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Abstract

Pattern recognition belongs to a class of problems which are easily solved by humans, but difficult for
computers. It is sometimes difficult to formalize a problem which a human operator can easily under-
stand by using examples. Neural networks are useful in solving this kind of problem. A neural net-
work may, under certain conditions, simulate a well trained human operator in recognizing different
types of earthquakes or in detecting the presence of a seismic event. It is then shown how a fully con-
nected multi layer perceptron may perform a recognition task. It is shown how a self-training auto-as-
sociative neural network may detect an earthquake occurrence analysing the change in signal charac-

teristics.
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1. Principles of classical pattern
recognition

Pattern recognition (Tou and Gonzales,
1981) is a simple task for humans, but a
hard task for computers. Maybe it de-
pends on the different architecture of the
two different thinking machines, brain and
calculator. The most relevant difference in
the architectures is that the natural brain is
essentially a parallel machine, while an or-
dinary computer is a sequential machine.
The parallel architecture intrinsic in neural
networks may help in building pattern
recognition engines with superior perfor-
mance.

A pattern recognition machine operates
in a world (the measurements space) de-
fined by the variable describing the phe-
nomena under study. A pattern of these
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variables is represented by a point in the
measurement space. The recognition goal is
to divide the possible input pattern in
classes, and decide if an input pattern be-
longs to a specific class. A class can be con-
sidered like a complex volume in the mea-
surements space defined by a decision
boundary.

The simplest pattern recognition ma-
chine is illustrated in fig 1. It operates over
a one-dimension world, and the recognition
task is extremely simple: it divides the mea-
surement space into two half spaces, using
a threshold. The threshold level is decided
by the value of the multiplying block a and
by the value of the bias b. The threshold
level is the decision boundary in this simple
example.

Things become more interesting if we
add another input to the summing node
(fig. 2). Now the recognition device oper-
ates in a two-dimensional plane, and it is .
able to separate this into two half-planes,
using a straight line. In general if we use n
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Fig. 1. The simplest pattern recognition machine, with one input and one output, can separate the
mono-dimensional space of the input variable into two classes. The separation element may be tuned

moving a or b.
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Fig. 2. A two input weighted sum can separate the input plane into two half planes. In general a wei-
ghted sum of 7 variables can separate the n-dimensional input hyperspace with an (n-1)-dimensional

hyper plane.

inputs we obtain a device able to operate in
an n-dimensional hyper space, separating it
with an (n-1)-dimensional hyper plane.
Things become even more interesting if
we combine several decision blocks in a
tree structure (fig. 3, left). Each of the de-
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cision blocks at the input still divides the in-
put space into two half spaces; the decision
block at the output combines the output of
the previous input block in order to obtain
a closed shape in the measurements space.
Adding one more layer, and increasing the
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number of decision blocks, we may obtain
all kinds of complex decision boundaries in
the measurements space.

2. Pattern recognition and neural nets

The mathematical neuron (fig. 4b) was
formalized by McCulloch and Pitts (1943)
and tries to reproduce the behavior of the
physiological neuron (fig. 4a). The biologi-
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cal neuron activates its outputs depending
on the input signals. The input signals are
connected to the nerve fiber through mem-
branes of different thickness (synapses).
This allows the neuron to give a different
weight to signals coming from different in-
puts. The mathematical neuron feeds the
weighted sum of the inputs through a non
linear function (activation function). Al-
though several kinds of functions are used
as an activation function, the most common
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Fig. 3. By connecting several pattern recognition blocks we may obtain different shapes in the varia-

ble space.
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Fig. 4a,b. a) Physiological neuron; b) mathematical neuron.
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are the non-decreasing functions (like the
sigmoid, which recalls a smooth step func-
tion). It results the mathematical neuron
looks similar to the block diagram of the
classical pattern recognition machine (fig. 2)
choosing a step-like activation function.
The choice of a non linear activation func-
tion even makes a tree structure of neurons
(fig. 3) performing a complex recognition
job. A tree structure, built using linear acti-
vation functions, may be easily conducted
to a single block, which can only split the
measurements space into two half spaces
(fig. 2).

The transfer function of the entire neu-
ron is:

(2.1)

f =2 ( 2 wit )

where the sum with weights w; is extended
to all the I elements of the input vector x.
The non-linear function A is represented by
a sigmoid:
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Connecting several neurons (fig. 5) we
obtain a neural network (sometimes called
multi-layer perceptron) that can be used for
pattern recognition. It looks very similar to

the classic pattern recognition machine we
described in section 1. A neural network,
with a right number of neurons, may recog-
nize all kinds of patterns.

The values of the connections between
neurons (synapses in the physiological neu-
ron, weights w; in the mathematical one)
have to be determined to make the net-
work to perform its recognition job cor-
rectly. This task is called training of the
neural net. This is performed using an itera-
tive method which tries to minimize the er-
rors made by the net in recognizing real ex-
amples. It is necessary to have a sufficient
number of examples, representative of the
phenomena. We define an error function as
the sum of the squared values of the differ-
ence between the untrained net response
and the response we would like to obtain:

N I

> X (T -

n=1i=1

E Ci)? (2.3)

where C,; is the value (computed by the
network) of the i-th output port obtained
for the n-th input pattern, and T,; is the
corresponding desired value.

Our goal is to minimize this function.
This may be obtained using the iterative
rule:

Wi < W1 — u - gradE(w._;) (24)
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Fig. 5. A five-input, three-output multi-layer perceptron: by connecting several layers of neurons we
can recognize a pattern with an arbitrary complex shape in the decision space.
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(Ciaccia and Maio 1989; Lippman 1987),
where k is a progressive number identifying
every synapses, regardless of the layer; k-1
indicates the value before the upgrade of
the synapse k and u is a coefficient which
defines the learning speed of the network.
The learning speed coefficient must be
carefully determined. The use of the gradi-
ent descent algorithm assumes the error
surface in the w; space is linear in the inter-
val of the learning coefficient. This may be
false at points of high curvature, thus mak-
ing a small u coefficient desirable, which,
unfortunately slows down the learning pro-
cess. Several strategies were conceived to
improve the learning process (NeuralWare,
1991; Rumelhart, and McClennand, 1986)
but all of them are modifications of the ba-
sic gradient descent algorithm.

3. Rules for building a neural net

The most important characteristic of a
neural net is its capability to learn from ex-
amples. Therefore an important task is to
collect a data set representative of the phe-
nomena under study. This data set will be
split into two parts: we will use one to train
the net, the other to test the net behavior.
Defining the net configuration is an empiri-
cal task. The more complex the law which
ties the data to the desired response, the
more complex the net is. Using a large net
regardless of the law complexity may yield
to unwanted results. We may compare the
performances of a large and small network
trained with the same data set. The large
net simply memorizes the data set: it is a
kind of look-up table. Its performance is
very good with the data used for the train-
ing, but it gives bad results with unknown
data. A small net does not memorize the
data, but finds the law (if it exists) which
ties the input patterns to the desired output
patterns. There are no hard rules for num-
bers of neuron, only rules of thumb. One
of them (NeuralWare, 1991), useful for
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networks with one hidden layer, connects
the number of training patterns ¢, the num-
ber of the net input i, the number of net
output o and the number of neurons in the
hidden layer A:

t

10:G +o) "

(3.1)

The first operation is to perform a training
using the first set. A net may be considered
trained when the difference between the
output and the wanted value approaches 0
or does not change significantly. Some-
times, when using data from physical mea-
surements, this error level can be very far
from 0. This may depend on the measure-
ment errors. If the net does not fit a few
patterns, maybe those patterns are wrong.
This has to be verified to decide if a new
training is to be performed without them.
To decide if the training is successful the
net must be tested using the second data
set. If the errors on the test set are compa-
rable with the error on the training set, the
net was well trained.

There are several reasons why a net may
not work.

Like every hill climbing algorithm, the
net training suffers from the problem of the
relative minima. The error function in the
weight space is very complex with several
relative minima. The training can be
trapped in one of them without reaching
the absolute minimum. If the net does not
even fit the training set, maybe we are
caught in this problem. Repeating the
training with a different starting point (to
initialize the weight with random numbers)
may be useful.

The net configuration may not be ade-
quate to the law we want to reproduce.
This case requires the design of a new
net.

The data set may be inadequate to en-
sure the convergence (too many wrong pat-
terns, or a bad choice of good patterns to
ensure the generalization). This case re-
quires the collection of a new data set.
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4. Event classification using a perceptron

Earthquake detection and classification
belong to a class of problems where artifi-
cial neural networks may be useful (Dowla
et al., 1990).

A simple application in earthquake clas-
sification is illustrated in fig. 6. Earth-
quakes recorded at the Bardonecchia
(North Italy) very broad band station
(Romeo, Mele and Morelli, 1991) were em-
pirically classified into five classes: re-
gional, local, sausage, tele, spikes. Normal-
ized spectra were used to train the multi-
layer net showed in fig. 6. The output
«sausage» refers to a peculiar disturbance
(a burst of monochromatic waves).

The data set used for the training in-
cluded 6 local events, 2 regional earth-

quakes, 4 teleseisms, 5 spikes, 14 sausages.
After the training, the network could rec-
ognize all the patterns of the training set,
and about 90% of all the other analysed
and coming from the same station. The
same principle was used to improve the
performance of the Italian National Seismic
Network. This system performs a simple
trigger based on a frequency analysis (de-
tection) which allows discarding about the
70% of incoming potential events and then
a more accurate analysis is needed to pick
up the true events (picking). This second
step is very CPU consuming. A network
shaped like the one in fig. 6 (but with 10
additional inputs containing the normalized
envelope of the first ten seconds of seismo-
grams) was trained to distinguish between
true and false events coming from the de-
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Fig 6. Neural network used in seismic event classifying (Romeo, Mele and Morelli 1991).
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Fig. 7. Principle of an auto associative network. The discrete time series at the input is scaled through

some delay blocks (rectangles at the left of

tection stage. For this purpose 2599 pat-
terns coming from all the network stations
were used. The perceptron was tested off
line with the data produced by a 15 day ob-
servation period. Unfortunately the percep-
tron was not able to recognize all the seismic
signals: 0.05% of the incoming data was dis-
carded by the perceptron although generated
by true earthquakes. This means that about
10% of all seismic signals are erroneously dis-
carded by the perceptron. However this test
was not completely unsatisfactory. The per-
ceptron avoided useless data to be processed
at the picking stage. This resulted in a CPU
time reduction of about 64%.

S. Event detection using an auto associative
network

The principle of an auto associative neu-
ral network is illustrated in fig. 7. The four
blocks on the left represent a series of de-
lay cells used to obtain a series of time-
scaled samples at the net input. The goal of

the picture) and presented at the
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net input.

the net is to reproduce the input signal at
the output (NeuralWare, 1991).

This is a very difficult task for the net.
First of all because the simple operation of
reproducing the input signal at the output is
a linear operation, but the use of a non lin-
ear activation function (like a sigmoid)
makes the net non linear. Secondly because
there are only 3 neurons in the hidden
layer, compared to 5 input-output. This
means that the net, to perform the simple
transfer job, must compress and decom-
press the signal. This is possible only if the
net knows something about the signal. If a
signal which did not appear in the training
data is placed at the input, the net can not
reproduce it. Figure 8a-c illustrates the re-
sponse of an auto-associative net trained
with a sine wave.

When we place a corrupted signal b) at
the input, the net responds with an uncor-
rupted signal c). The possibility offered by
this comportment may be used to build an
adaptive neural trigger (Romeo and Tac-
cetti, 1993) (fig. 9). An auto-associative net
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Fig. 8a-c. Waveforms for training and testing an auto-associative neural net. a) Training signal;
b) corrupted signal; ¢) net output when excited by b) after being trained by a) (Romeo and Taccetti,

1993).
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Fig. 9. Adaptive neural trigger (Romeo and Taccetti, 1993).

is real-time trained in order to minimize the
error at the output. The rules used to do
that are still based on the minimization of
an error function:

E(w) = E | I; = 0O I 65.1)
E(wy) - Ey .

Wk(—Wk+a'
Wi
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In the formulas above the k index indicates
all the weights, regardless of their position
in the net and the i index indicates the in-
put-output couples. The value E,; indicates
the error made for a single input pattern.

The block diagram in fig. 9 represents
the real time trained auto-associative net.
A training step is performed every time a
new sample is presented to the input. The
E(w) error function is present at the sum-
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ming of the outputs, and represents the
rate of change of the signal characteris-
tics.

The behavior of the net output during
the training with a sine wave is shown in
fig. 10. The learning arrow indicates the
progress of the training procedure. At the
beginning the untrained net output was a
straight line. At the end the output curve is
a sinus.
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In fig. 11 we see the net error using a
corrupted sine.

The corruption (a couple of wrong sam-
ples, like in fig. 8) appears roughly at sam-
ple 480. The net needs about 200 samples
to learn the signal’s characteristics. After
sample 250 the error is almost 0. The error
increases when the net encounters the cor-
ruption (near sample 480). This adaptive
trigger was tested for earthquake detection.

learning

Fig. 10. Behavior of the real-time-trained auto-associative net output, excited using a sinus wave

(Romeo and Taccetti, 1993).
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Fig. 11. Behavior of the normalized error output using a waveform containing a corruption (Romeo

and Taccetti, 1993).
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Fig. 12. Error output exciting the net with a seismic event (Romeo and Taccetti, 1993).

We used sampled data from the Italian Na-
tional Seismic Network; it uses about 100
vertical short period sensors (Teledyne
Geotech S13) sampled at 50 sps. Figure 12
illustrates the error signal obtained by feed-
ing a seismic signal to the trigger.

To test the trigger we used a collection
of 50 seismograms from the seismic net-
work data base, taking care to select small
events. The net shape was determined em-
pirically and the choice of 40 input, 12 hid-
den, 40 output realized a good compromise
between computing speed and perfor-
mance.

Unfortunately the only events available
for our test were those already detected by
the seismic network event detector (which
uses a filtered sta/lta algorithm).

In order to have seismic events more dif-
ficult to detect, we used a simple algorithm
to decrease the signal-noise ratio: each
sample of the signal was multiplied by a
factor depending on the average of the ab-
solute value of the signal near the sample
itself. The signals produced in this way are
much more difficult to detect with a classi-
cal unfiltered sta/lta method.

All the signals were fed to the neural
trigger and produced a significant increase
of the error signal at the beginning of the
seismic event. Some of them are shown in
fig. 13a-c.

Figure 13a illustrates a regional earth-
quake. Though SNR is low, the net does
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Fig. 13a-c. Three examples obtained using the
net of fig. 9 with different kinds of seismic sig-
nals (Romeo and Taccetti, 1993).
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not have difficulty in detecting the earth-
quake. Figure 13b,c illustrates teleseisms
which appear hidden by the noise. The net
still gives information about the presence of
a seismic event.

6. Conclusions

Neural nets are powerful tools in ap-
proaching problems that can not be de-
scribed using a classic algorithmic strategy.
The potentiality offered by neural networks
to be trained by examples is useful in build-
ing event detectors and classifiers without
formalizing classes of events. The simple
applications reported show this possibility.
A fully connected multi layer network can
be applied to event classification and
proved to be rather faster in comparison
with other methods. This may help saving
CPU time. A neural network trained to
recognize true seismic events allowed to
save about 70% of computing time in an
automatic event detector. The auto associa-
tive nets may be useful in building triggers.
The possibility offered by the adaptive neu-
ronal trigger may be used when the modifi-
cation of the signal characteristic is signifi-
cant in detecting an event of interest. A
real time trained auto associative net builds
an internal model of the input signal and
the error made in reproducing the signal in-
creases when some modification of the in-
put signal prevents it from matching the in-
ternal model. This method was successfully
tested using 50 seismograms from the Ital-
ian National Seismic Network. In this ex-
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periment the auto-associative trigger offers
a superior performance, if compared with
an unfiltered sta/lta trigger, and almost the
same if compared to a well designed fil-
tered sta/lta. The advantage is that it does
not require a preliminary examination of
the signal thanks to its auto associative be-
havior. The disadvantage is the computing
time, which is higher if compared to the
other types of trigger.
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