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Abstract

A numerical scheme suitable for modeling tsunamis is developed and tested against available analytical solu-
tions. The governing equations are the shallow water nonlinear nondispersive equations that are known to be
appropriate for tsunami generation and propagation in coastal waters. The integration scheme is based on a

finite-element space discretization, where the basic elements are triangles and the shape functions are linear.
The time integration is a double step algorithm that is accurate to the second order in the time step At. The
boundary conditions are pure reflectivity and complete transmissivity on the solid and open boundaries respec-
tively and are implemented by modifying the time integration scheme in a suitable way. The model perfor-
mance is evaluated by comparing the results with the analytical solutions in selected cases and is quite satis-
factory, even when the grid has a coarse spatial resolution.

Key words analytical tests — boundary conditions —
finite-element — numerical model — shallow-water
approximation — tsunami

1. Introduction

Tsunamis are rare events that are potentially
capable of producing severe damage. Experi-
mental data on such waves in the open ocean
and in coastal waters are rare and mostly occa-
sional, in the absence of a systematic observa-
tional network. Even large tsunamis that have
occurred recently suffer from insufficient in-
strumental recording, though the destruction
they caused on the coasts was such that they
triggered timely post-event field surveys to de-
termine accurately wave run-up, inundation ex-
tent, coastal depositional and erosional pattern,
etc. (see for example, Baptista et al., 1993; Yeh
et al., 1993; Gonzales and Bernard, 1993 con-
cerning respectively the Nicaragua 1992
tsunami, the Flores, Indonesia, 1992 tsunami
and the Hokkaido, Japan, 1993 tsunami; see
also the very recent eastern Java tsunami). As a
result, numerical simulations of tsunamis are
very important tools of fundamental and ap-

1009

plied research to complement the scarce obser-
vational data set and to help illuminate basic
aspects of wave generation, propagation and
impact against the coast. This paper is devoted
to illustrating and discussing a numerical ap-
proach that is based on the shallow-water fully
nonlinear approximation suitable for studying
tsunamis produced in coastal regions. The dis-
cretization in space is performed by means of a
finite-element technique, while the integration
in time is accomplished by a double time-step
algorithm as will be briefly highlighted in the
next sections. The approach is tested against
analytical solutions of linear as well as non-lin-
ear shallow-water approximation for simple
geometries of the water basin, which permit us
to evaluate the accuracy of the integration
scheme.

2. The basic model

Numerical simulations of tsunamis are com-
monly based either on the Boussinesq or on the
nondispersive shallow water equations (Murty,
1977; Shuto, 1991), the latter being especially
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appropriate for tsunamigenesis occurring in
coastal waters. In this paper we will adopt the
shallow water approximation of the Navier-
Stokes equations that is valid when the charac-
teristic lengths of the water waves are much
longer than the typical water depth. If we de-
note by {={(x,y,0,u=ulxy,0,v=vx1y,1)
respectively the water elevation above the
mean sea level, and the horizontal components
of the water particle along the axes x and y, the
basic set of equations is written in the follow-
ing form:

0,8 =—0,(Du) -0, (Dv)
o,u =—gd, &~ ud,u—vd,u— CauV/D + fv
0,v =—gd,{~ud,v—vd,v—CvVID - fu

2.1)

In the above equations & = h(x,y) is the water
depth, g is the gravity acceleration, C; = is the
friction coefficient and f is the Coriolis param-
eter, given by f=2wsin @(¢ is the latitude,
o is the Earth’s angular velocity). The follow-
ing definitions have been further used:

Dy, ) =h(x,y)+C(x,y,1)  (2.2)

V2(x, v, 1) = uz(x, y, ) +v 2(x, v, ) (2.3)

It is easy to see that D represents the instanta-
neous water depth, depending dynamically on
the motion conditions. The first of egs. (2.1)
derives from the water mass conservation,
while the other two arise from the momentum
conservation. The friction term is an experi-
mental law expressing the shear at the ocean
bottom. It is a typical resistance term subtract-
ing energy from waves, and becomes important
particularly over long time scales. Variants of
the above approximation can be found in the

literature: one that is often used adopts the
flow components Q.= hu and Q, = hv rather
than the water velocities (e.g. Liu ef al., 1993).
The eqgs. (2.1) must be complemented by the
boundary and the initial conditions, that as in
all wave propagation problems should be mu-
tually consistent in order to garantee the exis-
tence of a solution. These conditions will be
discussed later on, while our attention is fo-
cussed next on the space discretization of the
wave system (2.1).

The solution of the governing equations set
is searched for in a finite basin, €2, that is parti-
tioned into a number M of polygonal nonover-
lapping elements £, the resulting grid having
N nodes. A basic idea for this approach is that
within each element €2, any regular function
f(x,y,1) is approximated in terms of the values
fX(t) that the function assumes at the nodes r
belonging to the element by means of a linear
superposition of suitable shape functions,
Sf(x,y), depending solely on the geometry

f(-x7yv t) = fk(x’y’ t) =

= erk(x, W& in (2.4)

Here the approximating function f*(x,y,?) is
defined in an implicit manner. If we add the
conditions that S*(x,y) = 1 at the node r of Q,
and be identically zero at all other nodes of
the same element k, it follows that f(x,y, 1) =
= f*(x,y,1) = f() at any node r. Now, if the so-
lutions {(x,y,1), u(x,y,t) and v (x,y,?) are sim-
ilarly approximated by means of the above ex-
pression (2.4), the problem is simplified in that
the only unknowns to determine are the nodal
values of these functions, say {,(#),u,(r) and
v () where g =1, ..., N is the index denoting
the node.

A further basic idea is that the system of
differential eqs. (2.1) is converted into a set of
integral equations, by means of the following
reasoning. If §, u and v satisfy the egs. (2.1),
then they must identically fullfil the following
integral form:
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LC*Berﬂhfgc*uadeﬂ— L £* Dd,u dQ-
- J.Q {*v0,D dQ2 - L {*Do,v dQ

J‘ u*&md!):—g_" u*BXCdQ—J. u*ud u dQ-
o Q Q
- J.Q w*vo,u dQ+ J.qu*v aQ-

- jﬂ IoRCAAp

* - _ * _ * —
jﬂv d,vdQ= gjgv 0,{dQ J.Qv ud,v df2
—J. V¥ vo,v dQ - j fv*udQ-
o Q

v
- J.Q il ¢ o dQ

(2.5)

where {*, u* and v* are arbitrary functions

defined in the domain Q. Let us now take a set
of independent Green functions G;(x,y)i=
=1,..., N, such that G, (x,y) = 1 at the node i
and G;(x,y) = 0 at all other nodes. If we pose

=u*=y*= G;(x,y) in the above integral
system (2.5) and make use of the approxima-
tion (2.4), we obtain a number of 3N condi-
tions for the 3N unknowns Eq (0, u () and
v, (1), that can be solved by algebraic manipula-
tions. For example, let us consider the left
hand side integral in the first equation of the
system (2.5). It can be firstly written in terms
of the approximating functions

J. 0 5 0,8k y, 0 dQ =

(2.6)
= 2 J Gtk(-x9 )’)ar Ck(xa )’, t) d‘Q/(
kT

and then, on making use of the shape functions
SKx,y), it is transformed into

J o S @9y, ndQ =
. 2.7
= ; jgk ; Sk, ) 8ESk @, y) & (1) d2,

where &, is the Kronecker delta and the inter-
nal double sum in r and s extends over all
nodes belonging to £;. Here the symbol L@ is
used to denote the time derivative of the func-
tion {(r). Since the shape functions are
known, the integrals over each element £, can
be computed in a closed form and the eq. (2.7)
can be easily given the following expression:

[, G atinyn aq = 2K, 50 @8

The above coefficients K;, have the form:
K, = ; -[nk SHey) SEeey) dQ, (2.9)

and identify a linear symmetric operator K in
the space RM acting on the vector {(f) with
components { (7). Likewisely we can proceed
to discretise in space all other integrals of the
system (2.5), that in this way is converted into
a system of equations in the unknown vectors
{@), u(r) and ¥(z) depending only upon the
time #:

K= —,(@) E-#,(D) i —¥,(7) ¥, (D) -
~¥ (W) i-¥,(h)v

Kit =—gP, {~W, () i~ (%) i +Kf 7 —
-®(V,D)ii

KV = —gP, L~ (ii) V-, (%) v —Kfii +

+®(V,D)v
(2.10)

Here operators are designated by capital letters,
whereas vectors are overlined by a tilde. The
subscripts x and y are used to indicate that the
operator derives from a space derivative in the
direction of the corresponding axis. The nota-
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tion W, (1) is suggestive that the operator is not
constant, but depends upon the values of the
unknown vector u(f), with the consequence that
the operator itself is unknown. Such operators
are present in all equations of the system (2.10)
and this is the patent expression of the nonlin-
earity of the original problem (2.1).

In order to illustrate the time discretization
it is convenient to put the above system in the
more compact form

Aa) = B(@) a) 2.11)

where a(f) is a 3N-component vector defined
as:

U

QU
I
<

(2.12)

<1

and consonantly the operators A and B defined
in the space R*M are given by

0 0
K 0 (2.13)
0 K

It is apparent that the operator A is a block ma-
trix consisting of identical, diagonal and sym-
metrical blocks K acting in Rf_N. Let us now
suppose that the solution o, = (t,) at the time
t, =ty+nAt is known and let us try to deter-
mine the solution at the subsequent time step
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t,+1. If we pose X, = B(a,) o, the differential
eq. (2.11) simplifies into

AD, =7, (2.15)

After differentiating this equation with respect
to the time, we obtain the approximate expres-
sion

= 2 ~
Aan = ——(xn-o-I/Z_er)

v (2.16)

A Taylor expansion of the unknown vector o
up to the second order in At leads to the ap-
proximation

At?

o, =~ an+ma,,+7&n 2.17)

Combining the egs. (2.15) and (2.16) in the ex-
pansion (2.17), the following two-step resolv-
ing scheme is obtained

Opyip= 0yt TA Xy

Xnst n=B (&n-f- 12) 55n+ 12 (2.18)

~ ~ 1~
Oy = OC,,+AtA Xn+172

It can be appreciated that this procedure re-
quires solely the inversion of the matrix A that
in turn implies the only inversion of K.

The initial and boundary conditions are nec-
essary in order to identify and compute the so-
lution of the wave problem (2.1). In tsunami
computations it is usual to give the initial con-
dition by specifying the initial elevation of the
water above the mean sea level {(x,y,%)) =
$o(x,y) and by assuming that the initial veloc-
ity field be identically zero, i.e. u(x,y,ty)) =
v(x,y,%) = 0. This is adequate when the gen-
eration process is instantaneous, that is when it
occurs over a time scale (~ 1 s) much shorter
than the tsunami typical periods (~10>— 10°s).
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Therefore it is applicable to the case of a
tsunami generated by a sizable submarine
earthquake, while the theory should be slightly
accomodated to deal with slower generative
processes such as submarine landslides or ex-
tremely large earthquakes where the fault rup-
turing time is a significant parameter. And this
is commonly accomplished by introducing a
moving source with known kinematics (Har-
bitz, 1991; Mader et al., 1993a, b). The condi-
tions on the boundary are prescribed by differ-
entiating between the coastal boundary and the
open boundary. A pure reflective boundary is
normally considered adequate for the coastline,
unless specific studies on flooding, inundation
or impact on coastal structures are to be carried
out. The pure reflectivity condition is ex-
pressed by posing the velocity component nor-
mal to the boundary equal to zero. On the
ocean side a pure transmission condition is to
be imposed, letting the wavefronts cross the
boundary without any artificial modification.
This undisturbed propagation is more difficult
to obtain, but it is approached by imposing a
relation of outgoing wave for the wave compo-
nent normal to the boundary. Therefore these
conditions can be expressed in the following
way:

<l

n=0 onthesolidboundary (2.19a)

<l

- &
n=<

¢ onthe open boundary (2.19b)

4 - . .

where v and n are the horizontal velocity vec-
tor and the outward normal vector respectively,
while ¢ is defined as ¢ = +/gh representing the
local phase velocity of the waves in the linear
shallow-water approximation. If we call @, a
vector in the space R*" satisfying the boundary
conditions (2.19a,b), let us define by C the
constraint operator transforming a free vector
o into o, that is:

o, =Ca (2.20)

In virtue of the above relation, the boundary
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conditions are implemented in our model by
adding two supplementary steps to the resolv-
ing algorithm (2.18): indeed, after computing
0.1 and 0,1, these are transformed into
their respective constrained counterparts by
means of the operator C. We observe that the
incorporation of constraints in the time-integra-
tion scheme is based firmly on the theory in
the linear approximation (Piatanesi, 1994) and
further that it has the remarkable advantage of
requiring the inversion of the only matrix K.
On the contrary, a model imposing the con-
straints in the space discretisation stage will
give rise to a matrix A formed by diagonal
blocks, say K, K, and K, not equal, but dif-
fering from each other (see eq. (2.13)). And ac-
cordingly, the inversion of A required in the
eq. (2.18) would imply the inversion of 3 dif-
ferent matrices instead of one. Our method
therefore saves computer storage and time.

3. Numerical tests

The model schematised in the previous sec-
tion has been developed on meshes consisting
of triangular elements where the mesh nodes
coincide with the triangle vertexes. The parti-
tion of the domain €2 into triangles has the ad-
vantage that they have the simplest geometrical
shape and that nevertheless the grid is highly
flexible and adaptable to any kind of ocean
basin configuration. In particular, irregular
coastlines can be modeled in a suitable way
(Tinti and Mulargia, 1983; Werner and Linch,
1987; Greenberg er al., 1993), whereas this
cannot be achieved by finite-difference models
that are generally conceived for regular-cell
meshes based on cartesian, polar or spherical
coordinate systems. The shape functions
S¥(x,y) used in our model are linear functions:
practically they represents plane surfaces with
unit value at the vertex r of the triangle €2, and
vanishing at the other two vertexes. This
choice implies that all physical fields, namely
¢, u and v, resulting from a superposition of
shape functions (see eq. (2.4)), are represented
as well by plane surfaces within each triangu-
lar element. The time step At used in the algo-
rithm (2.18) is taken according to the following
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Fig. 1a,b. Sketch of the grids used in the paper. a) Rectangular channel: 512 equal triangles and 297 nodes.
Channel length, width and depth are in the order 16 km, 5 km and 5 m. The channel is open at the right and
left boundaries. b) Rectangular grid 40 km long, 60 km wide with 1200 elements and 651 nodes. The basin is
closed by a vertical reflecting wall on the right and open at the other boundaries. The floor depth is 400 m for
the uniform bottom case. Solid circles indicate the nodes where time histories are calculated and shown for the
variable bottom case (see fig. 7).
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criterion. Let us introduce the characteristic
time At for the element , that is the mean
time taken by a wave to cross the element and
that can be estimated by Az, = L,/c,. Here L, is
the characteristic element length and ¢, is the
local wave velocity. If we designate by AT the
smallest of all characteristic times Aty, in our
numerical experiments we have taken a time
step A,= yAT where the coefficient y is in the
range 0.2-0.5, which is an empirical good com-
promise between time efficiency and scheme
stability.

The model has been tested against several
analytical solutions computed in cases that,
though simple, are equally significant to show
the model performance. Some of these cases
will be presented in this section. The most ele-
mentary example is the rectangular channel of
uniform depth shown in fig. 1a that has been
divided into M =512 equal triangles corre-
sponding to N =297 nodes. The channel is
bounded by two vertical reflective longer
walls, while the shorter sides on the left and on
the right are a distance L = 16 km apart and are
open, permitting the waves to pass away.
The channel is taken to be very shallow
(h =5m), causing the waves to proceed quite
slowly, remaining in the channel for a suffi-
ciently long time. The basin is excited by an
initial water bulge that is symmetric and
transversally uniform, depending only on the
longitudinal coordinate x. Figure 2 shows the
travelling waves along the longitudinal axis of
the channel computed through the linear ver-
sion of the numerical model with time step
At=35s and compares them with the analytical
solution that is easily calculated in 1D space
(see Appendix for details). Though the case is
critical since the grid resolution has been delib-
erately taken poor with respect to the assumed
initial disturbance, that is described only by a
few nodes per dominant wavelength, there is
no visible difference between the two solutions
during the initial wave splitting and propaga-
tion in the internal waters. Even the waves
crossing the open boundaries are computed
correctly. Later some residual noise that is ten-
dentially growing with time is apparent in the
numerical solution, but it does not perturb the

wave evolution, since it becomes relevant only
after the waves leave the channel.

The second example regards a 2D propaga-
tion in a flat bottom 400 m deep rectangular
basin that is 40 km long (x-axis) and 60 km
wide (y-axis). The grid is formed by 1200
equal triangles corresponding to 651 nodes that
is depicted in fig. 1b. The boundary on the
right is closed, while all others are open. The
initial disturbance is an axisymmetric bulge
centered in the mid-point of the right boundary
of the basin and is given in fig. 3. The analyti-
cal solution in the linear approximation (see
Appendix) is shown side by side with the
numerical solution at different time steps in
figs. 4a-c where contour plots of the water ele-
vation are visible. It can be observed that the
numerical model works quite well, in that it is
able to compute satisfactorily the outgoing cir-
cular wavefronts, even though the grid geome-
try is not specifically conceived for a polar co-
ordinate system. Even in this case, after the
main wave system leaves the domain, some
minor residual noise is left, which, however,
does not prejudice the overall wave evolution.
A more critical example is run by using the
same initial excitation on a similar basin, hav-
ing however a variable depth bottom. The vari-
able bathymetry that is shown in fig. 5 is ax-
isymmetric as well, since this property permits
the computation of the linear solution by ana-
lytical means (see Appendix). The initial water
rise propagates radially changing profile and
wavelength as it proceeds towards deeper wa-
ters, and all these features are properly simu-
lated by the numerical model as is apparent
from fig. 6, where analytical and numerical so-
lutions are juxtaposed. Analogously the time-
histories computed via both methods for some
nodes located on the central axis of the basin
are given together in fig. 7.

The last example dealt with here is the non-
linear propagation of a trough along a channel.
The same channel displayed in fig. 1a, but with
a deeper floor (h = 20 m), is forced by a
transversally uniform disturbance, entering
from the left side of the channel, on which
both the water elevation and velocity are pre-
scribed as given functions of time. The trough
is advancing rightwards and deforms during its
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Fig. 2. Propagation of the initial bulge along the central axis of the channel at different times. Distances are
normalized with respect to the channel length. The wave elevation progresses symmetrically towards the chan-
nel right and left ends, while the velocity u is antisymmetric and v is identically zero. Numerical results (solid
line), computed with At=35 s, are compared with the analytical solution (dotted line) any 200 s in the time
window 0-2000 s.
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Initial Elevation Field timate the trough depth and to smooth out the

wave side edges, but this 18 essentially due tO
the poor resolution of the used mesh. We note
further that some noise 18 present in the basin
after the wave has passed, but the noise is dis-
cernible even earlier, thoug it does not reach a
critical level.

60

40
4. Discussion and conclusions

The tests presented in the above section
have shown that the finite-element model per-
forms quite well. Unfortunately solutions of
the shallow water equations that can be calcu-
lated analytically are known only for 2 few
cases. We selected some of these with the spe-
cific purpose of assaying how the model prop-
agates tsunamis inside the basin and across the
open poundaries, how it behaves with a vari-
able depth ocean bottom, and how it works
with nonlinear terms and with waves changing
shape. We stress that the comparison between
the analytical and the numerical results is 2
20 40 necessary and very important step for the vali-
Distance (Km) dation of & numerical model that should be car-
ried out carefully and extensiveiy, since it dis-
closes the characteristics of the aumerical inte-

Fig. 3. Tnitial watet disturbance in ¢m for the cases gration scheme. One relevant aspect is that we
{llustrated in the next figs- 4a-c and 6. It is an axisym- : o

metric bulge with the maximum height of 1 ™

Distance (Km)

0 10

have run cases in th critical condition of
waves described by 2 few clements and nodes.
Notwithstanding this, the results wé have 0b-
tained are very satisfactory since the main

propagation as the precipuous effect of the wave system 15 always simulated accurately-
nonlinear terms- Since the ocal phase velocity The integration leaves SOme noise inside the
is an increasing function of the local water pasin after the waves have gone away and this
depth D, the bottom of the trough 18 slower noise tends 10 grow with tme. This fact has 2
than its ascending front- and rear-w alls: conse- mathematical explanation. Let us come back 10

uently the front turns gmoother, whereas the the time differentiai system (2.11), and sup-
back becomes steepet and steeper until the pose for simplicity that B is constant, i.€- that
wave breaking limit is reached. The analytical the system is lineart. Under these assumptions,
solution is calculated by means of the theory of it can be proven that the solution can be ex-

the characteristics (see Appendix) and is com- pressed in terms Of eigenmodes with exponen-
pared with the numerical solution along the tial dependence upon time (Piatanesi, 1994).
central axis of the channel in fig. 8. The trough Increasing noise is associated with eigenmodes
profile is reproduced satisfactorily at any Gme growing exponentiaiiy, until perturbing the so-
during its motion along the channel until the lution completely- In most problems concern
wave leaves the basin crossing the right side. ing tsunamis 1nO practicai consequences arise 1
Observe that some slight discrepancy is appar- the growth ime scale is larger than the charac
ent since the numerical results tend to underes- teristic evolution time of the radiating wav
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Analytical Sol. (t= 1080 s) Numerical Sol. (t=1080 s)
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Fig. da-c. Water elevation fields at different times:
a), b) and ¢) correspond to times 360 s, 720 s and Bothym etry
1080 s respectively. Numerical solutions (right) are 60 [T T T T T T T T
compared with the analytical solutions (left). Irregu-
larities in the contour lines are due to slight numeri-
cal noise and to contour plotting with poor resolu-
tion.

system. If, however, we have an interest in
long time scale integration, a feasible way to
control noise growing is to add a suitable
smoothing algorithm in the time integration
scheme (2.18) (Gavagni, 1993). The nonlinear
propagation of the trough computed by means
of our model incorporating a smoothing stage
is presented in fig. 9 that can be compared with
the results shown in fig. 8. The improvement is
noticeable, though some coherent energy is
still visible inside the basin after the passage of
the main wave.

N
o

Distance (Km)

N
o

Fig. 5. Bathymetric map of the rectangular basin.
Contour levels are in meters. The map is based on Ol
the grid of fig. 1a,b and has therefore a resolution 0 10 20 30
depending on the triangle size. Distance (Km)
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Fig. 6. Water elevation fields at different times computed for the variable depth basin. Remarks in the caption
to fig. 4a-c also apply here.
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Numerical Solution
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lines) and numerical results (solid lines) are shown. Nodes are marked by numbers, that are arranged in in-
creasing order from left to right in the grid.
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Fig. 8. Nonlinear propagation of a trough along the central axis of the channel of fig. 1a,b, with 20 m depth.
The trough enters from the open left side and progresses towards the right changing shape. Numerical results
(solid lines) can be compared with the theoretical solutions (dotted lines) computed by means of the theory of
characteristics.
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Fig. 9. Nonlinear propagation of the water depression as in fig. 8. Numerical profiles are computed by
incorporating a smoothing algorithm in the time integration scheme.
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The finite-element method we have illustrated
here has been developed and tested with the
main purpose of using it for numerical simula-
tions of the Italian tsunamis. It is known that
Italy and Greece are the two Mediterranean
countries most exposed to the menace of
tsunamis and the tsunami hazard for the Italian
coasts has been given quantitative estimates
through appropriate statistical methods (Tinti,
1991, 1993; Tinti et al., 1994). It is however
essential to study the impact on the coasts of
individual tsunamis, in order to make sensible
progress in assessing local tsunami hazard and
risk. Historical cases are often poorly docu-
mented, and therefore numerical simulations
are indispensable means for tsunami research
in Italy. Modeling of the major Italian tsunamis
will be an important future evolution of our
research.
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Appendix

Linear propagation in a channel

The channel longitudinal coordinate x ranges from 0 to L = 16 km. The disturbance does not depend on the
transverse coordinate y, which makes the problem 1D. The initial rise is given by:

Co(x)z—;—cos [%(x—é)]+% xelz[

$o) =0 xel

(Sl
SIS

SIS
+
o]~
[ —— ]

(A.1)

while the initial velocity u, is zero. The bulge length A is 6 km. Linear 1D theory gives the following
solution:

{x,n= %[Co(x— e+ o+ ct)]

u(x, 0= Zg;c[{o(x— ct) = &o(x + ct)]
(A2)

where ¢ = \/g_h is the constant wave phase velocity.

Linear propagation in a rectangular basin

The problem of a wave travelling in an axisymmetric basin, that is in a basin with depth depending only on
the distance from a central point, admits a solution in terms of superposition of normal modes in the frame-
work of the linear theory. If the basin is flat the solution is a combination of Bessel functions of simple argu-
ment. If the radial bottom profile is arbitrary, then a method can be devised in order to compute the solution
that is a piecewise combination of Bessel functions of real order and more complicated argument. This theory
is treated in a paper by Tinti and Vannini (1994) and has been used here to calculate the theoretical solutions.
The initial perturbation is a bulge described by:

Co(r)=cos<2—f) r<SR=A/4=10km

Lo =0 r>R
(A.3)

where 7 is the distance from the mid-point of the right boundary of the rectangular basin. The corresponding
initial velocity is zero everywhere.
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Nonlinear propagation in a channel

The analytical solution of 1D trough travelling in a flat channel of length L is computed by means of the
theory of characteristics (Stoker, 1957). Let us assume that the initial fields are unperturbed, that is:

G =ug(x) =0 (A.da)

and that the left end of the channel, corresponding to x = 0, is excited by a prescribed forcing wave:

_2sin [Ez] 1<T2
£(0,0 = colg u(0,0) = T

0 =712 (A.4b)

during the time window T = L/ ¢, where ¢y = \/g_h Under the above conditions one family of the characteristic
curves is formed by straight lines in the quadrant x >0, >0 of the plane (x, 7). On these curves the quan-
tity

u(x,t)—2c(x,t)=-2c¢ (A.S5)

where ¢ is the local phase velocity defined as:

c(r1) = \glh+ £ (x,0)] (A6)
remains constant. Moreover, the curve slope depends on the forcing function {(0,1) as follows:

d
7); =3¢(0,1)-2¢p (A7)

Combining the above relations (A.5), (A.6) and (A.7), the solution can be computed in the channel for any
time ¢ within the region of the plane (x,7) where the characteristic straight lines do not intersect each
other.
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