability ]

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0
T

result of the competition between the decrease
of friction and the possibility of the ambient
stress to produce slip; therefore we consider
the slip weakening induced by velocity weak-
ening. Slip weakening is expressed by K;<0,
where

dr
au

K, (3.14)

A graph of 7 as a function of y U/[Ad(7, — 1)]
is shown in fig. 8a,b, for some values of 7. In
the case of sharp asperity borders, the slope
| K;| is an increasing function of U, being 0 at
U = 0. As a consequence, a given value of K,

2.0 T T T T
L (74-7o)/To=0.5

15| instability

L R R i
0.5 r=1
0.0 "
0.0 0.2 0.4
T
T r T T
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Py S S A
¥=0.01 i
1 L 1 1
0.2 0.4 0.6 0.8 1.0

Fig. 9. Ratio R as as function of T for different values of (7, — 7o) / 7, and ¥ for sharp asperity borders. Insta-
bility is reached when the curves for R overpass the dashed line corresponding to R = 1.
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is reached after the fault has undergone a cer-
tain amount of slip: this is consistent with the
observation of a:gharacteristic slip distance. In
the case of smooth borders we have instead
that | K,| is decreasing until some amount of
slip is achieved (dotted line) and increases only
beyond this point. As a function of U, K, de-
pends on yand on the step 7, — Tqo-. Curves for
Y= 1 are introduced as a reference, but are be-
yond the validity of approximation (3.10). Slip
weakening is a necessary condition for insta-
bility. During slip weakening, sliding is stable
as long as the rate | K, | at which 7 decreases is
less than the rate K, at which ¢ must increase
to produce an advance of fault slip. On the
contrary, instability occurs if the friction de-

2.0 :
(T1=T0)/To=1

instability

IR e

0.5

2.0 :
(T1=70)/7p=0.1

instability -

05k y=0.01 ]
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T

crease is overwhelming: hence the condition
for instability is (e.g. Stuart, 1981)

|K.|> K, (3.15)
or
R='K’|>1 (3.16)
=X )

We calculated the ratio R in the cases of static
friction 7, defined in (2.2) and (2.3), assuming
a stress rate ¢ = const. In fig. 9, R is plotted for
sharp borders as a function of T for different
values of (7, — 7)/7, and y. As a general rule,
instability is favoured by small values of

T T

2.0 T T
(71‘70)/7'0:05\':, 7=t

150 i instability

instability ]

0.5 : ]

0.0l 1 L L L
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 10. Ratio R as as function of T for different values of (7, — 7,) / 7, and ¥ for smooth asperity borders. In-
stability is reached when the curves for R overpass the dashed line corresponding to R = 1.
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T; — Ty and large values of y. If yis large, the
friction decrease is fast and |K,| increases
rapidly: the instability condition is reached at
small values of 7. If the initial slipping patch is
very weak with respect to adjacent patches, the
instability takes place only when friction has a
relatively strong velocity dependence. Lower
values of Y may lead to instability when 7; — 7
is relatively small. The values measured in the
laboratory for 7y are usually less than 1072 so
that the corresponding curves are the most re-
alistic if laboratory results are extrapolated to
real faults. For asperities with smooth borders
(fig. 10) we note the same behaviour, but as a
consequence of the initial increase in |K|
shown in fig. 8b an instability can occur for
small values of 7, particularly if 7, — 1, is
small.

4. Conclusions

We have studied the instability conditions
on a fault by introducing an empirical constitu-
tive law for friction into a model for stable
frictional sliding under equilibrium conditions.
Under a uniform ambient shear stress, slowly
increasing with time, sliding starts in the weak-
est fault patch, being resisted by adjacent as-
perities. In its early stage, slip is stable and
aseismic at a fairly constant rate. As the slip
rate increases, friction decreases, resulting in
velocity weakening. In general, the instability
occurs when the rate at which friction de-
creases becomes greater than the rate at which
the applied stress must increase to produce an
advance of fault slip. The possibility that this
condition is fulfilled depends on the velocity
dependence and on the spatial distribution of
friction on the fault: instability is favoured by a
strong velocity dependence and by low
strength asperities. The results indicate the cru-
cial role played by friction inhomogeneity on a
fault. Fairly different results are found in the
two cases considered in this paper, sharp and
smooth asperity borders. While in the first case
some amount of slip is necessary before the in-
stability takes place, this condition may not be
essential in the second case.
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Let us consider a fault plane embedded in an infinite elastic medium with shear modulus g and Poisson
modulus v. Consider the x direction along the fault plane and let Ac(x, ) be the shear stress gradually released
by a dislocation process according to the equilibrium equation (e.g. Bilby and Eshelby, 1968)

Ao (x, 1) — HP

“wDEo

2A —a@y X— t:

E=0, |x| < a(t (A.1)

where D is a distribution of infinitesimal dislocations, each having Burgers’ vector bDdé andA=1orl-v

for antiplane or inplane deformation, respectively.

The Somigliana dislocation problem can be solved analytically by employing a solution technique based on
Chebyshev polynomials (Erdogan er al., 1973; Bonafede ef al., 1985). A detailed solution is given in Dragoni
(1990). Here only a few points are recalled. After making the change of variable

y=x/a (A.2)

where a is the dislocation half-width, the stress release Ao(ay, 1) on the dislocation surface (ly]<1)can be
expanded into Chebyshev polynomials of the second kind U,(y):

4N
Ao(ay, ) = 5 2 o, U,_, (y) (A3)
where
in n@
Up_y ) = %"3 (A4)
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with 6 = arccos y. The evaluation of the Chebyshev coefficients with Ao given by (2.5) yields in the case of

asperities with sharp borders:

sin2¢,
_2A
00=—(m-% o lsinm-1)¢ sin(+D)e
o 2sin —
2 n—1 n+1

where 7, and 1, are defined in (2.2) and

co(t)=[1—T(m§, 0<T<1

while in the case of smooth borders (Dragoni and Piombo, 1993):

ford <a(®) <D,

an(t) = _ifd{ g [Jn(92_) + Jn(e;) - 7[5n2 ] +2 [1,1(95) _In(eg) - ﬂén]
T d

Tl -0
5nl
=%

for a(t) 2 D,
o, () = %fd{[ln (6D —1, (09~ [1, (6:) 1, (6D}
+”iﬂfa {1, 60 +7,0m-1, 65+, (611}
+2A (4 - gy) {[In 6~ 1, (69 - 7
m
where

k=1, 6- Lsin2e

2
1, (0) = sin(k—=1)0  sin(k+1)0
k>1, =1 k+1
k=2, 6-Lginao
: 4
S (0) = sin(k—2)0  sin(k+2)6
k=2, =2 T k+2

8|

0i = arccos (i

)
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n>1

(A.6)

o—Ty+fd
—-—JT]} , A7)

(A.8)

(A.9)

(A.10)

(A.11)
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05 = arccos (i %) (A.12)

where 7, and 7, are defined in (2.3) and fis defined in (2.4). The slip amplitude u is then computed accord-
ing to

u@,n=a@\N1-y Y L0y ) (A.13)

n=1
where |y | < 1. In the case of sharp borders a(#) is given by
a(®) =d csc ¢(p (A.14)

where ¢ is defined in (A.6). In the case of smooth borders a(r) is obtained by inverting the expressions
for T:

T=F[g(¢2— cot¢z)—l], for d <a(® <D, (A.15)
T
2 [ €os ¢; — cos ¢2]
T=1-=|¢+F(—p)+ F—— "2 | for a() 2D, (A.16)
T sin ¢,
where
_d
F= =g’ (A.17)
¢, = arcsin % , (A.18)
0, = arcsin% . (A.19)

The slip rate v = i can be computed by differentiation of the series in (A.13) term by term. Its value at
x=0is

v0,9= Y HBOLa0LO (A20)

n
n=1

where, in the case of sharp borders,

cos2¢, n=1

b= s . (A21)
H 2cosn(pcos<psinn§, n>1
2
. T cosQ a’ ..
a(t) = = — 0; A22
=7 228 (A22)
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in the case of smooth borders, for d < a(®) < D

. A a(n) - " 27 o -
o, (l) = _ﬂ_ﬂfd{ T [‘,11(02) +Jn(62) - ﬂénl] - f_d 6111 0'} ’
L N_ T O d
a(t) - 2 T, — Ty COS ¢2 ’

for a(t) 2 D

_ 2
%ay=MA(f—“ %) 4 i@ sinnT cos ngy+ 225, &
i d Ja @ 2 u

+niﬂfa O{ [0+ 1,0D] - [ 1.0+ 1,09] } .

o d
T,— 1Ty COS@p,—cos¢;

am:%

(A.23)

(A.24)

(A.25)

(A.26)

The dot on symbols indicates differentiation with respect to time. No stress singularities are present in the

solution.
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