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Automatic processing of seismic events
recorded on a mini-array
Signal analysis combined with neural networks

Alexandre Bottero, Yves Cansi and Bernard Massinon
Laboratoire de Détection et de Géophysique, Bruyeres-Le-Chatel, France

Abstract

We present a new method for automatic processing of mini-array records of regional events. It is based on a
comprehensive analysis of the cross-correlation functions. This leads to a set of time-delays used to compute
the azimuth and velocity of the travelling wave only in case of consistency of the time-delay set. The second
step takes into account the time-frequency representations of these wave parameters to identify each regional
wave using a neural network. The resulting standard error on azimuth is 3° and the relative error on distance is
less than 20%.

Key words neural network — mini-array — auto- vated only if the arrival-time delay set is con-
matic seismic processing sistent.

Furthermore, this consistency is used as a
signal detector and leads to three time-fre-

1. Method quency functions, representing first the consis-
tency and second the velocity and azimuth
Among the different methods used to auto- when they are available. In the case of teleseis-

matically locate earthquakes recorded on a mic events, the event location is strictly de-
mini-array, the method based on the broad rived from the determinations of the velocity
band f-k analysis is the most common (e.g. and the azimuth. But for regional events a
Mykkeltveit er al, 1990). However, this phase identification is needed. This task is per-
method assumes that the propagation of the formed by a neural network which uses the
considered wave front can be modeled by a three time-frequency functions as inputs and
plane-wave at the scale of the array. Further- which leads to an estimate of each phase oc-
more, in the case of local model variations currence possibility as a function of time.
(e.g.: station anomalies) the resulting precision

is very low because of the large wavelength

compared to the array extension. 2. Data analysis and processing

To take into account these difficulties, we
tested another method based on a high preci- In 1992, the French Laboratoire de Détec-
sion determination of the arrival-times, from tion et de Géophysique of the Commissariat a
which the event location is derived by a classi- I’Energie Atomique installed in Central France

cal Husebye’s method (Husebye, 1969) which a temporary mini-array composed of 5 vertical
computes the velocity and the azimuth of the short-period seismometers (fig. 1). Numerical
wave. Each time-window is processed by this signals are digitized at a rate of 50 samples per
method in different frequency bands and acti- second with a 12-bit dynamic range.
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Fig. 1. Map showing the LDG national permanent network and the mini-array which is used in this study.

This mini-array recorded more than 100
teleseismic events and about 28 regional events
during its 4-month operating period. This expe-
rience provided a useful data base for testing
different automatic location methods (Cansi et
al., 1992). We showed that better results are
obtained when we use the two-step correlation-
method which computes first the arrival-time
differences with a high precision (less than the
sampling interval 0.02 s) and second the az-
imuth and propagation velocity corrected for
statistically determined station anomalies.

2.1. Data processing

For regional events, the correlation func-
tions which define the arrival-time differences
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often have several relative maxima with com-
parable amplitudes. This leads to an ambiguity
in the arrival-time computation, which can be
removed by testing the consistency of the
time-delay set, using the consistency relation-
ship:

Atij+Atjk+Atki=o (21)

Furthermore, this consistency can be used
as a signal detector. When the studied time-
window contains a seismic signal, the Root
Mean Square of the residuals of the consis-
tency relations is low (i.e.: less than the sam-
pling interval: it is an estimate of the measure-
ment accuracy). On the contrary, when it con-
tains only noise, no consistency can be found
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(i.e.: the RMS of consistency relations is high),
because of the low signal correlation at the
scale of the array.

Then, for each 4.5 s-time window and for
different frequency-bands, we can estimate a
probability of signal occurrence and, in the
case of high probability, the corresponding ve-
locity and azimuth. Some examples of these
time-frequency functions are displayed in
figs. 2 and 3. For each time window moving
by a 1.5 s step and for each frequency-band,
the velocity is shown (colour scale) only when
the consistency is lower than 0.02 s.

We can see clearly that most of the seismic
phases lead to consistent signals whose veloc-
ity is well defined for all the available fre-
quency-bands. Nevertheless, some cases are
more ambiguous:

— a phase cannot be precisely recognized
because the velocity is not clearly defined (see
Sn-phase in fig. 2);

— a false detection is obtained because part
of the record contains consistent noise with a
velocity compatible with the regional phase ve-
locity (see noise in figs. 2 and 3 as an exam-
ple).

Since these two kinds of problems cannot
be easily modeled, we used a «learning sys-
tem» approach based on a neural network to
identify the different phases of each event
without ambiguity.

2.2. Phase identification

For neural network applications, the classi-
cal programming efforts are transposed to the
determination of the various authorised degrees
of freedom described as follows (Lacoss et al.,
1991):

— the data structure: the first step is to ex-
tract from the data base the information that is
strictly necessary for phase identification. Fur-
thermore, those data have to be invariant by
translation, rotation and dilatation, which pre-
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cludes the analysis on a variable period. The
solution we chose is thus to present as inputs
and for each time sample the signal velocity
for 5 frequency bands (from 0 to 12 Hz). The
data whose corresponding consistency RMS is
greater than an arbitrary threshold (i.e.: 0.02 s)
are set to 0;

— the network structure: we only used
multi-layered perceptrons, with a sigmoid
transfer function. They are indeed capable of
building complex decision hyper-volumes in
the hyper-space of the input data, thus realising
an accurate classifier. Several tests led us to
choose a 2 hidden-layer perceptron. The com-
plexity of the system is due to the high non-
linearity of the problem;

— the learning function: we chose as a
learning function the «back propagation with
momentum» method, which uses a gradient
method to minimize the quadratic error be-
tween the expected and the observed results.
Despite a long computing time, this allows
a reliable and accurate learning convergence;

— the example data base: it was made of all
the available events, except 3 of them on
which the tests were made. In order to avoid
incoherencies, the arrival time of each phase
was picked on the time-frequency diagrams; a
phase is thus declared present over the whole
time-window between its arrival time and the
arrival time of the following phase, in order to
take into account the whole information of
each phase, including its coda. For Sg phase,
the window length is limited to 30 s. Each
sample is presented 50 000 times in a random
order;

— the network topology: the number of
nodes in the hidden layers was determined em-
pirically. Several networks were designed: in
order to avoid over-training, we chose for each
phase the simplest one which did not degrade
the results. Finally, the Pn phase requires 24 + 9
units, the Pg phase 20 + 6, the Sn phase 16 + 6
and the Sn phase 20 + 6.

All the designing, learning and testing oper-
ations were performed using the neural simula-
tor SNNS, developed by Stuttgart University
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Fig. 2. Example of an event at the different processing levels: the time-frequency plot of the velocity (top),
the 4 phase probablilty functions (middle) and the same afier azimuth filtering (bottom)
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(1992). The middle diagrams in figs. 2 and 3
show the neural outputs as a function of time
for two events which were not in the learning
data base.

2.3. Distance estimation

In order to remove the last false detections
due to consistent noise, post data processing is
needed to test the consistency of the results on
the whole signal, by using the azimuthal infor-
mation as described as follows:

— the first step is to compute an azimuth
histogram with the possibility functions previ-
ously determined and to choose the most prob-
able 20° wide interval. The average azimuth
can then be calculated;

— the second step is to refine this approxi-
mation by determining the most probable 5°
wide sub-interval for each phase. For each time
sample, the probability of existence of a phase
is set to O if the corresponding azimuth is out
of those sub-intervals.

The bottom diagrams in figs. 2 and 3 show
the phase characterization curves after this az-
imuthal filtering.

At this step, in the function describing the
possibility of occurrence of each phase as a
function of time, all the information which
does not belong to the detected event has been
removed. The last step — the distance evalua-
tion — can now be performed.

Each function is differentiated to allow an
easy detection of each phase by identifying the
times where the derivative is greater than an
arbitrary threshold (i.e.: 0.7). When only two
phases are detected, the resulting distance is
computed using the two times for which the
product of the corresponding possibility func-
tions is at its maximum. When more than two
phases are detected, a least-square estimation
of the distance is performed for each set of
possible arrival-times. The best one is retained
as the event distance.
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2.4. Results

We have processed 28 regional events
which occurred in Western Europe during the
experiment. Their magnitudes ranged from
M;=2.2 to M;=5.3 and their epicentral dis-
tances from 40 to 1200 km.

The azimuth error is shown as a function of
the azimuth in fig. 4. It is clear that this
method leads to a very accurate azimuth esti-
mation: the mean value of the error bars is
roughly 3 degrees.

For the 21 events for which a distance can
be computed (i.e.: at least two phases have
been recognized), the computed distance is
shown versus the bulletin distance in fig. 5.
Except two events for which confusions oc-
curred between Sn and Lg-phases, a good
agreement is obtained in the full distance
range: the relative standard error is less than
20%. These results are illustrated in a regional
map showing the location errors (fig. 6).

3. Conclusions and recommendations

We have tested a new method for automatic
location of regional seismic events recorded on
a mini-array. This method includes first a sig-
nal analysis process in order to evaluate the
consistency of the relative time delays com-
puted from the correlation functions, and sec-
ond a neural network analysis to identify the
different phases and compute the distance of
the event.

The standard error of the azimuth estimation
is less than 4 degrees for a set of events with
distances ranging from 40 to 1200 km. Most of
the P-phases are clearly identified by the sys-
tem, but some confusion between Sn and Lg
phases can be observed. When the cases of
misidentification are removed, the method
leads to an estimate of the distance with an un-
certainty of about 20%.

We have shown that this method is able to
produce an estimation of the location of re-
gional events with a reasonable error. Further
studies will be devoted to testing the method
on a larger data set including the new design of
the mini-array which is now composed of 10
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Fig. 6. Regional map showing the lgcation errors for all the events.

stations, and for lower SNR ratios. Compar-
isons with azimuthal and velocity determina-
tions computed from the new 3 components
station and from the broad band f-k analysis
will also be performed.
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