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Abstract

Different quadrature methods in the spherical harmonic analysis of the geomagnetic field are compared. For
high degree and order coefficient calculations, the Gauss-Legendre quadrature has been found to be the best
method. The feasibility of this method has been tested here firstly on simulated global field values from
DGRFS80. Then, using this quadrature, the spherical harmonic coefficients up to degree n=134 for the
magnetic field of a simulated crustal model are calculated. Some interesting results in the behaviour of
spherical harmonic coefficients are considered.

Key words spherical harmonics — geomagnetic The objective of spherical harmonic analy-
spectrum sis (SHA) is to compute the spherical harmon-
ic coefficients (SHC) G ", H,” from a given
; set of observed field data.

1. Introduction SHA of the geomagnetic field is usually
The geomagnetic field between the Earth’s ~ done by using the method of least squares
surface and the ionosphere can be considered  (LS) In conjunction with a truncated spherical
to be curl-free. This allows the representation harmonic series up to a prefixed maximum
of magnetic induction B as the gradient of a value of degree and order. It has been used by
scalar potential V, which satisfies the Laplace many authors and refined in dlffgrent ways ei1-
equation. In spherical coordinates (r, 6, ¢) the  ther in the global case (Schmitz and Cain,

; ation | . 1983; Whaler and Gubbins 1981) or in the
general solution of Laplace equation is the in- s . . 4
finite series of spherical harmonics of degree ~ regional case (De Santis, 1991; Haines, 1985).
1 and order m multiplied by a radial function. ~ Due to the Lf:snormo}llls dcomputer memorg ;e—
In the case of internal geomagnetic field it js  duirement, method cannot ‘be used for

computation of high degree and order coeffi-
cients (above n=30). For the calculation of
x such coefficients the integration methods that

V=a Z Z (alr)" (G cosme + H}' sinmg) exploit the orthogonality properties of spher-
n=1m=0 ical harmonics are used (Alldredge and Kawa-
P(cosB) (L. saki, 1981; Cain er al., 1989, 1990; Kawasaki
et al., 1989; Schmitz ef al., 1989). Quinn and

where a is a reference radius of the Earth Barrick (1987) have used the Fast Fourier
(usually the mean radius 6371.2 km), r is the Transform (FFT) for the spherical harmonic
radial distance from the centre of the Earth, ¢ modelling of the geomagnetic field up to de-
and 6 represent longitude and colatitude, re- gree n=12, generating the data from WC-geo-
spectively. magnetic model. Judging from the intrinsic

given by:
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speed of FFT method (a few seconds for
n=12) and the small errors (differences be-
tween the input coefficients of WC-model and
calculated by FFT coefficients) one would ex-
pect to use this method for the high degree
and order coefficient calculation. But the FFT
technique requires a set of data strictly ar-
ranged in an equiangular grid covering the en-
tire surface of a sphere and an extension of
the grid in colatitude direction to the interval
(—m, 7). Such extention is described by Quinn
and Barrick (1987) but it is valid only when
the data are represented as a finite sum of
spherical harmonic terms (so it is more suit-
able for core field modelling).

In some other methods the Fourier analysis
in longitude and least squares in latitude or
different quadratures in latitude are used. See-
ing that the calculation results are mostly in-
fluenced by the integration in latitude we have
tested here different ways of such integration
on data simulated from a global model. De-
ducing that the best way is the Gauss-Legend-
re quadrature, we have used it also for the
SHA of a modelled crustal geomagnetic field.
The purpose of this latter analysis was to see
the behaviour of SHC at high degrees and or-
ders.

2. Different ways of integration for the
SHC computation

When the radial component B, of the field
is known on the sphere surface (of radius a),
taking advantage of the orthogonality proper-
ties of spherical harmonics, the SHC can be
recovered by integration on the sphere surface
(Schmitz et al., 1989):

2n (1w
} ={@2n + D/[4n(n + 1)]}(r/a)””J J
0 0

6, §)P"(cos 0){2?5%’} $in6d6de (2.1)

In practice, the double integral can be eval-
uated in two stages, first the part in ¢:

A,(0)
B,(6)

{cosm¢}d¢ m=0,1,2,.)

sinm¢

2r
} = (1/5,,,7[)[ B(r, 6, 9)
0

(2.2)
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(where §,, = 2 for m=0 and §,, = 1 for m>0),
then followed by the part in €

{ o } = 8,[2n + DA + D]0fa) j ﬂ
{ gzgg; } P" (cosB) sin6d 2.3)

In the following calculation, for numerical-
ly evaluating the first integral, the extended
trapezoidal rule (e.g. Abramowitz and Stegun,
1972) has always been used. For evaluating
the second integral, the above quadrature
method and the Gauss-Legendre quadrature
have been used and compared. B, data will be
simulated by DGRF80 (the definitive geomag-
netic reference field at 1980.0; Barraclough,
1987) on appropriate grids with maximum de-
gree n=10.

2.1. Trapezoidal quadrature on equal
longitude and latitude spaced data
In this case both integrals are numerically

evaluated by the same quadrature (trapezoidal)
method at r=a:

G,
H;

B,(6,9)P;/(cos0) - {

=

Nl 2

} ={2n + D/[4x (n + D]}

1 j=1

cosm¢, | .

sinm ¢j } sinBAGAY, (2.4)
where A6, = m/N,, A¢;= n/N,,
o= Jm/N,.

Generally the greater the numbers of inter-
vals N,, N,, the more accurate the SHC will
be. We have tested several 6 and ¢ divisions
and we have stopped at a reasonable division:
A6, = /100, A¢, = 27/400, (N, =100, N, =
400, number of data points 40 000). With this
procedure, the computation of Gauss coeffi-
cients from (2.4) gives a r.m.s. deviation: 1.66
nT.

In fig. 1a the differences between the input
coefficients (DGRF80 coefficients) and com-
puted coefficients are shown. For the number-
ing of coefficients in x-axis the notation
(Whaler and Gubbins, 1981):

6. = in/N,,
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Fig. 1. Differences between known input coefficients and coefficients computed by: a) trapezoidal quad-
rature on equal longitude and latitude spaced data; b) trapezoidal quadrature on equal subsurface division;
¢) Gauss-Legendre quadrature, depending on degree and order of coefficients.

B=n*+2m + ¢, where 2.2. Trapezoidal quadrature on equal
" subsurface division
o= [—1 for Gy m#0
0 for H)' and G, The integrals are computed by the same al-
gorithm (2.1) on synthesized data with a uni-
It can be seen that the differences are usu- ~ form division of 6 values: A = 7/N, but with
ally smaller than 0.2 nT, except some values: a variable division of ¢ values according to 6,
GI(B=1), G5(B=8), G2(B=24) etc., gen-  values:
erally for Gj,,, (n=0,1,2,3..); i.e for zero order B
and odd degrees. A¢, = 27/N,, 2.5)
In this specific case the data points are o ) )
denser near the poles (=0, 6= m) than where N,, (the number of divisions in ¢) is

is used.

along the equator. Dealing with a surface in- the integer part of 2N, sin6,. It follows that we
tegral on the sphere, an equal subsurface divi- have nearly the same subsurface on the
sion on the sphere should be better for the nu- sphere:

merical approximation (Schmitz and Cain,

1983). AS; = sinBAOAY,~(7/N,)> (2.6)
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Figure 1b shows the corresponding differ-
ences between input coefficients (DGRF80
coefficients) and computed coefficients for
N, =200 and 50 834 data points. As it can be
seen the new differences are a little smaller
than in the previous case (fig. 1b) for odd de-
grees (m=0) but a little greater for all other
degrees and orders. However, the overall
r.m.s. deviation was now smaller: 0.45 nT.

The biggest errors in the computation of
odd degree n and order m=0 coefficients by
trapezoidal and other quadrature were already
mentioned by Schmitz er al. (1989) (they
found biggest errors for those coefficients
with m=0 or 1 and with degree n of the same
parity as the largest coefficient in the input
coefficient set) and were attributed to «numer-
ical inexactness (referring to polynomials)» of

such quadratures. We think that, in our case,
this can be explained by the different accuracy
of equal spaced numerical integration (in 6)
for different parity of the integrated function
which is in the form (2.3), i.e. A, (6)P)(cos6)
sin@ for equal longitude latitude spaced divi-
sion and A, (6)P;(cosf) for equal subsurface
division. The term sinf has even parity in the
integration interval (0, ), so it does not influ-
ence the parity of the integrated function. For
m=0 the function Ay(0) = <B/(6, ¢)>, for
which the most important term is the dipolar
term, depends upon 6 as cos 6 and we can
consider it as an odd function. The parity of
P? is determined by the parity of n. So, when
n is odd the integrated function is even, other-
wise the integrated function is odd, as it can
be seen in fig. 2 (this figure shows two exam-
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Fig. 2. The graphics of integrated functions depending on colatitude.
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ples of A, (6)P;(cosé) function: the upper
graphic is for the case of n=2, m=0 and the
lower graphic is for the case of n=1, m=0).
For odd functions (as the upper curve of fig. 2)
the integration errors tend to compensate each
other in two half-intervals (0, 7/2) and (7/2,
m) while for even functions (lower graphic

of fig. 2) they tend to add in two half-inter-
vals.

2.3. Gauss-Legendre quadrature

The first integral is again evaluated by the
same trapezoidal rule (the same number of A¢
interval N, = 400 for each value of 0), while
the second integral is evaluated by using the

z N
f [(©do="Y f(0)a, @.7)
0 i=1

where the colatitudes 6, are the roots of Le-
gendre polynomial of degree N, the weights
o, are chosen so as to make quadrature exact
whenever f(6) is a polynomial of degree less
or equal to 2N-1. Here we have used the algo-
rithm given by Press et al. (1987) for the gen-
eration of 6, and @, which were the same as
those tabulated by Abramowitz and Stegun
(1972).

The differences between input and calculat-
ed coefficients (N=96, data points 38 400) are
shown in fig. lIc. As it can be seen, such dif-
ferences are smaller than 0.5 nT (apart from

Gauss-Legendre  quadrature formula (e.g. the second coefficient) and tend to be zero for
Abramowitz and Stegun, 1972): high degree and order.
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Fig. 3. The graphics of crustal field values along meridians ¢=0 and ¢=180 vs colatitude.
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Fig. 4. The SHC calculated by Gauss-Legendre quadrature and true SHC computed by Hurwitz formulas

from degree n=1 up to degree n=10.

The found r.m.s. deviation was definitively
better than previous quadratures: 0.10 nT.

3. SHA of a modeled crustal geomagnetic
field

The above analysis shows that the most ac-
curate way to compute SHC by integration is
the Gauss-Legendre quadrature method. It can
be successfully applied even when a fewer
global data are taken. The only disadvantage
is that it requires data taken from determined
points (6, must be a root of Legendre polyno-
mials), which is difficult to realize in practice
(obviously true data are mostly sparsely dis-
tributed on the sphere without any relation
with Legendre polynomial zeros in colatitude).

Then we have used the Gauss-Legendre
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quadrature for SHA of a geomagnetic field
similar to that originated in the crust. For the
simulation of such a field, we constructed a
global model of the Earth’s crust similar to
that of Meyer et al. (1983). We did not aim at
constructing a truly realistic model of the
whole Earth’s crust, but to acquire a data dis- °
tribution like the crustal geomagnetic field.
We chose a simple crustal model composed of
one-layer spherical blocks with the same
thickness (30 km) and the same volume 7 of
that of a spherical block of 4° X 4° at the
Equator. Considering only induced magnetiza-
tion, for the calculation of the magnetic field,
each block was substituted by a single dipole
placed at the center of the block (2548 dipoles
in total at the same depth of 15 km) and di-
rected parallelly to the DGRF80 in that place.
The magnetic moment of i” block is:
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Fig. 5. The SHC calculated by Gauss-Legendre quadrature and true SHC from degree n=46 up to

degree n=49,

m(r; 6, ¢) = x1F, 3.0

where F, is the total intensity field of
DGREFS80 at the block centre P(r, 6, ¢), x, is
the susceptibility of i block. The susceptibil-
ities of blocks are selected from a ten values
table (Meyer et al., 1983) by a random proce-
dure. The spherical components of dipole mo-
ment are calculated by DGRF80 elements (in-
clination I, declination D) at the corresponding
point P;:

m, = — mgsinl,

my = — mgcoslcosD,
my = mycoslsinD, 3.2)

The contribution to the potential of the

61

magnetic induction B from the i dipole cal-
culated to a fixed external point P(r, 6, ¢) is
(in SI formulation):

Vi, 6, ) = (u/4mm, - L/’ (3.3)

where [; is the vector distance between the di-
pole position P, and the point P. Expressing
the direction cosines between the spherical
components m,, mg, m, and the vector I, by
the known coordinates of m, P, P. we can
find:

Vi = W/Amlm, (ra; — r) — myrb, + myre)/I}
(3.4)
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= cosfcosf, + sinBsinBcos(¢p — ¢,)
= cos6sinf, — sinfcosOcos(¢p — @)

= sinsin(¢ — ¢) (3.5)

The vertical component of the field (Z, =
— B,, = dV/or) is:

Z = (/,10/475){171,_1_[a,-(l/l3 + 3r(ra; — /) — 3r,
(ra, = NIEY + mg[— bA/E + 3r(ra; — r)/E)]
+ m¢’[ci(1/l,.3 + 3r(ra;, — IO} (3.6)
Summing up for contributes of all dipoles

we have calculated the Z component of crust
model field for r=6371.2 + h (for a possible
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satellite survey h=450 km was chosen) at grid
points appropriate for Gauss-Legendre algo-
rithm. The behaviour of Z along the meridians
¢ =0 (dashed graphic) and ¢ = 180° (solid
graphic) from such a synthetic model is
shown in fig. 3.

In order to estimate the accuracy of SHC
calculation of the crustal field, we have com-
pared the SHC values calculated by the
Gauss-Legendre algorithm with the exact val-
ues calculated analytically. For an internal ec-
centric dipole distant r, from the center of a
spherical Earth of radius a (,<<a), in colati-
tude 6, and longitude ¢, it may be shown that
the SHC of its external field are given by the
sum of three sets of coefficients (Hurwitz,
1960):
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Gy (Li) = (m,Ja*)(r/a)""'nP.(cos@)cos(mp,)

H(Li) = Gr(Litg(mg)

GI2.i) = (myfa’)(rJay’ ™ dP™(cos)/d6cos(md)

H(2,) = G(2,Dtg(me)

Gr(3.,0) = —(m¢/a3)(r,-/a)”‘1mP,'f(cosG,)Sin(m(/ﬁi)/
sin(6)

H,(.0) = =G3,i)ctg(mg) 3.7

Summing up for all our eccentric dipoles,
we found the exact values of SHC of our
crustal model field. Such values are referred
below as true SHC (because calculated with
the direct formulas (3.7) by Hurwitz).

Since it is impossible to represent all coef-
ficient values of the modelled crustal we have
shown some of them: in fig. 4 for degree from
n=1 to n=10 (the dashed graphic is for
Gauss-Legendre quadrature and the other
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The power spatial spectrum (at the reference radius of 6821.2 km) depending on degree n.

graphic shows the true SHC); in fig. 5 for de-
gree from n=46 to n=49 (the upper graph-
ic a) is for Hurwitz’s method, while the lower
graphic is for Gauss-Legendre quadrature). It
can be seen that both graphics have the same
going and the differences between the exact
values of coefficients and calculated by
Gauss-Legendre algorithm coefficients are
generally much smaller than coefficient val-
ues, except few cases where the differences
are of the same order as the coefficient values.
To represent the contribution of all coeffi-
cients to the magnetic field we calculated the
spatial power spectrum (with n up to a maxi-
mum degree N, = 134) (Lowes, 1974):

W, =+ 1) Y [(GY +HEHY] (3.8)

m=0
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depending on truncation level.

Figure 6 shows the spatial spectrum (in
logarithmic scale) of the crustal field for two
methods of SHC calculation (the dashed
graphic is obtained with Gauss-Legendre
quadrature and the solid graphic is obtained
with Hurwitz method). Both graphics have the
same pattern; the spectrum for Gauss-Legendre
quadrature is a little higher than the spectrum
for Hurwitz method. It seems that the contri-
bution of higher harmonics increases getting a
sharp maximum at about n=90. This is ex-
pected from our crustal model, because there
must be an important harmonic with degree
n=360°/4°=90, since 4° is the angular dimen-
sion of each crustal block (see also fig. 3).
After such a maximum the increase of spec-
trum becomes smaller.
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The r.m.s. deviation between input field data and calculated field by the truncated spherical series

It can be shown that a model of N purely
random radial dipoles at radial distance oa
(¢ =rja, with r, radial distance of dipoles
and a the radius of reference sphere) has a
spatial spectrum proportional to Nn*(n + 1)o?"
(Lowes, personal communications). We tested
such a formula for our model of dipoles at
depth 15 km and a=6371.2 km (a = 0.98195).
It would be expected the maximum of spec-
trum at about n=676. This case should not al-
low us to see this maximum. On the other
hand if the radius of reference sphere of the
spherical harmonic expansion of the magnetic
potential is a=6371.2+450=6821.2, it would
be expected the maximum at about n=20.

From the calculated spectrum of our crustal
model field at reference ,=6371.2 km, we
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have calculated the corresponding spectrum at
the reference a,=6821.2 according to the for-
mula (Meyer er al., 1983):

Wia,) = W (a) - (a/a,)*"? 3.9

Such a spectrum is shown in fig. 7 (the
dashed graphic is for Gauss-Legendre quadra-
ture and the solid graphic is for Hurwitz
‘method), where the maximum at about n=20
can be seen. This confirms that our crustal

rodel is close to be a model of N purely ran-

dom radial dipoles and the decrease of the
spectrum the Earth’s surface is expected to be
at n higher than n=134.

We have recalculated the crustal field val-
ues in a meridian by the truncated spherical
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harmonic sum when the SHC are those calcu-
lated by Gauss-Legendre quadrature. Those
values are compared with the modelled crustal
field values at the same points. In fig. 8 is
shown the r.m.s. deviation between the model-
led crustal field values and the recalculated
field values for different truncation (maximum
degree N,.). It needs a high level of trunca-
tion (N,,,,>100) to get a reasonable deviation.
There is amelioration during the increase of
truncation level up to N, = 80 and there is
an aggravation around N, = 90; after this,
the deviation decreases with the increasing of
truncation level. After including in the spher-
ical harmonic sum the harmonics with degrees
around n=90, we achieved the r.m.s. devia-
tion one order smaller than the mean field val-
ue.
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4. Conclusions

In the first part of the study we have
brought out the advantages of Gauss- Legen-
dre quadrature for the SHC calculation. Hence
in all following calculations this algorithm
was used.

We have tested the SHC calculation from
the simulated data of crustal model field at
different altitude h=0, 10, 100, 450 km and
we noticed that the nearer the data are to the
dipoles the greater the differences between the
calculated SHC and true SHC. In order to re-
veal if there was a numerical instability we
analysed the crustal model field adding to it a
constant vertical field (field of a centred mo-
nopole) of 500 nT and we found the same
values of coefficients. Then we thought that
there was an «aliasing» effect. Plotting the
values of the crustal model field along a me-
ridian we found abrupt changes near the di-
poles, which are not reflected in our data sam-
pling. We tried a denser data grid and, as it
can be shown (fig. 9), a smaller deviation
from the true spectrum i.e. a smaller «alias-
ing» effect was found. In fig. 9 are shown the
spectra for calculated SHC from the data at
h=10 km of 115 200 grid points (dashed-point-
ed graphic) and of 76 800 grid points (the
dashed-lined graphic), for calculated SHC
from data at h=100 km of 76 800 grid points
(dashed graphic) and for true SHC (solid
graphic). As it is known the «aliasing» effect
can be eliminated by low-pass filtering the
original data; in practice this was made by up-
ward continuing the field at h=100 km or at
h=450 km.

Seeing the deviation between the modelled
field and the recalculated field, we can con-
clude that for the SHA of a crustal field more
than n=134 degree SHC computation is need-
ed (being always under the Nyquist frequen-
cy).
Looking at the SHC values, we noticed
that the greatest coefficient value is that of
n=1, m=0 which belongs to the dipolar term.
The reason could be that we have considered
only induced magnetization from the core
field, which is mostly dipolar.

In the well known procedure of separation
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the crust and core contribution to the internal
geomagnetic field (Benton and Alldredge,
1987; Cain et al., 1983; Lowes, 1974; Szeto
and Cannon, 1985), (based on the fact that the
spectrum of the whole internal field has two
different slopes above and below degree 14:
the low-degree part of the spectrum is as-
signed to the core and the remainder to the
crust), the low degree harmonics of crustal
field are included in the core contribution.
Even the SHC of crustal origin are too much
smaller than the SHC of core origin (in our
crustal model the first coefficient is nearly
10™* times smaller than the first coefficient of
core field). We must keep in mind that in low
degree and order harmonics of whole internal
field a minor part of crustal contribution is
hidden (Wonik, 1990).
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