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Abstract

The modelling of the earth gravity field is fundamental for all the sciences related to surveying, to the study
of the internal structure of the earth and of its behaviour. For this reason one of the priorities of the
International Geoid Service is collecting existing models and developing new models. In the present work a
new method is introduced to compute the geopotential coefficients starting from the integral problem of
altimetry-gravimetry by means of biorthogonal series. The theoretical discussion of the method is followed

by the description of the software program (BOSALT
tests (with simulated data). This paper was originall
ternational Summer School of Theoretical Geodesy «S

in Trieste (Ttaly) from May 25 to June 6, 1992.
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1. Introduction

The knowledge of the gravity field of the
earth and its anomalies provides fundamental
information for the construction of physical
models of its internal structure and dynamics.
Up to now, the techniques developed and the
methods used to determine the parameters de-
scribing the spatial variations of the Earth’s
gravity field have produced models having
different resolutions and precisions.

The classical methods to determine global
gravity models consist in combining, in the
least squares sense, different sets of normal
equations coming both from the perturbation
analysis of different satellite arcs and from da-
ta collected on the earth surface. Therefore,
the data used to estimate the geopotential
coefficients are:

1) on the earth surface: gravimetric and as-
trogeodetic (vertical deflections) measurements,

) implemented for the computation and by numerical
y presented by the authors as a seminar at the In-
atellite Altimetry in Geodesy and Oceanography» held

observations of the torsion balance (locally);
2) analysis of the perturbations of satellite
arcs;
3) radaraltimetric measurements.

The first set of coefficients were deter-
mined by the analysis of the perturbations of
satellite arcs by Kaula (1966); since then sev-
eral models have been computed and after-
wards improved by different research groups
in Europe and in the USA (the French-Ger-
man GRIM models, the GSFC models, the
Hannover University models and the OSU
models).

The different solutions are due to the fact
that the various groups make use of different
data sets, different procedures and different
numerical methods. It has been proved (Mi-
gliaccio and Sansé, 1989) that this may give
rise to relative differences between the models
already amounting to 100% at harmonic de-
gree 1=25.

Besides it has to be remembered that the
classical satellite methods only provide the
low frequency part of the field, while the data
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at ground level provide the high resolution
part, thus leaving a lack of information at me-
dium wavelengths (typically in the range of
50 to 500 km): this makes very interesting the
development of new space techniques (like
Satellite to Satellite Tracking or Satellite
Gravity Gradiometry) with satellites at low al-
titude (about 200 km).

The work presented in this paper can be
considered within the limits of classical meth-
ods for global model estimation.

The original part of our paper is represent-
ed by a new approach to determine the gravity
model: starting from the boundary value prob-
lem of altimetry-gravimetry, the geopotential
coefficients are directly computed from the
observations by means of a proper biorthogo-
nal series.

This idea is already suggested, although
not presented in the same mathematical frame,
in a paper by Mainville (1987).

The first part of this report is devoted to
introducing and discussing the method adopt-
ed from a theoretical point of view, while in
the second part a numerical example is pre-
sented (with data simulated from the model
OSU91A), in order to test the reliability of the
procedure.

2. The altimetry-gravimetry problems

The problems of altimetry-gravimetry (Sa-
cerdote and Sansd, 1987) are part of the in-
tegral methods allowing for the estimate of
the geoid starting from geodetic measurements
referring to the earth surface, considered as a
boundary surface for the gravity potential. The
problem was firstly formulated and tackled by
Stokes (1849) who, at the end of the 19th cen-
tury, found an explicit solution on the sphere.
Significant developments of this theory were
subsequently due to Molodensky (Molodensky
et al., 1962) by setting a more direct problem
where the reference surface is the unknown
earth’s surface.

According to this problem, the gravity po-
tential w and the gravity vector g are deter-
minable (and therefore known) quantities on
the earth’s surface S, which is unknown; start-

ing from these assumptions it is possible to
solve for the surface S and the potential w
outside it.

In recent times, the development of geode-
sy (in particular satellite geodesy) has given
further impulse to integral methods leading to
the introduction of new problems, namely the
altimetry-gravimetry problems. In fact, while
satellite radaraltimetry allows to determine the
shape of the ocean surface, by means of ma-
rine gravimetry techniques, high precision
measures of gravity or of gravity disturbances
dg on sea can be obtained. The surface S can
be therefore suitably divided into two parts: S
(on sea), which is supposed to be known, and
S, (on land), which is unknown.

On the surface S two different kinds of
boundary data are given, depending on the
point, which may belong either to S or to S,.

Besides, two altimetry-gravimetry boundary
problems are given, depending on the kind of
data given on Si.

In the first problem (Sans6, 1981) the
boundary data are: the gravity potential w,
and the gravity vector g, = Vw on S, (un-
known), and the gravity potential wg = con-
stant on S; (known).

From these data one wants to determine S,

1
and u=w — 5 @*(x* + ¥ such that:

Vu=0 outside S
1
w=0(r) x| >0
|x|
) 2.1
w=w,
VW = gL ) on SL
w =Wy on S,

Now if (2.1) is linearized taking as refer-
ence surface a telluroid X such that Xg = S
and if the gravity potential w is approximated
with the normal potential U (w = U + T), on
X, the following boundary condition is ob-
tained:
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T +m-VDly, =m-A (2.2)

where m is the iso-zenithal field defined by:
m=—[Vy'-y (2.3)

and y= VU is the normal gravity vector.
Instead, on X the problem is already linear
and we have:

Tly, = 6w (2.4)

Let’s now introduce a simplification (spheri-
cal approximation) supposing the normal grav-
ity vector being of the type:

K

1=

(2.5)

~ Iy

with K = constant;

~ N~

= radial direction with respect to the center

of mass of the telluroid.

The first problem of altimetry-gravimetry
in spherical approximation can be therefore
expressed in the simplified form:

( VT =0 outside X
1
T=0 (—) r—
r
1 (2.6)
2T T
_h__—lZL:AgL on %,
r ar
L Ty, = Swg on X

In the second problem of altimetry-gravi-
metry (Holota, 1980; Barzaghi er al., 1990;
Sacerdote and Sansé, 1983) the boundary data
are the same as in the first one (w, and g;) on
S, while on S; the known quantity is
8s = |Vw|. After linearization, in the hypothe-
sis of spherical approximation, this problem is
represented by:

.
VT=0

outside X
1
T=0 (—) rso
r
) 2.7
T oT
- 7 - a—rlzL = Ag, on %,
oT
- Er_,zs = g, on X

The two altimetry-gravimetry problems
have different applications depending on the
actual available data on the surface.

The second problem is typically used for
the local estimate of the geoid (particularly in
the case of islands of small or medium dimen-
sions; for example, regarding the Mediterrane-
an Sea, Sicily and Sardinia).

Instead, the first problem can have more
general applications; in fact the boundary da-
tum on the sea surface is the anomalous po-
tential 7, which can be obtained by treating
radaraltimetric observations.

As these observations are (by their nature)
omogeneous and equally distributed, it is pos-
sible, as we will see, to utilize the first prob-
lem for the estimate of global models of the
potential.

3. Estimate of the geopotential coefficients
with the first altimetry-gravimetry
problem

Let’s reconsider the altimetry-gravimetry
problem in the simplified form obtained in the
case of a spherical approximation. We must
refer to expression (2.6).

The boundary conditions can be reorga-
nized by introducing the boundary operator B
defined as:

Br= g1+ L _ 2, 3.1
R Oy, or R A '
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where: Y, = characteristic function of sea, that

1S:
1 if PEX
Xs = (3.2)

0 if P &%

X = characteristic function of land;

R = average radius of the earth;

O-T . . .
—— = regularization factor, accounting
Ong  for the two different kinds of

boundary data.

As for the % factor let us note that this
A

is «regularizing» %nly in the sense that by in-
troducing it we can define the known term of
our problem so as to avoid very large discon-
tinuities across the shore lines (e.g. disconti-
nuities of 5 orders of magnitude). Such huge
discontinuities in fact can generate very large
degree variances at high frequencies, degrad-
ing the approximation we are going to use by
discretizing integrals.

We decompose T on the basis of the spher-
ical harmonics

T=YT,Y, (3.3)
Im

where Y,

m are normalized according to the
norm

1 2
—| Y, do=1
4r)

and we use the definition of the operator B to
get

o 1—-1
BT = ZTlmBYIm = Zsz{?Cs +— XL}
Im Im

O, R
34

8

Let’s indicate the boundary data with f:

O,
f=xT,+ = Mg (3.5)

Ag

where T, and Ag, are the observations (on sea
and on land respectively) of the anomalous
potential and of the gravity anomaly.

We consider now the boundary equation:

BT=f (3.6)

in order to directly estimate the geopotential
coefficients T,, from the observations f. This
is possible, as we will see, if it exists and if it
is possible to construct a sequence biorthogo-
nal to the sequence {BY, }.

Let’s then briefly introduce the biorthogo-
nal sequences and their main properties relat-
ed to our purposes.

The sequences {a;} and {b;} form a biortho-
gonal system in a Hilbert space # if:

<a,b> =6, 3.7)

here <a,b> denotes the natural internal prod-
uct (scalar product) of the space ¥, which
in this paper will be mostly L?(0), (i.e.

1
<ab> = 4—7J a(9,)n(¢,A)do), but can have

a more general expression, compatibly with
the definition of a Hilbert space.

If {a} is a complete sequence in ¥, also
{b} is complete; every element i of % can
therefore be expressed either by:

h=Y<ha> b, (3.8)

or by:

h=Y<hb>a, 3.9)

Let’s now consider (3.9) and let’s take as
space ¥ the one spanned by the Y,,, that is a
space of functions which are square integrable
on the sphere.

If we can construct a sequence {Z,} bior-
thogonal to {BY,,}, it will be:

f = Z<ﬁzlm> BYlm

Im

(3.10)
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and consequently:
1
TIm(P) = <.flzlm> = TJf(P)Z[de (311)
T
o

Before constructing the biorthogonal series
{Z,}. its existence must be studied. This im-
plies studying the characteristics of the oper-
ator B. In Sansé (1993) it is shown that the
operator B possesses the property of Fred-
holm’s alternative, so that, if {¥, } is an ortho-
normal basis in the space ¥, a series biortho-
gonal to {BY, } must exist.

Such a series is a solution of system:

<Z

rq’

BY,> =65

Pl gm

3.12)

However the problem, formulated in this
way, is not solvable because there are infinite
unknown elements Z,,

If we want to practically determine the se-
quence {Z, } the system (3.12) must truncated;
this implies the hypothesis that 7 is of finite
degree:

!

max

!
T = Z Z TImYZm

1=0 m=-|

(3.13)

so we look for the biorthogonal sequence 1z}
with p = 1,...,[_ . and —I=g=1 which satisfies
the condition:

(3.14)

471' ‘Pg Im Pl gm

o

LJZ BY, do= 6,8

In order to simplify the mathematical nota-
tion, let’s also rearrange the harmonics associ-
ating to the indices / and m the index J and
let’s introduce the new symbols:

BYlm=I/Vj
quzbk

which take into account the previous corre-
spondence.
In this case (3.14) simply becomes:

L f b(PYW,(P)do =&, (3.5

4

o

For what concerns the construction of the
sequence, we first of all observe that, once the
set {W}, j =1...., L, is given, {b,} isn’t univo-
cally determined.

In fact, if W is the space spanned by the
{W} and W its orthogonal complement, and
if the following condition holds:

<bW> =g, (3.16)

we have also:

<b, + w'W> = Oy YwteW  (3.17)

It is therefore necessary to define a crite-
rion in order to make the b, unique.

A possible criterion is for example the
minimum norm: from it comes that the bior-
thogonal sequence b, necessarily belongs to
the space W. In fact if we consider any
b; = b, + by, with b, € W and b € W™, con-
dition (3.16) is still satisfied, but we have:

T f bPdo > f bido=|b| (3.18)

le3 [e2

As a consequence the b, can be obtained
applying the minimum norm criterion as those
linear combinations of the W,

L
b= Y W, (3.19)
j=1

which satisfy equations (3.15). In this case
they are given by:

(b, wao =L i WW.d
- oO=— Ao =
471_ kTS 471_ [:1#1 1"y

L uk
— Rl —
= [; 4EJW,WId0' =3,

c

(3.20)

and for them holds:

fb,f do = min

o

Although the problem of constructing the
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b, is correctly set from an analytical point of
view, it does not possess an easily derivable
solution. A better procedure in the determina-
tion of the biorthogonal sequence may be em-
ployed, taking into account the fact that our
goal is to,use the sequence in order to esti-
mate the T,, given by the relation:

T
T am

1
kaf(P)ddp

o2

(where the symbol A denotes the estimated
value) or better, if we want to practically
compute the coefficients, by the discretized
expression:

/T\—lbe—PS 3.21
k_47[i:1 k(i)f(i)i (3.21)

in which S, are the areas, of center P, forming
the grid used to discretize the earth’s surface
and M is the number of areas. In (3.21) we
have introduced the approximation:

1 _ _
fP) = ;ff(P)dc —FE) =7, 6w
‘ S

i

Starting from (3.22) is then more conve-
nient to represent the b, as:

M
b(P)= Y, Xx(P)

(3.23)
i=1
with:
1 if P €S,
X(P) =
0 if PEZS,
In this way we directly get:
L fPra, = 3 2 sipra
ar d ¥ 5 i=1 '

" (3.24)

1 & -
=— )Y ASf (P,
n D ST P

so that the estimate of the T, is directly ex-
pressed as a function of the observable.

Yet if we put, as it is natural, M > L (that
is the number of the areas, and then of the
observations, larger than the number of the
coefficients to be estimated) the AY; coeffi-
cients are still not unique and the problem
consists also in this case in applying a mini-

mum norm criterion, that is:
1 M

f bido =~ Y (S, = Y, (AY’p, = min
T =1 i=1

o (3.25)

M

i

with p, = w
T

Let’s minimize the previous relation by
means . of the Lagrange multipliers, consider-
ing as bond conditions the biorthogonality
ones, given (for k£ fixed and j=1,..., L) by:

1 [ ¢ = 1
— Ny Wdo= ) Ap,— | Wdo=§,
47[[,_21 1%1 J ,:Zl lpl S,j J kj

[ S;

(3.26)
Setting:
1
? Wdo = A; (3.27)
i S,‘
we have:
1 M L M
721 A)’p — 21, J/]k< Zl /lf-‘p,-A,.j) = min
i= j= i=
(3.28)

in which the y} are the Lagrange multipliers.
Minimizing (3.28) we have, V i:

L
;{‘:‘cpi - D ; ’}/]IFAij =0

J

that is:

L
K=Y 1A, (3.29)
j=1
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Substitution of (3.28) into the orthogonality
conditions gives
L M
z ﬁ( Z Pi Ay Aij) = 5@- (3.30)
I=1 i=1

=
which can be written in the compact form:

G-N=1 (3.31)

by introducing the matrices:
G =1y}l
N = A"PA, A = [A;] and PP = [p,]

where A" is the transpose of the matrix A.
The solution of (3.31) gives the estimate of
the Lagrange multipliers. This passage, in-
volving problems related to the inversion of
matrix N, in general full and of large dimen-
sions (see section 4), can be avoided. In fact
let’s suppose for the moment that the La-
grange multipliers are known; the sequence
biorthogonal to the {W} is given by:

M L
;)\k = Z 2 ?/fAiI

1
— (3.32)
i=1 Pi I=1

Since the {b,} is biorthogonal to the W
we know that:

M A
k
i

A A 1
T,=<b,f>= 4—f X(P) f(P)do =
T

o

i=1

MA
= lfpif P)

=

(3.33)

A
substituting in the previous expression the A
given by (3.29) we obtain:

A A —
T, = Y fz piAf (P)

1 i=

D1~

(3.34)

Then the geopotential coefficients are ob-
tained from

T=Gd (3.35)

with 7= [7,...T,] and d = A*PF, J = [F(P,)

- f(P,)], which simply implies the solution of:
G'T=d
and therefore:

NT =d

(3.36)

4. A numerical experiment

In this section we shall present a numerical
experiment which was performed in order to
assess the validity of the equations obtained in
the former part of the paper.

The theoretical formulas were converted
into suitable algorithms and implemented in a
Fortran program running on a Unisys 2200
computer.,

As this was just a first test of the theory,
no real data were used. Instead, the observa-
tions were simulated according to a scheme
which, although simplified, was a quite real-
istic one.

The earth was covered with a regular ge-
ographical grid having block size equal to
5° X 5° as a consequence the coast-lines were
approximated and square-shaped. The blocks
were superimposed on a planisphere obtained
with a Mercator cylindrical projection.

An observation was supposed to be per-
formed at the center of each block, represent-
ing the mean value of all observation perform-
ed on that block area according to the formula
(3.22).

Introducing the characteristic functions of
sea and land the expression of the observation
at the point P, can be written, for the purpose
of programming, in the following way:

- O;
FE) =T, +—

Ag

“Ag,cx (4

The factor 6,/0,, must be introduced in or-
der to obtain a homogeneous set of data start-
ing from the original T and Ag values.

In fact one must remember that the differ-
ences between T values at the sea level and
Ag values on land are of the order of 10°. In
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particular, the values we simulated on sea and
land (by means of software for harmonic syn-
thesis on the sphere and using the OSU91A
model (Rapp et al., 1991) with coefficients of
degree 10 to 35) had the following character-
istics:

_ GM
T=02025-10"7-—
R
GM
0, = 0.6034-107° - —
R
_ GM
Ag =0.3013-107% - —
R
GM
Oy, = 01284107 —=

GM = gravitational constant x earth’s mass =
3.986009 « 10" m®/s%, R = mean radius of the
earth = 6371000 m.

The f (P) values obtained according to the
formula (4.1) had mean value:

f =02145-10"7 GM/R
and mean square error:
0, = 0.6001 X 10~° GM/R

The f (P) values represent the «known
term» of our problem. Though of course it is
not a least squares problem, we shall use the
same notations and terminology of least
squares as they fit our purpose equally well.

Now let’s turn to the algorithms for the so-
lution of the altimetry-gravimetry problem
with the use of biorthogonal sequences. What
we want to achieve is the estimate of a geopo-
tential model which, under our simplified as-
sumptions, has coefficients ranging from de-
gree 10 to degree 35.

The first step we must consider is how to
form the elements of the «design matrix» A.
The A;, given by (3.27), represent the mean
values of the harmonics up to degree and or-
der L: in our case L = 35 (remember that we
have also L, = 10).

10

Using again the characteristic functions y;
and y,, the value of W, is given by:

Or
W, =1x+ pu

Ag

[—1
'TZL Y, 4.2)

where Y, is the harmonic function j. Note that
indexes /,m usually denoting a harmonic func-
tion have now conveyed into the single j in-
dex.

Index i refers to the S, area on the sphere.
A simple way (which of course introduces an
approximation in the computations) to obtain
the mean values of the harmonics is to use the
Pellinen f, factors (Pellinen, 1966):

2 1
1 —cosy 2[+1

[EH (cos y) — P,_, (cos w)}

B

4.3)

They represent the eigenvalues of a mov-
ing average operator: the field is averaged
over a cap of radius y (Sacerdote and Sanso,
1991). The P, (cos y) are the fully normalized
Legendre polynomials.

Multiplying each harmonic by the corre-
sponding ﬂj coefficient, one obtains the AI.,. ele-
ment of the matrix A, according to the formu-
la:

A;=p, 1B W(P)] 4.4)
where p,, as already mentioned, is a weight
accounting for the fact that the area of the
blocks varys with the latitude.

The «almost equal» sign = is used because
we have approximated an integral of Y, over
a rectangular block by an integral over a cap
with the same area.

Equation (4.4) directly allows for the cal-
culation of the design matrix needed for the
solution of the problem.

Nevertheless, one should remember what
are the dimensions of that matrix: they are
fixed by two parameters, the block size and
the maximum degree of the model. In our
case, with block size 5° X 5° the grid is di-



The direct estimation of the potential coefficients by biorthogonal sequences

Table I. Memory requirements (Mbytes) for matrices A and N.

Memory requirements

Block size N. of rows L N. of coeff.
A N
5% 5° 2592 35 1369 28 15
3% X 3° 7200 60 3721 215 111
2°X 2° 16200 90 8281 1080 550
1°X1° 64800 180 32761 17000 8600
0.5° X 0.5° 259200 360 130321 270000 136000
vided into 36 X 72 = 2592 blocks represented
by the corresponding 2592 rows of matrix A. My = Zaﬁ A 4.5)
Its columns correspond to the (sine and co- !
sine) harmonics: 1196 in our case. The memo-
ry requirement for such a matrix is 28 Mbytes d = 2 a.f (4.6)
(in double precision), although nearly half this i
storage area can be saved if the «normal ma-
trix» N is directly computed. For larger prob- where:

lems this can be of great importance, as one
can see from table I, where the dimensions of
matrix A are reported, with the subsequent
memory requirements (in Mbytes) for A and

To directly compute both the normal and
the known normal term is quite easy, realizing
that the elements needed can be achieved
summing the contributions coming from each
row of matrix A: in this way only one row at
a time of A has to be computed and what’s
more it doesn’t need to be kept in core memo-
ry. The formulas allowing for such computa-
tions are the following:

j

n, = element (i,k) of the normal matrix N;
d; = element (i) of the normal term d,

a; = element (j,i) of the design matrix A;

J; = element (j) of the known term.

For a better understanding of how these algo-
rithms work, one may refer to fig. 1 and 2.
Formulas (4.5) and (4.6) correspond, from
the point of view of the software programmer,
to algorithms which allow for the computation
of the single contribution «j» to the element

ik
%/ %) ]

Nik

At

A N

Fig. 1. Forming the elements of N adding the contributions of the single rows of A.
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.

i

f

L

Fig. 2. Forming the elements of d adding the
contributions of the single rows of A.

required:
[nik]«j» = p} [Blwlt (})/) Bka (P/)]

[d],, = p,[BW,(P)IF,

“4.7)
4.8)

As one can see, the contributions «j» di-
rectly come from the point P, on the grid.

Before discussing the results obtained from
the numerical experiment, it is worth remem-
bering the problem of the compatibility of the
grid dimensions and the maximum estimable
degree of the model, which is not of secon-
dary importance.

The data we are using represent a sampling
of data on the sphere, so the whole matter is
settled by the Nyquist frequency rule, stating
that the Nyquist frequency must not be ex-
ceeded. For a problem on the sphere, things
are more complicated than in the unidimen-
sional case: anyway, from a practical point of
view, one can say that having an equiangular
grid on the sphere of 2M” points, the Nyquist
frequency is given by the number of parallels
(or rows), that are M or, to be more precise,
all the coefficients of degree M can be exti-

Table II. Characteristics of the test performed.

mated, except those of order M, as for them
the Nyquist frequency is reached.

Exceeding the Nyquist frequency means
giving rise to a folding of the spectrum with
power from higher frequencies entering into
lower frequencies and introducing an aliasing
effect.

In our case, with a 5° X 5° grid, M = 36.
Coefficients Cy4 54 and Ss4 5, cannot be estimat-
ed and, in order to be far from the Nyquist
frequency, we decided to deal with a model
with maximum degree equal to 35.

Now coming to the test and its results, the
main features are given in table II.

As one can see, it is a quite burdensome
problem from the computational point of
view, even if the model is not a large one.
The data were simulated by means of a proper
software for harmonic synthesis on the sphere:
coefficients of model OSU91A were used. No
noise was added to the Ag (on land) and T (on
sea) values obtained.

A new set of coefficients was reconstructed
using the Fortran program BOSALT, imple-
menting the algorithms for the solution of the
altimetry-gravimetry problem by biorthogonal
sequences.

The estimated set was compared with the
original OSU91A set of coefficients. First of
all, relative differences were computed accord-
ing to the formula:

A
d = Cosvon — C

r

(4.9)

COSUQIA

where:

Cosuoia = coefficient of model OSU9IA;
A

C

stimated coefficient.

The results were very good: examples are

Block size N. of blocks Model to be N. of coeff. CPU time
on the sphere estimated to be estimated hh:mm:ss

o o Lmin = 10 . .
5°X5 2592 L™= 35 1196 01:46:44

12
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0.17
0.16 —
0.15 —
0.14 —
0.13 —
0.12
0.11
0.1 -
0.09 —
0.08 —
0.07 —
0.06 — /
0.05 —
0.04 —
0.03 —
0.02 —
0.01 —

Diff. * 1.E6

Rel.

0 T T T T T T T T T T T
0 2 4 6 8 10 12

@ Degree 12 Order m
—— C coeff S coeff

0.14

0.13

0.11 —

0.09 —

0.07

Diff. * 1.E6

Rel.

0.05

0.04 —

0.02 —

@ Degree 13  Order m
—— C coeff S coeff

Fig. 3ab. Relative differences for degree 12 (a) and degree 13 (b), computed according to for-
mula (4.9).
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45

40 —

35 —

30

Diff. * 1.E6

Rel.

0 T T T 1 T S r I U T U I

0 4 8 12 16 20 24

@ Degree 24 Order m
—— C coeff

S coeff

0.4

0.3

0.25

. Diff. * 1.E6

Rel
°
o

|

0.1

0.05 —

0 T T T T T T T T T T T T
0 4 8 12 16 20 24

@ Degree 25 Order m
—— C coeff — S coeff

Fig. 4a,b. Relative differences for degree 24 (a) and degree 25 (b), computed according to for-
mula (4.9).
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0.6

Diff. * 1.E6

0.5 H

Rel.

0.4 H

0.3 —

0.2 H

0.1

0 T T T T
0 10 20 30

@ Degree 34 Order m
—— C coeff

S coeff

0.9 —

0.8 —

. Diff. * 1.E6
o
o
|

Rel
o
N

1

0.3

0.1 —

0 T T T T f T
0 10 20 30

@ Degree 35 Order m
—— C coeff

S coeff

Fig. 5a,b. Relative differences for degree 34 (a) and degree 35 (b), computed according to for-
mula (4.9).
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700

600 —

500

400 —

300

200 —

100 —

T
0.75 2.5

W/

N
o

25

x 1.D—6
@ /1 cos coeff.

{

320
300 |
280 |
260 —
240 |
220
200
180 —
160
140 — /.
120 -
100 —

60 — N\ _ )
40 - \ \ g

/

BZZ\N NN N

0.25 0.75 2.5 7

\,

02022772, 0

N

R\

25

x 1.0-8
@ 7] COS Coeff. SN SIN Coeft.

Fig. 6a,b. Histogram of relative differences obtained according to equation (4.9) (a) and equation (4.10) (b).
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given in fig. 3, 4 and 5. Attention must be
paid to the y-axis, where relative differences
are multiplied by a 10° factor. Both the lower
and higher degrees of the model Were recon-
structed equally well.

Another graphic evidence of the goodness
of the estimation is given in fig. 6a,b.

In fig. 6a the histogram of relative dif-
ferences calculated with equation (4.9) is
shown: nearly all differences are smaller than
0.5-1075.

Another kind of relative differences was
obtained with respect to the mean square val-
ues of the coefficients of each degree, using
the following formula:

COSUQ]A - C

4 =—Swia
ZC‘éSUQIA

The histogram of such differences is shown
in fig. 6b, giving another proof of the preci-
sion attainable by the method described.

Of course this was Just the very first test
performed. More refined computations need to
be done, in order to accurately check the pro-
posed method. The next steps to be taken are:

(4.10)

— adding a noise to the data, to see how it
propagates to the estimated model;

— treating real data of Ag on land and T on
sea, to deal with a real estimation problem.
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