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Abstract

The aseismic sliding on shallow strike-slip faults, under the assumption of a non linear constitutive equation
(velocity strengthening), is here treated as a two-dimensional quasi-static crack problem whose equations are
solved numerically (boundary elements method). Results are compared with the corresponding one-dimen-
sional («depth averaged») model by a suitable choice of the effective stiffness of the fault. In the one-dimen-
sional case also the inertial term was taken into account in the evolutive equation. The current results are in
agreement with an earlier one-dimensional model for afterslip as long as the state variable evolution is ne-
glected a priori and friction depends only on velocity. In general, if the state variable is allowed to evolve, the
previous approximation is valid for velocity strengthening slipping section of faults extending down to several
kilometers in depth. For smaller sections of fault the evolution of the state variable affects the coseismic and
early postseismic phase and accordingly it cannot be neglected. Moreover, in the presence of rheological het-
erogeneities, for fault sections shallower than 1 km depth, the comparison between the two-dimensional and
one-dimensional models suggests the need to employ the two-dimensional model, possibly taking into account
inertial effects.

Key words fault rheology — upper stability transi- ments of controlled sliding between rock sam-
tion — crack models — afterslip — creep events ples (e.g. Dieterich, 1978, 1979) suggest that
friction depends on normal stress, slip rate and,
for time dependent slip-rate, on the slip his-

1. Introduction tory. This fading memory effect can be ob-
tained through one or two phenomenological

The aseismic slip which occurs on shallow parameters, called state variables, describing
faults after sudden changes in the stress state is the state of the sliding surface, which conse-
a transient process often detectable at the quently evolve during the sliding process.
Earth’s surface. The study of this effect can Starting directly from the laboratory observa-
provide a key to understand the general time tions obtained through controlled variation in
dependent behaviour of a fault and its rheology sliding velocity, it is possible to draw out (Rice
(e.g. Nason and Weertman, 1973; Wesson, and Tse, 1986) the one state variable friction

1988; Marone er al., 1991; Belardinelli and law originally studied by Ruina (1983). This
Bonafede, 1991, 1994). Evidence of aseismic law entails only a small deviation from the

sliding at the Earth’s surface allows us to ex- classic concept of kinetic friction (e.g. Rice
trapolate the results of laboratory observations and Gu, 1983), nevertheless this slight differ-
which necessarily involve small rock samples, ence is crucial in order to determine if the slid-
during short periods of time. Several experi- ing is stable or not. In other words, the stability
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Fig. 1. Spring-slider scheme.

of sliding is linked to the possibility of a rela-
tive change of the resisting traction on varying
the velocity and not to its absolute value. This
effect can be analyzed by comparison between
the evolution of a simple dynamical system
called spring-slider and the laboratory observa-
tions. A spring slider is a sliding block pulled
through a spring at a given velocity (fig. 1) and
in the comparison with laboratory experiments
the stiffness of the spring is thought to repre-
sent the elastic properties of the apparatus sur-
rounding the sample.

Non linear frictional laws have often been
employed in fault mechanics models such as
nucleation (e.g. Dieterich, 1992), seismic cycle
(e.g. Tse and Rice, 1986), and afterslip models
(Marone et al., 1991), whereby the instability
of sliding specimens of rock at laboratory scale
is identified with the earthquakes occurring on
real faults. According to the spring-slider stud-
ies in quasi static conditions (Belardinelli,
1994) two characteristic times inversely de-
pending on the applied velocity can be identi-
fied. This feature enables us to reproduce dif-
ferent time scales (provided that a time depen-
dent applied velocity is used) keeping the same
formal law: for instance in the mentioned ap-
plication to fault mechanics both the seismic
and aseismic behaviour in the same section of
the fault might be explained. For instance in
the case of the 1987 Superstition Hills (Cali-
fornia) earthquake, several records of afterslip
(till 5.5 years after the earthquake, Sharp,
1994, personal communication) and a non van-
ishing inferred slip at the Earth’s surface
(about 15% of the slip cumulated after 1 year)
at 1 minute after the earthquake (William and
Magistrale, 1989) suggest that both seismic

and postseismic slip occurred in the same shal-
low section of fault.

In the following, a two-dimensional quasi-
static algorithm for the solution of the constitu-
tive equation, namely the equation for friction,
and the equilibrium equation on the fault plane
will be introduced. The solution is numerical
and based on the discretization of the boundary
integral equation (boundary elements tech-
nique). In problems of shallow aseismic fault-
ing the proposed method allows us to simply
vary the assumed constitutive equations and
the rheological properties of the fault zone.
The quasi static post-seismic evolution in a
one-dimensional (depth averaged) model of
fault, whose analog system is a spring-slider
strongly perturbed from the stationary state,
can be obtained by the same method as a par-
ticular case. Both the results from the two-di-
mensional and one-dimensional model have
been obtained using the non linear frictional
law of Ruina (1983). In the latter simpler
model the inertia effect has been taken into ac-
count (dynamic evolution) and results are com-
pared with the one-dimensional quasistatic
model of Marone et al. (1991).

2. The state and velocity dependent
constitutive laws

The friction laws depending non linearly on
velocity and on the state variable in the Ruina
(1983) formulation are given by

5

TreS=T*+Alog(‘f)+9 2.1

y_ =& 5
0_—L—[9+B In (7)} 2.2)

*

where the dot means differentiation with re-
spect to time, 7« and V. are reference values for
friction and slip rate respectively and A and B
are parameters depending on depth through
pressure, temperature and composition, L is a
characteristic length for slip. Dividing by the
values of the normal traction o, and using the
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classic second Admonton’s law (e.g. Scholz,
1990) we can define a friction coefficient u=
Tres/ 0, Where two adimensional parameters ap-
pear: a = A/o,, b = B/0,, which are often re-
garded as independent from normal traction
and velocity. On the other hand a and b vary
sensibly with temperature: for instance a — b at
room temperature is generally negative and
then the friction at steady state

T55(8) = T g con = (@— b, In (6/V2) + .
(2.3)

decreases with velocity (velocity weakening). If
T > 300 °C, a— b becomes positive and then
7% increases with velocity (velocity strength-
ening) (see e.g. Tse and Rice, 1986). The ve-
locity strengthening materials are linearly sta-
ble, that is they are stable with respect to small
perturbations, whereas the velocity weakening
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materials can be unstable if the surrounding
media have a small enough elastic stiffness
(e.g. Gu et al., 1984). Then a sign change in
a—b and then in A — B represent a transition in
the stability properties. In general the scaling
of the frictional parameters from the laboratory
to crustal conditions is still a problem. Figure 2
shows the a and b profile as a function of
depth used by Rice (1993): two important tran-
sitions in the rheological properties are evi-
dent: the thermally activated, so called (Scholz,
1990) lower stability transition, from velocity
weakening to velocity strengthening at a depth
around 10-15 km, and the upper stability tran-
sition, shown at about 2 km depth in fig. 2, due
to the presence of shallow unconsolidated sedi-
ments (Marone et al, 1990). The depths of
these transitions correlate respectively with the
cut-off of seismicity at medium crustal depth
and at shallow depth in the case of faults with
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Fig. 2. Depth dependence of the difference a — b inferred from laboratory observations at different tempera-
tures and using the San Andreas geotherm (on the left) and theological profiles adopted by Rice (1993) (on the
right) where the a distribution is arbitrary but compatible with data.
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«well-developed» gouge (Marone and Scholz,
1988). The latter is an interesting topic since as
we already noticed the sliding instability is as-
sociated with earthquake nucleation. In the fol-
lowing we will restrict our attention to the ve-
locity strengthening region above the upper
stability transition, which generally arrests the
seismic rupture (e.g. Scholz, 1990) and where
the traction concentration created by the earth-
quake is mainly released aseismically through
afterslip, as noted since Smith and Wyss
(1968). The velocity strengthening properties
of a shallow section of fault after an earth-
quake, may also be ascribed to the experimen-
tally observed frictional behaviour at high slip
rate and low normal stress (Shimamoto, 1986;
Kilgore et al., 1993).

3. Crack models for aseismic forced slip

We consider the geometry shown in fig. 3:
following an earthquake some aseismic slip &
occurs in the superficial part of a strike-slip,

horizontally unbounded, vertical fault, extend-
ing down to a depth x = A, the Earth’s surface
being assumed free. In order to obtain the post-
seismic creep, the following set of equations
for the time dependent distribution of slip
O (x, 1) has to be solved (e.g. Wesson, 1988)

Toxt (%, 1) + Ty (%, 1) = Ty (5, 6, x, 1) 3.1)
a d0(x’, 1) dx’
u
is 7t = - — 32
T () 21 o J.—a ox’  x'—x 3.2)

where § indicates the principal value of the
integral, 7. is the friction traction expressed as
a function of the slip, slip rate, etc. through the
constitutive equation, 7, is the traction applied
to the superficial part of the fault in the ab-
sence of postseismic slip, and 7 is the trac-
tion created by the postseismic slip or «self-
traction» and is expressed by the boundary in-
tegral equation in a quasi-static crack formula-
tion. In problems dealing with postseismic ef-
fects, the application of the external traction
due to the earthquake occurrence, say at ¢ = 0,

/

Fig. 3. Geometry of the problem.
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is generally modeled as a time step function
Tew=AT'U (¢) (e.g. Rice and Gu, 1983).

The solution of (3.1) (3.2), together with the
appropriate constitutive equation provides at
each instant of time the slip, the self-traction
and the slip-rate in each point of the fault. If
the constitutive equations are given by (2.1)
(2.2), the obtained set of equations is non lin-
ear and the numerical solution is the only fea-
sible solution. The numerical solution here
adopted consists of a spatial discretization of
the unknown functions: the slipping section is
divided into n «nodes», namely n horizontal
strips AS” (fig. 3), so narrow that on each of
them the slip &’ is assumed to be constant. In-
dicating also the discretized tractions with an
apex referring to the fault node where they are
defined, the set of eq. (3.1) (3.2) becomes

T (1) + Tl (1) = Tl (81 (1), 87(2), 1)

T =Y S, 8 (3.3)

i=1

where the influence matrix S; has been ob-
tained by Dieterich (1992) in order to study the
earthquake nucleation process on the surface of
a two-dimensional, symmetric, plane crack
with half-length A.

S; = pn 1 +
2rh | (i—-j*-1/4

1 1
(1‘5”)[”]'-3/2 " i+j—5/2]}’

Lj=1,2, ..., n.
(3.4)

For the antiplane case the use of this tensor al-
lows us to keep the free surface condition in
the first node. Further details of this numerical
solution are discussed in Appendix A.

When n = 1 the set of eqgs. (3.3) and (3.4)
becomes the equation of motion in the quasi-
static case of a spring-slider (fig. 1) subjected

to a friction 7,., and pulled at a certain velocity
Vo = Texi/|S11] through a spring with constant
k =18y1l, 6 being the displacement. As far as
quantities in the case of the n = 1 node algo-
rithm are concerned, the apex for the node will
be omitted. For n = 1, at high slip rates & > V.,
where V., is a limiting velocity, with the current
program it is possible to take into account also
the inertial term in the spring-slider equation:
in this case the following equation replaces
(3.3) .

MmE= Toe () + 1 80— 15, (5(1), 1), 6>V,
3.5)

where for 6 > V. one assumes 7, (8, 9, 1=
Tres = T — 0~ A In (V,/V.)/k, with 6 = — (6/L)
[6+B In (V./V] (Boatwright and Cocco,
1994), and m = S, (T;/2%)*, where T; is a vi-
bration period of the analogous freely slipping
system (Rice and Tse, 1986).

As hinted in the introduction, the spring-
slider, and then the present n = 1 model, is
equivalent to a one-dimensional quite sche-
matic model of fault since much interest-
ing physics is lost in this reduction (Rice and
Gu, 1983). A fault model with distributed dis-
placement such as the present one with n > 1
nodes, is called two-dimensional since it is able
to produce displacement fields depending on
two space variables (in the present antiplane
case the distance from the fault and the depth).
A one-dimensional model of fault, such as the
n = 1 model, considers only a mean value or a
«physically representative» value of the slip
distribution on the fault plane so that at most it
can provide the evolution of the corresponding
value of the displacement field, which turns out
to depend only on the distance from the fault;
moreover we will see in the following that this
is not true in general. Basically in the one-
dimensional seismological applications (e.g.
Dieterich, 1986), each parameter distribution is
substituted with its mean value on the fault
plane, and eq. (3.2), which represents the elas-
tic interaction between a slipping zone and its
surroundings, is substituted with an approxima-
tion of it. The latter is a relation of mere pro-
portionality between the mentioned physically
representative quantities (indicated between
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angular brackets «<>»), such as mean values or
maximum values of the actual distribution on
the fault plane

< Ty > =k< 0>, (3.6)

where the constant of proportionality & will be
called effective stiffness of the fault model. In
the n = 1 model the effective stiffness of the
fault is Sy;, which represents the constant of
proportionality between the modulus of the
traction drop and the averaged slip of a crack
where the same traction drop is uniform; ac-
cordingly this model as it stands could in prin-
ciple provide the evolution of the mean value
of the slip on the fault plane (depth averaged
model). We will see in the following that if the
traction drop distribution is non uniform, then
a one-dimensional model, where the stiffness
computed assuming a uniform stress drop is
used, cannot reproduce the results of a two-di-
mensional model.

The effective elastic stiffness of the fault
model simplifies the analogy between a one-di-
mensional model of fault and the spring-slider,
providing a link between the forcing factor of
spring-slider dynamics (the load point velocity
Vo, see fig. 1), to that typical of fault mechan-
ics (the distribution of external traction), as fol-
lows

T = KV, . 3.7

The model by Marone et al. (1991) to
which the results of the n = 1 procedure will be
compared, is an example of a one-dimensional
model for afterslip. It is a depth-averaged
model, so that the quantities involved (between
angular brackets) are supposed to be represen-
tative of depth averaged values. The superficial
section of a fault, extending down to a depth A
(above the upper stability transition) is as-
sumed to be velocity strengthening. The part of
the fault plane at greater depth undergoes a
strong variation in velocity from a high value
Vr during the earthquake, to a low value
(Vo = V) after it, and accordingly at the base
of the velocity strengthening section, a coseis-
mic slip &, is assumed. Due to the elastic cou-
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pling between different parts of the fault, the
upper part also undergoes a slip-rate variation
with a coseismic slip &,. Subdividing the slip §
in postseismic &, (whereby the secular part Vyr
was subtracted from it) and coseismic &,, it is
easy to conclude that

lim 6=50+6p U(t—Td)=6OC

t—>oc0

(3.8)

from which the trivial result that in a place
with a greater amount of coseismic slip at
the surface, then less postseismic slip occurs
(see e.g. the Superstition Hills earthquake in
William and Magistrale, 1989).

4. The one-dimensional model

4.1. Comparison with a previous model
at steady state

In the following the n = 1 algorithm will be
compared with the one-dimensional afterslip
model by Marone et al. (1991) that will be in-
dicated from now on as «MSB91». I recall that
a one-dimensional model of fault, like MSB91
or the present model for n = 1, is described by
the same equation as a spring-slider in qua-
sistatic conditions. By use of (3.7) a step in ex-
ternal traction corresponds to a squared im-
pulse in the loading point velocity of the
spring-slider

Vg ,1t<0
VO (t)= VT ,OSt<Td (41)
Vo ,t2T,

where V> Vg and T, is the earthquake dura-
tion. Then the coseismic slip at the base of the
fault and in the sliding section are &y, = VT,
and &, = O(T,) respectively.

The effective stiffness of the fault in
MSBI1 is assumed in the form k = pt/h and the
system is equivalent to a spring-slider subject
to a friction law given by (2.1), (2.2) with A >
B, and with a load point velocity V(z) given
by (4.1) applied to a spring with elastic con-
stant k. In the comparison I kept the effective
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stiffness k = 11/h adopted in MSB91 in place of
k=S| =2u/mh of the n = 1 algorithm. The
mean value of the parameter A — B over the
depth 2 is <A - B > = (a - b)o,h/2, assuming
a uniform gradient in normal stress o,. In the
following, dealing with the one-dimensional
model, the angular brackets will be omitted
and the specified value of A and B will be im-
plicitly understood as a depth-averaged value.
Accordingly by varying the values of & we
may obtain a variation of A, B, k, such that an
increasing h implies a linear increase of A and
B and a decrease of k. In the following in most
cases the values of A and B will vary with
varying & and keeping fixed the values of o,
a and b. The spring-slider equation is solved as
in MSB91 in quasi static form, neglecting the
inertial term.

We will refer mostly to the following pa-
rameters values

L=10mm, a-b=0.001-0.01, y =10 bar
Vi=Vy=2mmlyr, V;=0.2m/s, T,=[0.5-1]s

0, =150 bar/km, 7.=0
4.2)

which are also the values most frequently used
in MSB91. As an initial state we assume
6(0) = Vi = Vs and 6(0) = 0, accordingly the
system is assumed in an initial stationary state.
Since in MSB91 the value of » or a is not
specified (they only specified the difference
a — b), a value b = 0 was assumed and then
B = 0. Allowing a non vanishing (arbitrary) value
of B the agreement with MSBO91, based on esti-
mates of coseismic slip, noticeably gets worse.
As we will see in the following, for B # 0 the
evolution tends to differ from the evolution for
B =0even if A — B and the other not specified
parameters are the same, and the main differ-
ence occurs indeed near the coseismic stage. It
is then necessary in general to specify the
value of both the rheological parameters, and
not only their difference, in order to univocally
determine the evolution. Actually the case B=0
here considered is a very particular one: the
friction reduces to a «viscous» term depending
only on velocity, and, starting from stationary
conditions as in the present case, the state 0 is
constant with time. Accordingly in the case
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B =0, for our initial conditions, the state vari-
able evolution is excluded a priori, namely the
steady state condition is fulfilled.

Belardinelli (1994) found the exact solution
for the spring-slider corresponding to the forc-
ing term (4.1), in quasi static conditions, if the
state can be assumed constant or, at least if its
variation is such that it does not affect the Sys-
tem evolution, as when A > kL. This solution,
denoted «ESS», will be used for testing the
present numerical solution for B =0 and ¢ > 7.
The logarithmic law proposed by Scholz
(1990) and used in MSB91 in steady state con-
ditions is an approximation of this solution,
holding for time small with respect to Tgg =
(A - B)/kVs, the transient duration in this con-
dition. This solution will be denoted as «L.SS».
For the three different values of 4 shown in
fig. 4, the discrepancy between the numerical
model and ESS is much smaller than between
the numerical model and LSS: in the first case
r, the ratio between the root mean square and
the maximum plotted displacement, is about
1075 (the difference between ESS and the nu-
merical postseismic slip accordingly would not
be detectable in fig. 4) whereas in the second
case r =~ 10”2, and the discrepancy increases
with time.

If T, is fixed as well as the other not explic-
itly varied parameters, some results by MSB91
can be summarized as follows: 1) if k de-
creases, the «slider» starts to move late with
respect to 7,; (when the «spring» starts to relax)
and the coseismic slip tends to disappear, at the
same time the postseismic slip, say the slip at
one year after the earthquake, increases due to
the complementarity relation (3.8); after the
disappearance of the coseismic slip, for a fur-
ther decrease of k the postseismic slip. i.e. the
total slip at 1 year, also decreases; 2) similar
effects are produced with increasing A — B. If
both A — B and k are varied through the varia-
tion of the parameter % (I recall that both the
parameters depends on 4 in the MSB91 model)
the transient duration Ty of the process at
steady state varies with the square of 4 and ac-
cordingly in steady state conditions the effects
(1) and (2) strengthen very fast so that beyond
a certain value of depth extension & = h, the
total disappearance of the coseismic slip oc-
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Fig. 4. Slip histories (solid lines) at steady state (B = 0) for different values of &, compared to the closed-form
law LSS (dashed and dotted lines) for afterslip suggested by Marone et al. (1991). The following relations
were used: k = u/h, A = ac,h/2. T;= 0.5 s b =0 (steady state), and a = 0.005 (the other parameters have the
values specified in eq. (4.2). In all the represented curves the coseismic displacement (¢ = 0) was computed nu-
merically with the present model.

curs, and similarly beyond a depth extension shown in fig. 5a where there is a small value of
hs > hy the postseismic slip after one year has h and then also T is short i.e. the system evo-
decreased. In fig. 5a-f we can see in particular lution is rather fast. The dependence of coseis-
the effect of varying the & value on the coseis- mic and postseismic slip on the parameter 4 is
mic slip of the system. In each case the coseis- summarized in fig. 6a where we may note the
mic peak in velocity is evident, and an atten- disappearance of the coseismic slip at a value
dant coseismic slip occurs only in the case h; comparable with that obtained by MSB91
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(~ 1.2 km). The decrease in postseismic slip
occurs beyond A3 ~ 2 km and seems to be more
drastic than in MSBO91.

4.2. Inertia and state evolution effects

Figure 6a was obtained without taking into
account the inertial effect, since the limiting

[} N N N N N
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< 704
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velocity used is V. = 1 m/s, a value too high to
be reached by the system. If the inertial effect
is enabled, keeping the same conditions used in
the previous section and switching the limiting
velocity V. to a lower value (fig. 6b), a total
disappearance of postseismic slip occurs if the
sediments thickness is less than 4, ~ 0.9 km.
The latter value is higher than the value de-
clared in MSB91 (0.5 km) where inertia is not
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Fig. 5a-f. Slip and slip rate as functions of time numerically determined in the cases of fig. 4: (a,b) & = 0.9
km, (c,d) A = 2.5 km, (e,f) h = 4.5 km. The dotted line indicates t=T7T,=0.5s.
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Fig. 6a,b. Slip 6 as a function of the sediments
thickness at one year after the earthquake (curve
marking the upper boundary of the light gray area)
and at 1 = T, (curve marking the upper boundary of
the dark grey area). B=0, T, = 0.5 s, a = 0.01 and
T= 27[\/m/k =5s,(a) V, =1 m/s (non inertial evo-
lution) and (b) V, = 0.1 mm/s (inertial evolution)
and T; =5 s (Rice and Tse, 1986). The other param-
eters have the values specified in (4.2). The load
point displacement is then 6y, = 10 cm.

taken into account, on the contrary the thick-
ness h; is not altered by inertia introduction. In
fig. 6b the slip, and particularly the coseismic
one, is greater than in fig. 6a and it is evident
that for the least thicknesses represented the
slip may overcome &,., due to the so-called
phenomenon of overshooting, where the equi-
librium point of the spring is overcome by the
slider with compression of the spring. It was
not possible to lead the computation to thick-
nesses less than those shown in fig. 6a,b due to

the very short times that characterize the tran-
sient of the evolution in these cases, where it
cannot be distinguished from a real instability.
The insertion of terms of damping due to seismic
radiation emission (Rice, 1993) in the tractions
balance (eq. 3.1) is likely to allow a computation
also at low values of A, by subtracting energy to
the system and making its evolution slower.

In the comparison with MSB91 the state
variable evolution was ignored by putting B = 0
(see eq. 2.2) even if in the same model this
hypothesis is not made explicitly. As already
hinted, if B is not kept to a null value the esti-
mate of coseismic displacement could vary
with respect to what can be inferred for in-
stance from fig. 5a-f. Due to the state variable
evolution for B # 0, even if A — B is the same,
the system does not follow exactly the forcing
term as in the case B = 0 when only the coseis-
mic velocity peak at T, is evident and, as one
can see from fig. 7e-f, a further peak in veloc-
ity during the postseismic phase may appear.
On the base of the considerations developed in
Appendix B, assuming that in the postseismic
phase the slider velocity is much greater than the
loading point velocity so that the latter is negligi-
ble, and that the coseismic phase occurs at steady
state, one can see that in order to have a maxi-
mum in velocity during the postseismic phase, ir-
respective of A — B, it is necessary that

KLIB <y, = In (Vi/Vy), if V; > Vi (4.3)

which implies that B must be greater than a fi-
nite value: by assuming Vs = 2 mm/y, V= 0.2
m/s and the effective stiffness used in MSB91,
the previous condition entails B > [1/h(km)] X
4.5 x 107 bar. This «delayed» maximum is
strictly linked to the state variable evolution
and is closely followed by a marked minimum
of 6 (fig.7a,b). The instant of the maximum oc-
currence during the postseismic phase depends
on the value of B, A and k and in particular it
increases with increasing B and/or increasing
Alk. If the delayed peak occurs the coseismic
peak reaches a lower, if not null value with re-
spect to the case B ~ 0 with the same A — B. In
fig. 7a-f we can observe an extreme case (for
very low values of a — b and b) where increas-
ing B, with A — B fixed, the coseismic peak in
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Fig. 7a-f. State, displacement and velocity evolution for k = 8.3 x 10° bar/km, T,=0.5s witha—-b=1x 1073
fixed, with varying a: a =2x 107 (a, c, e), a = 4 x 107% (b, d, ). The value of the other parameters involved
is specified in (4.2).

velocity and then the coseismic displacement der to compute the mean slip and slip rate and
disappears (fig. 7d-f). compare them with the results of the one-di-
mensional («1-D») model, where the same
mean values of A and B were kept. The param-

5. The two-dimensional model ‘ eters A and B in the egs. (2.1) and (2.2) are as-
sumed to depend on depth whereas L, 7. and

The model with distributed displacement, V. are assumed uniform on the fault for the
i.e. with n > 1 nodes, is finally employed in or- sake of simplicity. In the present case, we as-
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sume a uniform external traction on the fault
plane and the temporal step function is simu-
lated through two ramps with different slope,
as follows

.. T ,t<T,
T (D) =1 , i=12,.,n (5.1
(N -

where 7; is such that the negative traction drop
on the postseismically slipping section AT’ =

OTd tl.dt due to an earthquake which occurred
nearby, is a fraction (~ 0.05 - 0.5) of the trac-
tion drop due to the earthquake in the coseis-
mic region (~ 100 bar).

Only if the distributions of A and B are uni-
form it is possible to obtain comparable mean
values of slip and slip rate from the 1-D and
the two-dimensional («2-D») models, provided
that the effective stiffness | S, | in place of wh
is used (Belardinelli, 1994). The same occurs if
the superficial displacement is compared with
the 1-D model and an effective stiffness (/2h

"V//' o

150t #H :
(4)

200 I
0.0 0.2 0.4 0.6 0.8 1.0
5/ 6

1 1

max

is used; the latter is the appropriate one for this
case according to crack theory. This value is
half the spring stiffness used by MSB91 and
represents exactly the constant of proportional-
ity between the maximum displacement and
the uniform stress drop in an antiplane crack. I
suggest that this expression of the stiffness is
more appropriate than that used by Marone et
al. (1991) if one is interested in the comparison
between the model output and the superficial
afterslip, at least in a crack context. For in-
stance, the estimates of the stress drop realized
aseismically through superficial afterslip can
be changed by a factor of two with respect to
those given by MSB91, by changing the stiff-
ness in the mentioned way.

On the contrary, if heterogeneous profiles of
A and B are used, the model with # > 1 nodes
is obviously more accurate than the 1-D model
and moreover the averaged slip and slip rate of
the former model differ from the slip and slip
rate given by the latter one. In fig. 8a we show
the slip distribution on the fault plane for the
profile of A and B represented in fig. 8b, where

200

A, B (bar)

Fig. 8a,b. Slip snapshots (a) for the rheological vertical profile shown in (b) where A (x) is the solid line and
B(x) is the dashed line. n = 33 nodes were used, AT = 5 bar, 75 = 3.1 x 107° bar/s, L = 1 mm. The times of
figure (a) are: 0.2 days (A), 0.3 days (B), 0.4 days (C), 0.6 days (D), 0.7 days (E), 1 day (F), 1.3 days (G), 1.7
days (H), 2.3 days (I), 3 days (L), 23-30 days (M). Slip,,, is 22.4 mm.
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Fig. 9a,b. For the same case illustrated in fig. 8a,b: slip (a) and slip rate (b) at the Earth’s surface (thin lines)
and their averaged values on the fault plane (thick lines) with a two-dimensional model (dashed lines) and a
one-dimensional model (solid lines). In the one-dimensional model the averaged slip (thick, solid line) and the
superficial one (thin, solid line) are obtained with the corresponding suitable effective stiffness (see text).

a small velocity weakening section near the
surface is evident and below it the rheology is
velocity strengthening. This rheological profile
is chosen arbitrarily but the adopted values of
A and B are generally in agreement with those
shown by Kilgore er al. (1993) taking into ac-
count a very low normal stress (about 5 MPa)
such as that near the Earth’s surface. The cor-
responding slip and slip rate at the Earth’s sur-
face and their mean values on the fault section
as functions of time are represented in fig.
9a,b. Here they are compared with the results
produced by the 1-D model with n = 1 and k =
[S11l, k& = w/(2h) respectively, assuming the
mean values of A(x) and B(x). It is clear that
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the details of the evolution at the Earth’s sur-
face cannot be reproduced by the 1-D model
even if a suitable stiffness according to crack
theory is used, nor the «depth averaged evolu-
tion» on the fault is in agreement with the 1-D
model, at least during the transient stage. For
instance the peak in velocity due to the state
variable evolution (in the 2-D model this is the
second peak in the velocity at the Earth’s sur-
face, since the first one is due to the fast relax-
ation of the weak, shallow part of the fault) is
predicted by the 1-D model always at times
later by an order of magnitude with respect to
the 2-D model.
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6. Discussion and conclusions

Some proposed models of afterslip (Scholz,
1990, MSB91) assumed that the state variable
can be regarded as a constant during sliding.
Accordingly, in this case friction would depend
only on the instantaneous velocity. The steady
state spring-slider evolution depends on the
difference A — B and not on the separate value
of A and B. Even if the state varies with time
but A > kL, then the system evolution depends
only on the difference A — B and can be re-
garded as equal to that for B = 0, 0(0) = 0,
and/or 0 (0) = 0, provided that A — B is substi-
tuted to A (Belardinelli, 1994). Moreover the
parameter A — B is simpler to be determined
experimentally than the separate values of A
and B (e.g. Kilgore et al., 1993), and indeed
the linear stability analysis for the spring-slider
can wholly be defined through the specifica-
tion of the parameters A — B, L and k. Perhaps
for these reasons often in models such as
MSBOI1 only the difference A — B is specified.
Nevertheless, as far as a strongly perturbed
system is considered (e.g. Rice and Gu, 1983)
the role of both rheological parameters become
significant during its evolution.

The condition A > kL for which the state
evolution can be ignored since it does not af-
fect the slider evolution, referring to values
similar to those in (4.2), is equivalent to having
a value of h greater than about 1 km, where h
is the thickness of the section involved in
aseismic slip or the shallow velocity strength-
ening layer of the sediments. In general, if the
previous condition is not met, as during tran-
sient processes in thin fault sections (creep
events, e.g. Wesson, 1988), the state evolution
is meaningful and can lead to a delayed effect,
such as the velocity peak appearance during
the postseismic phase. In this case the whole
set of egs. (2.1) (2.2) in the Ruina friction law
has to be taken into account and a model of
such a kind of process could in principle give
some constraints on the parameter values in
this constitutive equation. If the state variable
evolution is not properly taken into account,
coseismic quantities such as slip and slip-rate
may be overestimated, above ‘the real values
(fig. 7a-f). At the same time, the inertial term

of the evolving equation can also play an im-
portant role in the estimates of coseismic quan-
tities (see MSB91) and if this term is not taken
into account, they may be underestimated (fig.
6a,b).

The steady state assumption, on the con-
trary, is valid for the afterslip processes sug-
gested by the common use of the term, where
the sliding section can be expected to extend
within the first kilometers of sediments (see
e.g. Crook, 1984). Then for the afterslip pro-
cesses the evolution does not differ from what
can be obtained with a «viscous» constitutive
law, logarithmic in velocity, which some
weeks after the earthquake can be well repro-
duced by a linear relation between slip rate and
resistant traction, as that used in Belardinelli
and Bonafede (1991, 1994).

Moreover, as seen at the end of the previous
section, the study of transient creep on shallow
faults where the state evolution may be signifi-
cant, especially if a heterogeneous distribution
of the rheological parameters is assumed, can-
not be well approximated by a one-dimen-
sional model even in a depth-averaged sense.
Previously, a two-dimensional study of nucle-
ation processes was compared with the results
of a one-dimensional or «patch» model (Die-
terich, 1992), and a good agreement was
found, however, in that case only random het-
erogeneities in the initial state of traction were
considered. Since rheological heterogeneities
can be expected in real fault surfaces (cfr. e.g.
Boatwright and Cocco, 1994; Rice, 1993), the
analysis of a relaxation process on a shallow
fault section should rely upon at least a two-di-
mensional model in order to correctly estimate
the transient features of the process.

In conclusion: a two-dimensional numerical
algorithm for the study of the aseismic slip on

~ a shallow strike-slip fault was presented and in

particular a non linear friction law was consid-
ered. The method consists of a spatial dis-
cretization of the fault plane in several
«nodes». When used with only one node and
with a homogeneous distribution of traction on
the crack surface, it directly supplies the mean
displacement on the fault plane as in a one-di-
mensional model of fault. The current results
are in agreement with the one-dimensional
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model of Marone et al. (1991) as long as the
state variable evolution is neglected a priori
and friction depends only on velocity. In gen-
eral if the state variable is allowed to evolve,
the latter condition is not fulfilled unless the
slipping section extends down to several kilo-
meters in depth. If the state variable evolution
is not negligible, then for instance the coseis-
mic slip is lower with respect to steady state
conditions, due to the fading memory effects
induced by the same state variable. Moreover,
the difference between a one-dimensional and
a two-dimensional model are shown in the
presence of rheological heterogeneities. In this
case the former cannot reproduce the results of
the latter, nor as far as depth averaged vari-
ables are concerned. Accordingly, in order to
correctly simulate the evolution of fault sec-
tions shallower than 1 km depth, a two-dimen-
sional model, possibly taking into account the
inertial effects, is suggested.

Acknowledgements

Profitable discussions with John Boat-
wright, Massimo Cocco and Maurizio Bona-
fede are gratefully acknowledged. Thanks to
Istituto Nazionale di Geofisica (Rome) for sup-
port and to Massimo Bacchetti for technical
help. Work performed with financial contribu-
tion from MURST.

REFERENCES

BeLarpiNerns, MLE. (1994): Rilassamento postsismico e
struttura reologica delle faglie superficiali. Modelli in-
terpretativi basati sulla teoria delle fratture, Tesi di
Dottorato di Ricerca, University of Bologna.

BeLarDpiNeLL, MLE. and M. BoNAFEDE (1991): A crack
model of afterslip on shallow faults, Geophys. J. Int.,
106, 521-530.

BeLarpivern, MLE. and M. Bowarepe (1994): Rheology
heterogeneities on fault surfaces inferred from the
time history of afterslip events, Geophys. J. Int., 116,
349-365.

Boarwricht, J. and M. Cocco (1994): The effect of lateral
variations of friction on crustal faulting, Annali di
Geofisica, 37, 1391-1413 (this volume).

Crook, C.N. (1984): Geodetic measurements of the hori-
zontal crustal deformation associated with the October
15, 1979 Imperial Valley (California) earthquake,
Ph.D. thesis, University of London.

Drerericu, J.H. (1978): Time dependent friction and the

1447

mechanics of stick-slip, Pure Appl. Geophys., 116,
790-806.

Dieterich, J.H. (1979): Modeling of rock friction, 1. Exper-
imental Results and constitutive equations, J. Geophys.
Res., 84, 2161-2168.

Dieterich, J.H. (1986): A model for the nucleation of earth-
quake slip, in Earthquake Source Mechanics, M. Ewing
series, edited by S. Das, J. Boarwricnt and C.H. ScroLz
(Am. Geophys. Union, Washington, D.C.), vol. 6
37-47.

Dieterich, J.H. (1992): Earthquake nucleation on faults
with rate- -and state-dependent strength, Tectono-
physics, 211, 115-134.

Gu, J.C., JR. Ric, AL. Ruwa and S.T. Tse (1984): Slip
motion and stability of a single degree of freedom elas-
tic system with rate and state dependent friction, J.
Mech. Phys. Solids, 32, 167-196.

KiLcore, B.D., M.L. Brampiep and J.H. DiETERICH (1993):
Velocity dependent friction of granite over a very wide
range of conditions, Geophys. Res. Lett., 20, 903-906.

Marong, C. and C.H. Schorz (1988): The depth of seismic
faulting and the upper transition from stable to unstable
slip regimes, Geophys. Res. Lett., 15, 621-624.

Marong, C., C.B. Rateicn and C.H. ScuoLz (1990): Fric-
tional behaviour and constitutive modeling of simu-
lated fault gouge, J. Geophys. Res., 95, 7007-7025.

Marong, CJ., C.H. Scrorz and R. Brsam (1991): On the
mechanics of earthquake afterslip, J. Geophys. Res., 96,
8441-8452.

Nason, R. and J. Weertman (1973): A dislocation theory
analysis of fault creep events, J. Geophys. Res., 78,
7745-7751.

Press, W.H., B.P. FLanNERY, S.A. TeukoLsky and W.T. VET-
TERLING (1989): Numerical Recipes - The art of scien-
tific computing (FORTRAN version) (Cambridge Uni-
versity Press, Cambridge).

Rice, J.R. (1993): Spatio-temporal complexity of slip on a
fault, J. Geophys. Res., 98, 9885-9907.

Ricg, J.R. and J. Gu (1983): Earthquake aftereffects and
triggered seismic phenomena, J. Geophys. Res., 121,
187-219.

Ricg, J.R. and S.T. Tsk (1986): Dynamic Motion of a single
degree of freedom system following a rate and state
dependent friction law, J. Geophys. Res., 91, 521-530.

Ruma, A.L. (1983): Slip instability and state variable fric-
tion laws, J. Geophys. Res., 88, 10359-10370.

Scuorz, C.H. (1990): The mechanics of earthquakes and
faulting (Cambridge University Press, Cambridge).

Sumvamoto, T. (1986): A transition between frictional slip
ductile flow undergoing large shearing deformation at
room temperature, Science, 231, 711-714.

Smith, S.W. and M. Wyss ( 1968): Displacement on the San
Andreas fault subsequent to the 1966 Parkfield earth-
quake, Bull. Seismol. Soc. Am., 58, 1955-1973.

Tse, S.T. and J.R. Rick (1986): Crustal earthquake instabili-
ties in relation to the depth variation of frictional slip,
J. Geophys. Res., 91, 9452-9472.

Wesson, L.R. (1988): Dynamics of fault creep, J. Geophys.
Res., 93, 8929-8951.

WiLLiam, P.L. and H-W. MagistraLE (1989): Slip along su-
perstition hills fault associated with the 24 November
1987 Superstition Hills, California, earthquake, Bull.
Seismol. Soc. Am., 79, 390-410.

>



Maria Elina Belardinelli

Appendix A

In this appendix I illustrate the numerical solution to the set of eqgs. (3.3) where 7, is expressed by some
constitutive equation in terms of 6 and 8. If

i) = 2 Si; 89(2) (A1)
j=1
j#i

were known in each node, eq. (3.3) would be reduced to a set of first order decoupled differential equations for
the slip &' at each node and from the first of (3.3) (in the following referred as constitutive equation) we would
obtain the slip and the friction traction at a certain instant of time in each point of the fault. Actually, in the
current problem 7/(t) is not known a priori and it must be determined together with Ty taking into account the
second equation of (3.3), here called boundary integral equation. This can be done following the method
adopted by Dieterich (1992) and based on a cycle of iterations, shown in fig. Al.

time cycle
k=0, 7] = 4(t — At)
PREDICTOR
CORRECTOR
CYCLE
space cycle
r
: 4
|
|
Lo
t=1t+ At
k=k+1 Td(t):‘rd”
) =r]! 8(t) = 6
| 5(t) = 8

space cycle

,
ALl

over the whole grid?

Fig. Al. The predictor-corrector cycle used to solve the set of equations (3.3). «<CE» = constitutive equation;
«BIE» = boundary integral equation. k is the counter index of the «predictor-corrector» cycle.
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Fig. A2. Comparison between the numerical model with 7 = 33 nodes (solid line) and the semi-analytical
model (dashed line) by Belardinelli and Bonafede (1991) with a truncation order M = 90, for the post-seismic
superficial slip with J,,, as a final displacement. A contrast of viscosity of two orders of magnitude passing
from the superficial half part of the fault (with low viscosity) to the deeper one, is assumed. Time is scaled by
means of a characteristic time T = 4zwoy/a, where o is the constant of proportionality between friction and
slip-rate and scales with the mean viscosity on the fault.

The method followed is called predictor-corrector because it starts with a trial prediction on the value of
the self-traction at a certain instant of time 7if, i = 1, ... n, from this the value 7/, is obtained and put in the
constitutive equation (dashed block in fig. A1) in order to get the slip at the first (k = 1) iteration, the latter is
substituted in the boundary integral equation in order to obtain a second estimate of the self-traction Tl i=1,
... n. If the second estimate does not coincide with the initial estimate, the latter becomes the initial estimate
for the subsequent iteration (k = k + 1). The iteration cycle is left when 7.l (f) = 7i/l, i = 1, ... n within a certain
precision, then the variable values are up-to-date and the algorithm goes to the subsequent instant of time.

This kind of solution can obviously be used with constitutive equations different from (2.1) (2.2), by sim-
ply changing the dashed block in fig. Al. If, for instance, in the first of (3.3) a viscous friction is considered as
in Belardinelli and Bonafede (1991)

T < 078D, i T )+ Th (1) > ¥ (A2)

where Y’ is a threshold traction for sliding, then the structure of the dashed block is quite evident: the slip rate
is obtained from the first of (3.3) and then the slip is found, by trivial temporal integration. In order to text the
algorithm T tried to reproduce the results by Belardinelli and Bonafede (1991) obtained by series expansion on
Chebychev polynomials of the spatial part of the slip solution. The comparison between this semi-analytical
method and the current one in terms of superficial slip is shown in fig. A2. The comparison seems to be satis-
factory: the discrepancies near the curve «shoulder» being reducible by increasing the truncation order of the
expansion in the former model.
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The algorithm for #n = 1 comes down to a twice iterated execution of the dashed block in the predictor-correc-
tor loop. The block in this case represents the solution of the constitutive equation at each node or the quasi-
static equation of the spring-slider (since 7/ is null). The predictor-corrector cycle is executed k = 2 times for
each instant of time due to the fact that the value of Ty(7) is brought to up-to-date. The program solving the
spring-slider evolution and the algorithm for n = 1 differ in that two iterations of the predictor-corrector loop
are effected at each instant of time in the latter case. When the constitutive equations (2.1) (2.2) were consid-
ered, the program for the spring-slider evolution with non linear frictional law by Boatwright and Cocco
(1994) was used as a subroutine of the current one. In the former program the numerical integration of the set

of first order differential equations is made through a step adaptive Runge-Kutta algorithm (subroutine RKQC
in Press et al., 1989).

Appendix B

In this appendix we will obtain a necessary condition for a maximum in the spring-siider velocity during
the postseismic phase ¢ > T,, under the assumption that & is much greater than the loading velocity V, (as-
sumed constant), and that the coseismic phase occurs at steady state. It is possible to show (Belardinelli, 1994)
that in quasi-static conditions if § > V; and V, is assumed constant, the locus of the maximum occurrence
along each trajectory in the plane (In w, y), where

Troe— Tu— TS
ys ——m—

A
. (B.1)
w=9
=V
is given by
_kL A-B
y= i + 1 In w. (B.2)

Indeed from (2.1) (2.2), substituting the definitions (B.1) and taking into account that in quasi static con-

\%
ditions (cfr. Belardinelli, 1994) 6 = (y —w) In (70-), one has

kv,

}5=T(1—W)
(B.3)
vV
y‘:%——L—Ow[)w(%—l) lnw]
and then equating if 5> Vo, and then w > 1
kV, Vi
wo_ o, 20 B _
W="g W+ 7 w[y+(A 1) lnw] B.4)
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from which the (B.2) for w = 0.
Assuming that the coseismic transition occurs at constant state the point representative of the system
moves along the locus of constant state of the plane (In w, y) (see Rice and Gu, 1983)

y = In w+cost, (B.5)

in the direction of increasing w. After this transition, only if the point is above the maximum locus (see
fig. 9a,b in Rice and Gu, 1983) then along the subsequent trajectory a maximum in slip rate will occur. If the
point starts from the stationary state (In w = y = 0 at ¢ = 0) then the constant in (B.5) is null and the condition
to have a maximum in the postseismic phase is that at = 7},

A=B ) e KL (B.6)

Inw > Y] 1

or, putting y. = In w,., where w = w, meets the previous condition,
Ye > kL/B, where y, = (T,(Ty) = Tss— )/ A ~ In (V7 / V) if Vy > Vi (B.7)

which is eq. (4.3) of the text. In the previous equation the approximate expression of the adimensional coseis-
mic friction traction y, is taken from the analytical solution developed by Belardinelli (1994).
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