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Abstract

We present and test in detail with synthetic data a method which may be used to retrieve the parameters de-
scribing the induced polarization properties of media which fit the generally accepted frequency dependent
formula of Cole and Cole (1941) (CC model). We use time domain data and rigorous formulae obtained from
the exact solution of the problem found in a previous note (Caputo, 1996). The observed data considered here
are the theoretical responses of the medium to box inputs of given duration in media defined with different pa-
rameters; however, as is usually done, only the discharge data are used (Patella et al., 1987). The curve at the
beginning of the discharge is studied in some detail. The method is successful in identifying the parameters
when the data fit the CC model; if the medium is not exactly of the CC type the method may also help identify
how the medium departs from the CC model. The Laplace Transform of the discharge for a box type input
data is also given.

Key words induced polarization — Cole-Cole nomena of the medium using time domain ob-
model — constitutive equations servations.

In this note in order to illustrate the method

1. Introduction of retrieval of the values of the parameters &,

€., T, z we shall use the response to a box input

This note, as the title indicates, follows and of unit amplitude and duration T (Caputo,

completes a previous note (Caputo, 1996) in- 1993, 1996)
vestigating a model of induced polarization
which, with the introduction of fractional order

5 Dy, () =¢€.+B(sinmz/n jl—ex —u'1/7)) -
derivatives in the relation between electric o () ( Z)O( P )

field E and induction D, fits the usually ac- (1.2)
cepted frequency dependent formula of Cole )
and Cole (1941). The relation is dul(u”+2ucosmz+ 1) for0<r<T

D+TDY=&E+e.TEY (L) p, ()= B(sinxz/no) f (exp (—u:(t = T)/7) -
0

where z is the order of fractional differentia- 2 .
tion. The method retrieves the parameters &,, €., ~dul(u”+2ucos mz+ 1) - B (sin m2/mz) -

7, z describing the induced polarization phe-

oo

: J' exp (—u*t/7) dul(u? + 2u cos 7z + 1)

0
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Fig. 1a. Induction in a medium with constitutive eq. (1.1) and caused by a box of unit amplitude and duration
T. The time is in units of the relaxation time 7. The curves are for z = 0.2 (dotted curve), z = 0.4 (dashed
curve), z=0.6 (dotted dashed curve), z = 0.8 (solid curve). The constant term &,., in the time interval 0 < ¢ < T,
is to be added. The ordinate is in units of (g — &.) (sin wz)/7z.

The formula (1.1), used to obtain (1.2), is the
time domain equivalent of the CC formula as
shown by Caputo and Mainardi (1971) and
Pelton et al. (1978).

The formulation of Caputo and Mainardi
(1971) introduces one more free parameter as
factor of D in the left hand member of (1.1)
which also discusses the case in which the left
hand member of (1.1) is simply 72D®. In con-
formity with the literature, however, we use
formulation (1.1).

In (1.2) the value of the second integral of
Dy, (9) is always smaller than the first; in par-
ticular, when T > 7, this integral is much
smaller than the first. However the contribution
of this integral reaches its largest value in t = T
and may be relevant in the neighbourhood of
T. Dy, (1) and Dy,(f) are shown in fig. la for
several values of z
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Of interest in the analysis of experimental
data are the values of Dy, (¢) in the neighbour-
hood of #=T. The first integral in D, (¢), in
t =T gives B; while the values of the second
integral in ¢ =17, in units of B, are given in
fig. 1b as a function of 7/7, for several values
of z. It is verified in fig. 1b that the values of
Dy, (t =T) may be relevant also when T > 7
but only when z is small.

For the knowledge of the theoretical be-
haviour of Dy, () in the neighbourhood of T,
it is important to compute the derivative of
Dy, () with respect to time.

It is seen in the Appendix that when 0 < z < 1
the discharge curve is finite, continuous and
monotonically decreasing for =7 while its
time derivative is finite and continuous only
for t+>T. The derivative monotonically de-
creases when ¢ approaches 7; in ¢ = T it is infi-
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Fig. 1b. Values of the second integral appearing in
Dy, (1) (formula (1.2)), for ¢ = T, as function of T
measured in units of the relaxation time 7 and for
several values of z. In the ordinate the values of the
function are given in units of B.

nite. The same applies to the charge curve
Dy, (1) in the neighbourhood of 7= 0; the
derivative is finite, continuous and monotoni-
cally decreases with ¢ for any 7 > 0 but it is in-
finite for 7 = 0. The discharge curve for 0 < z < 1
is then tangent to the ordinate axis in #= T
while the charge curve is tangent to the ordi-
nate axis in 7= 0.

When z > 1 the time derivative is not infi-
nite in =7 and in ¢ = 0.

2. The method

In order to find the values of the parameters
B, z, and 7 resulting from the fitting of the theo-
retical curves to the observed ones we must re-
call that theoretically we have

lim Dy, () = &,

t—> o0

Dy, (o) — Dy, (0) = B,
2.1

Dbl (T) _Db2 (T) = &, Dbl (O) =&,

If 7/t > 1, which is not difficult to obtain
since T is selected by the experimenter, that is
when 7 is sufficiently large to give the asymp-
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totic value of the response to the charge stage,
then from the first and the third of (2.1) one
may assume that

Dy, (T) = g,
Dy, (T)=B=¢g-¢,

(2.2)

which may be used to control the values ob-
tained from the fitting of the Theoretical Curve
(TC) to the Curve of the Observed Data
(COD).

In the case when €, = 0 the discontinuity at
t=T concerns only the first order derivative
since from (2.1) we obtain Dy (T)-D,, (T) =
= €. = 0; moreover D,; (0) = ¢, = 0.

In practice, IP experts use the observed data
for ¢ > T only (Patella et al., 1987); with the
same data in the time domain one may retrieve
the theoretical values of gy, €., 7, z and B using
the following method (Caputo, 1996).

A double set of TC for z = IAz and 7= mAT,
with / and m integers, is computed from the
second of (1.2) for ¢ > T; the TC are normal-
ized to their maximum value (the initial value
Dy, (T,)) and the values defining the points of
each curve are then stored in the memory of
the computer.

At this stage an automatic search is made with
the following procedure in order to find which
TC has the closest match to the observed one.

For this purpose a point in the grid is se-
lected, z=IAz and 7=mAT, and the Mean
Square Deviation (MSD) computed between
the assumed TC and the curve of the observed
data (COD) normalized to its maximum value,
the initial value after the end of the box corre-
sponding to D,, (T,). Then the computer finds
which of the 8 possible directions of the grid
around the point selected has the largest de-
crease of the MSD between the TC and the
COD curves. The procedure is then automati-
cally repeated untill a relative minimum of the
MSD is reached.

One may reasonably increase the number of
TC of the set matching the COD by taking into
account the experimental errors. In fact one
may estimate the Mean Square Error (MSE) of
the experimental curve and, during the search
of the minimum of the MSD, obtain a number
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of TC which have MSD < MSE. In principle
one should consider as acceptable all the TC
which satisfy the relation MSD < MSE.

To obtain a tentative initial value of 7 we
may approximate the discharge data, normal-
ized to its maximum value, to the simple expo-
nential Cexp (—(t—T)/¢) and assume T=g.

When B, z and 7 are found then, from the
second of (1.2) we compute Dy, (T); then the
given value of D, (T), gives €. which is the
discontinuity in #=7. The discontinuity in
t =T does not affect the fitting to the theoret-
ical curve since the first datum used is with
t=T+At

The method of finding with a guided walk
all the theoretical curves with MSD < MSE,
compatible with the errors of the data, and ten-
tatively assuming them as physically accept-
able (known as the Hedgehog method) has
been succesfully applied in geophysics espe-
cially in the studies of the Earth’s surface
waves (e.g., Gasperini and Caputo 1979)
where, instead of the 2D space (that of the grid
z=1Az and T=mAT), a space with a larger
number of dimensions is used where the mod-
els of the thickness and velocity of the layers
forming the astenosphere and lithosphere are
represented. The discussion of the results, in
general, is on the set of solutions, the models of
the lithosphere and of the asthenosphere, which
are compatible with the estimated errors of the
data. The problem of non uniqueness of the solu-
tion due to the inevitable errors in the data or
simply to the inversion is extensively illustrated
in the work of Backus and Gilbert (1968) and,
more recently, in that of Cook (1997).

The topological non uniqueness of the
solutions was verified for the first time by
Gasperini and Caputo (1979) when investigat-
ing the structure of the crust and upper mantle
in the Tyrrhenian Sea using the dispersion of
the surface waves; they found two independent
sets of acceptable solutions in topologically
disconnected regions of the parameter’s space.

In our case, this problem is considered
for the minimum of the MSD and, therefore,
for the possibility that other sets of TC with
MSD < MSE exist which belong in a domain
of the grid z = IAz and 7= mAT not connected
with the domain of the grid already found.
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The advantage of the method discussed in
this note is that it also discloses the possible
cases when the parameters determined are in a
point of relative minimum, it is the priviledge
of the experimenter, as well documented in
Patella et al. (1991), to foresee which of the
curves selected by the method are the most ap-
propriate to model the medium under study. As
we mentioned already the number of accept-
able solutions depends on the errors of the
data. The larger errors imply a wider range of
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Fig. 2. Guided walk from the initial values of the
parameters 7 and z towards the values which repre-
sent the data. The numbers near the points of the
square grid are the Mean Square Deviation (MSD)
of the curve defined by the point selected. The MSD
is in units of 10 computed for 8 values of 7. Begin-
ning from the curve represented by the point (60,
0.5) it is seen that, of the curves represented by the
points of the grid surrounding it, the curve with the
least mean square deviation is that represented by
the point (60, 0.55). Beginning from the latter point
it is seen that, of the curves represented by the
points of the grid surrounding it, that with the least
MSD is (60, 0.6). Then one goes to the point (55,
0.6), to the point (55, 0.65) and finally to the point
(50, 0.65) whose curve has zero MSD.
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Fig. 3. Curves defined by 7=60, z=0.50 (solid
line) and 7=150, z=0.65 (dashed line).The decay
curves represented by coordinates of the points of
fig. 2 along the path indicated by the arrows are lo-
cated between the two curves presented in the fig-
ure. The curves are normalized to their initial value
at £ = 7. The time in abscissa is measured in units of
the relaxation time 7.

solutions compatible with the data. This fact
may not be ignored when performing the in-
version (e.g., Backus and Gilbert, 1968; Cook,
1997).

If the input E is not exactly a box and, for
instance its rise and decay times are not nil,
then formulae (1.2) are not rigorously valid. To
take this into account one may then compute
analytically the response curve to the actual in-
put obtaining formulae similar to (1.2) and
then proceed as previously suggested. In this
case however the number of unknowns is
larger but the method would still be valid.

Figure 2 gives an example of the retrieval of
parameters B, z and 7 from the synthetic data
obtained from the second of (1.2) assuming
B=1,T=300s, z=0.65 and 7=50 s; we
used steps AT=35 s and Az =0.05. The esti-
mate of the tentative initial value of 7 is made
averaging the values obtained approximating
the data with two separate exponentials in the
time intervals 0 s, 20 s and 20 s, 100 s respec-
tively, finding the average value 7= 60 s; as
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initial value of z we assumed 0.5 which is
the medium value of the range 0,1 where the
value of z is generally found (Cole and Cole,
1941).

The guided walk from the point z = 0.5,
7 = 60 is seen in fig. 2 which also gives the
MSD of the TC, corresponding to the point,
relative to the given data. The arrows indicate
the path followed along the full circles.

In practice, to be certain that the discontinu-
ity at =300 s does not influence the fitting,
the first datum to use is for ¢ = 300. 001 S, as
was done in this example where, however the
ambiguity would not exist since the datum is
synthetic. When the values of B, 7 and z are
known then the value computed for ¢ = T, that
is Dy (T,), and D, (T.), known experimen-
tally, give €.

To show the convergence of the method fig. 3
presents two of the curves represented by the

0.9

— 7T =60;z=0.50
--T =503z =0.65

normalized data

08—

0.7 | | | 1 |
300 301 302 303 t 304 305

Fig. 4. As in fig. 3 showing the fine structure of the
curves near the point ¢ = 7. The time in the abscissa
is in units of the relaxation time. The curves would
show graphically that they are tangent to the ordi-
nate axis in ¢ =T only for very small values of the
time measured in units of the relaxation time. For
z=0.1 one should show the values for -1t
smaller than 0.0001.
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points in the path indicated by the arrows
of fig. 2 normalized to their initial values.
Namely, the curves represented by the points
(60, 0.55), (60, 0.60), (55, 0.60), (55, 0.65) are
located between the curves defined by the
points (60, 0.50) (solid) and the curve used to
produce the data corresponding to the point
(50, 0.65) (dashed), both shown in fig. 3. Fig-
ure 4 shows the fine structure of the curves of
fig. 3.

As a check we followed another guided
walk beginning from the point (75, 0.55) and,
as shown in fig. 2, the arrows would now ex-
plore other points (those indicated with open
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circles in fig. 2), but we arrived at the same fi-
nal point (50, 0.65).

A second example studies the case when the
synthetic data are obtained with z=0.45 and
7=75. The search of the minimum in the
plane 7, z is illustrated in fig. 5 which presents
near each point the MSD between the TC and
the COD curves; there are no other minima
than that in the point of the COD curve. In this
case, the search is not guided as in the previous
case shown in fig. 2 but we have considered all
z and Tin a range of possible values. The abso-
lute minimum is in the values used to originate
the data 7 =0.45, 7=75.
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Fig. 5. The MSD of the curves defined by the values of the parameters 7, z are given near each point. In this
case the search is not guided as in fig. 2 but we have considered all z and 7 in a range of possible values. The
absolute minimum is in the values used to originate the data z = 0.45, 7= 75. There are no other relative min-
ima. The MSD is in units of 10 computed for 14 values of ¢.
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Fig. 6. The synthetic data are obtained with z = 0. 45
and 7 =75 (dashed line). Some of the 8 curves sur-
rounding that of the synthetic data are so close to
others that it is not possible to separate them graphi-
cally. However in this specific case all the curves
of the set are located between the curves z = 0. 4,
7= 380 (solid line) and z=0.5, 7=70 (double dot
and dashed line) which give the largest MSD.

The 8 curves corresponding to the points
surrounding the point z=0.45, 7=75 and
converging to the COD are shown in fig. 6.

The accuracy of the parameters retrieved
from the discharge curves with the method dis-
cussed here is of the same order of magnitude
as the order of the error of the observations.
Concerning the determination of the disconti-
nuity at time 7= 7, the error depends on the
resolution of the data. In the case discussed
above (z = 0.45, T=75), when the readings are
taken at ms intervals near ¢ = T, the error in the
determination of the discontinuity at 7= 7 is
less than 0.001 B.

3. Retrieval of IP parameters from
frequency data

As we mentioned, the analysis of the relax-
ation curve Dy, (¢) is often made in the fre-
quency domain (Patella et al., 1987). In order
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to use the frequency domain form of Dy, (1) we
first find its Laplace Transform (LT). Theoreti-
cally the LT of the relaxation is obtained from
Dy, (1) assuming the time origin in 7= T and
assuming also " =t — T with 0 < ¢’ < co. When
0 < z < 1 one finds, using the formulae of
Caputo (1984),

LT (Dy, (1)) =

= LT (Bsinnz/rz) J.(exp (~u'*t'17) +
0

V(1" + TH) dul(u? + 2ucos w7z + 1) =

3.1

—exp (—u

=B [p“l/(r‘z+pz) — LT (sin nz/nz).[ .
0

Yt + YD) dul(u® + 2ucos w7 + 1)]

- (exp (~u
where the integral in the last term of (3.1) is a de-
creasing function of ¢’. For any given ¢’ the value
of the integral is also a decreasing function of
time; both decreasing functions are asymptoti-
cally nil. Taking into account the contribution
represented by the LT of this integral we find

LT (Dy, (1')) =

= B[t 4+ ) - (sin 1/2) _[(exp(—u“z TIv).
‘ (32)

~dul(p + u"*IT) (u* + 2ucos z + 1)].

The expression (3.2) is the LT of the discharge
curve in CC media and may be compared with
the LT of the experimental discharge curve, for
instance the LT of the approximation of the
discharge data with three exponentials used by
Patella e al. (1987). The comparison of the LT
of the discharge data with the theoretical LT
representation of the CC model, given by (3.2),
is another possible path to follow to recognize
whether the medium studied is of the CC type.
However, in this note, we shall limit ourselves
to the study in the time domain which follows
and concludes the preceding note (Caputo,
1996).
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4. Conclusions

The new method to retrieve CC parameters
from the time domain observation using to the
Discharge Data (DD) of a box-like input was
here tested with synthetic data and shown to be
applicable to synthetic data and therefore to a
variety of substances of the type of CC.

The method determines the set of parame-
ters of the CC formula which represents the
DD with the minimum MSD from the data;
given the accuracy of the DD, the method also
determines sets of parameters, whose MSD is
smaller or equal to the MSE of the DD, which
are physically compatible with the given DD.

These sets of parameters surround the point
which gives the minimum standard deviation
from the data. With reference to fig. 2, if the
minimum standard deviation of the data were to
render acceptable the curves with MSD < 1074,
then among the sets of the physically accept-
able parameters, is also that represented by the
point (50, 0.65) to be considered with the asso-
ciated values of & and €.

The method then discusses the variety of sets
of parameters which represent the IP phenomenon
of a medium which obeys the CC formula.

It is also verified in the examples given that
the percentual variation of z gives a much
larger variation of the MSD than the corre-
sponding variation in 7.

In the retrieval of the CC parameters using
the frequency domain data, the accuracy of the
inversion decreases with decreasing width of
the range covered by the experimental values
used. Then, since the range of frequencies used
in the complex-resistivity frequency method, in
the laboratory and field experiments, is neces-
sarily limited, the accuracy of the CC parame-
ters obtained with the frequency domain data is
also limited accordingly.

However, the time domain data also have
limits due to the sampling rate and the trunca-
tion at the end of the registration.

The truncation limits the lowest frequency
identifiable and the resolution of the spectrum;
these limitations, however, may be reduced almost
at will provided the record is sufficiently long.

The sampling rate limits the highest fre-
quency identifiable in the spectrum; this limita-
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tion, due to the sampling capability of the
equipment used for the registration, with the
instrumentation currently available may be a
problem only in extreme cases.

As a final comment, we note that when the
values of z and 7 are very small, the variation
of the values of CC formula, as a function of
the frequency, is very small which limits the
accuracy of the determination of the CC pa-
rameters; then the complex resistivity fre-
quency domain method introduced by Van
Voorhis et al. (1973), used to retrieve the set
of parameters of CC formula, would not give
as accurate results as the time domain methods
(Pelton et al., 1978; Patella et al., 1987; Ca-
puto 1996).
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Appendix

The derivative with respect to ¢ of the response to a box charge of duration 7, for 0 < ¢ < T, is

D'y (t) = B(sinmz/ mz) J(u”z/r) exp (—u"*4/T) du/(u? + 2ucos mz + 1) (A.])
0
which is positive, finite, continuous and monotonically decreasing with ¢ for any ¢ > 0 and for any value of
z>0. For t=0 it is

D'y (t) = B(sin wz/77) J (—u'=1T) dul(u® + 2u cos w7 + 1)
0

which diverges when 0 < z < 1 and converges for z > 1.
The derivative with respect to ¢ of the discharge curve Dy, (1), for T < ¢ is

D'y, (1) = B(sinz/ 77) J.(—MUZ/T) exp (—u"* (t = T)/7) dul(u® + 2ucos w7 + 1) +
0

—B(sinzmz/nz) j(-u”zlr) exp (—u"1/T) dul(u® + 2u cos w7 + 1)
0

and with t =T+ s we find

D'y, (1) = B(sinwz/ mz) |(—u'*/7) exp (—u' s/7) (1 - exp (—u'*T/7)) dul(u® + 2u cos 7 + 1)
0

which is negative, continuous and monotonically increases with s for any s > 0 (¢ > 7) and for any z > 0.
For s=0 (=1 it is

D'y, (1) = B(sin nz/7z) j (—u"%17) (1 — exp (<" T/T)) du | (u® + 2u cos 7 + 1)
0

which diverges for 0 < z < 1 and converges for z > 1.
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