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1. Introduction 

Earth tomography requires the solution of
inherently large, mixed-determined inverse
problems. Since its very beginning, it has al-
ways involved the implementation of efficient
algorithms on state-of-the-art computers. 

In 1984, John Woodhouse and Adam Dzie-
wonski published in Journal of Geophysical Re-
search one of the few articles that defined global
seismic tomography. In their conclusions, they
noted: «The calculations reported upon here were
performed using an array processor (Floating
Point, 120B) which, programmed in Fortran, is
typically 10 times as fast as, say, a VAX 11/780.

The path by path inversions and source determi-
nations, using mantle waves and body waves, oc-
cupied the machine for approximately 60 h, and
each global iteration took approximately 7 h. The
inclusion of more data, and the extension of the
method to higher frequencies, will probably re-
quire the use of the most advanced ’mainframe’
computers.» They are referring to an image of the
Earth’s upper mantle parameterized in terms of a
cubic polynomial (vertically), and spherical har-
monics up to 8° (laterally); that is to say, entirely
specified by just 324 parameters (Woodhouse and
Dziewonski, 1984). The lower mantle was map-
ped in a separate inversion, as a linear combina-
tion of spherical harmonics up to 6°, multiplied
by Legendre polynomials up to 4°, resulting in
245 parameters; «the size of the array needed to
store the lower (or upper) triangle of the corre-
sponding inner product matrix is 31.035; just a
little less than the data memory of our AP120B
array processor, without which this study would
not be feasible» (Dziewonski, 1984). 

In the following years, tomographers took
advantage of fast technological progress. The
following generation of models published by
the Harvard group covered the entire mantle,
and were linear combinations of Chebyshev
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polynomials and spherical harmonics up to de-
gree 12 (e.g., Su et al., 1994). 

Other authors preferred a different ap-
proach, parameterizing the Earth’s mantle with
grids of voxels (Hager and Clayton, 1989; In-
oue et al., 1990). The «voxel» approach in-
volved a substantially larger number of model
coefficients (∼104), but also implied that the in-
tegral of data sensitivity multiplied by the basis
functions be most often 0. The latter circum-
stance has important consequences, as we shall
briefly illustrate: the tomographic linear inverse
problem is typically written 

A ⋅ x = d (1.1) 

where the entries of the vector x are the coeffi-
cients of the solution model (initially un-
known), d are the data (e.g., travel times), and A
is a matrix whose ij entry equals the integral,
over the entire volume of the mantle, of the sen-
sitivity of the i-th measurement to the Earth
property (typically a seismic velocity or slow-
ness) to be mapped, times the j-th basis func-
tion used to describe such property. 

In the ray theory approximation, and if (as
will always be the case here) d are observations
of travel time anomaly, the volume integral re-
duces to an integral along the seismic ray path
(sensitivity is 0 everywhere but on the ray path),
and 

(1.2)

where s denotes the incremental length along
the ray path, identified by the equation r = r(s),
with r denoting position; the N basis functions
f j are used to describe the slowness δp(r) =
= of the seismic phase in question.
(It would be equivalent to formulate the prob-
lem in terms of velocity, but slowness happens
to make algebra simpler.) 

If the functions fj are spherical harmonics,
nonzero over the entire surface of the Earth, the
integral in eq. (1.2) will be nonzero for all val-
ues of j. In the case of a voxel (spline, wavelet
or other «local» functions) parameterization,
the same integral will be 0, except for values of
j whose corresponding voxel is crossed by a ray
path. As anticipated, the matrix A will therefore

k 1=
( )x f rk k

N/

th pathi−

( ( ))A f r s dsij j= #

be dense if the model is parameterized in terms
of spherical harmonics or other «global» func-
tions; sparse if local functions are used. 

The same is consequently true of the matrix
AT⋅A, whose inverse has to be calculated for the
least squares solution xLS to (1.1) to be found (a
necessary step, as (1.1) in global seismology is
strongly mixed-determined and does not have
an exact solution),

(1.3)

where the matrix D depends on the regularization
scheme (e.g., Boschi and Dziewonski, 1999). 

When A and AT⋅ A are sparse, eq. (1.3) is
most efficiently implemented via an iterative al-
gorithm like CG or LSQR (e.g., Trefethen and
Bau, 1997). When they are dense, iterative al-
gorithms become as slow as direct ones: the
most efficient approach is then to implement
(1.3) via Cholesky factorization of AT⋅A, and
subsequent backsubstitution (e.g., Press et al.,
1994; Trefethen and Bau, 1997). 

Implementation of LSQR does not require
AT⋅A to be calculated, as LSQR operates direct-
ly on A. A is bigger but sparser than AT⋅A, and
sparse matrices can be stored efficiently (e.g.,
Press et al., 1994) to minimize the required disc
space or RAM; A is therefore often less cum-
bersome than AT⋅A: it is so, at least, when glob-
al body wave travel time databases are inverted
to derive global Earth structure. This, and the
remarkable speed of LSQR in a regime of
sparse A, allowed Grand (1994) and van der
Hilst et al. (1997) to parameterize the Earth’s
mantle in terms of as many as N∼250 000 vox-
els: a three orders of magnitude increase in
nominal resolution, with respect to the early
studies of Dziewonski (1984) and Woodhouse
and Dziewonski (1984) mentioned above. 

Like Woodhouse and Dziewonski some ten
years before, Grand and van der Hilst were ex-
ploiting available computers to their limit. Al-
though sparse, A was still too large a matrix to
be entirely fit on the RAM of a processor;
LSQR, however, required only parts of A to be
available at one time in the RAM: they could be
run without ever storing A entirely in memory,
at the expense of massive input from disc at
each iteration. Given the number of solution co-

( )x A A D A dLS
T T1$ $ $= + −
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efficients, at least ∼102 iterations were probably
needed for LSQR to converge. This made even
LSQR a very slow process, and left researchers
with relatively little freedom to test the model
resolution and the effect on the solution of dif-
ferent regularization schemes. 

In view of the exponential growth in CPU
speed over the last decade (e.g., Bunge and
Tromp, 2003), and the concurrent decrease in
the price of RAM, the current generation of
global seismic tomographers has the means to
approach the discipline in an entirely new fash-
ion. With a fast processor, and enough RAM to
store A entirely, not only LSQR is sped up enor-
mously, but more time-consuming direct algo-
rithms like Cholesky factorization of AT⋅A also
become feasible. 

2. Cholesky factorization on a multiprocessor,
shared-memory computer 

It was originally proved by Paige and Saun-
ders (1982), and later confirmed by Nolet (1985)
and Boschi and Dziewonski (1999), with ap-
plications to mixed-determined tomographic
problems, that LSQR converges correctly to the
damped least squares solution (1.3), typically af-
ter a number of iterations <<N. If A is sparse and
sufficient RAM is available to store it, LSQR is
therefore the most efficient algorithm to solve an
inverse problem in the least squares sense. On the
other hand, because it bypasses the calculation of
AT⋅A and the direct implementation of (1.3),
LSQR cannot provide any measure of goodness
of resolution and covariance, except by means of
resolution, or «checkerboard» tests. The unrelia-
bility of the measure of resolution that those tests
provide has been pointed out, for example, by
Lévêque et al. (1993), and there have been efforts
to derive the resolution matrix via an iterative,
LSQ-type calculation (Zhang and McMehan,
1995; Mink-off, 1996; Nolet et al., 1999, 2001;
Yao et al., 1999, 2001; Vasco et al., 2003). 

The resolution matrix R can be thought of as
the operator that relates «output» and «input»
model in any checkerboard test; Menke (1989)
shows that 

(2.1) .R A A D A AT T1$ $ $= + −] g

Clearly, R does not depend on the input model,
and its similarity to the identity matrix is a
measure of goodness of resolution. Its calcula-
tion requires that AT⋅A+D be explicitly inverted,
and this is most efficiently achieved by
Cholesky factorization of this matrix. Once the
damped inverse of AT⋅A is found, R is quickly
determined by backsubsitution, applied on the
matrix AT⋅A instead of the vector AT⋅ d; this en-
deavour is not significantly more time-consum-
ing than the implementation of (1.3) via Cho-
lesky factorization and backsubstitution. 

Boschi (2003) computed R from the global
teleseismic P-wave travel time database of An-
tolik et al. (2003), based upon the ISC Bullet-
tins and including ∼600000 summary observa-
tions. He parameterized the Earth’s mantle in
terms of 20 vertical splines and 362 horizontal
splines (N=7240). Boschi’s (2003) exercise
was conducted on an IBM SP2 with 16 proces-
sors and 32 Gb of RAM. The IBM SP2 is a
«shared-memory» machine: any processor can
access at the same speed its entire RAM. This is
a very useful feature when large matrices have
to be factorized, a process that is inherently
hard to parallelize; clusters of PCs are by con-
struction «distributed-memory» computers, and
hence more useful for the solution of forward,
rather than inverse, problems. 

Boschi (2003) notes that the most time-con-
suming step in deriving R is the computation of
AT⋅A, which took about twent-four hours. This
process was parallelized by subdividing the
database in as many subsets as there were avail-
able processors, computing each subset’s con-
tribution to AT⋅A on a separate processor, and
eventually adding up the results. After comput-
ing AT⋅A, which needs to be done only once, xLS

and R can be derived in a few minutes; Boschi
(2003) was thus able to perform numerous in-
versions, experimenting with the damping
scheme and exploring the solution space, calcu-
lating each time the associated R. 

3. Running LSQR repeatedly on a
distributed-memory cluster of PCs 

The computer on which this article is being
written, a Linux PC sitting on the second au-
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thor’s desk, is equipped with a dual processor
and 3 Gb of RAM. One year ago, this much
RAM costed just about 800 US Dollars. We
concluded Section 1 pointing out that, as one
can easily afford enough RAM to store arrays
of ∼105 elements, iterative algorithms like
LSQR become extremely efficient. On this very
computer, one LSQR inversion involving some
25000 model coefficients runs to convergence
in a matter of seconds. 

Let us now show how, on a parallel, distrib-
uted-memory computer (a cluster of PCs), the
resolution matrix R can also be derived in a rea-
sonable amount of time, without calculating and
Cholesky-factorizing AT⋅A.

Implementing eq. (2.1) is equivalent to im-
plementing N times eq. (1.3), replacing each
time d with a different column of A (recall that
N denotes the number of model parameters, and
hence the number of columns of A). R can
therefore be derived by means of N independent
LSQR inversions of A, without finding AT⋅A.
When only one or few processors are available,
and with N∼105 as in some of the experiments
mentioned above, this process would be ex-
tremely timeconsuming, to the point of not be-
ing worthwhile. If a relatively large parallel ma-
chine is available, however, the problem can be
easily parallelized, by simply subdividing the N
inversions into N/nP subsets, nP denoting the
number of processors. Each subset of inver-
sions is then performed independently on a sep-
arate processor, and the time needed to compute
R is reduced by a factor nP. 

It should be noted that the most time-
consuming step, input of A from disc to RAM,
needs to be performed only once per processor,
no matter how many inversions are then run on
each processor. 

Figures 1 and 2 illustrate how this procedure
applies to a real inverse problem. We describe
the distribution of P-velocity heterogeneities in
the Earth’s mantle in terms of a grid of voxels
of constant horizontal extent; voxel functions
guarantee that A be more sparse than in the case
of splines. We invert, again, the P-wave travel
time database of Antolik et al. (2003). Follow-
ing, e.g., Inoue et al. (1990, Section 3.3.1 and
fig. 2), we select roughness minimization as our
only regularization criterion, and perform a

number of preliminary inversions, at different
parameterization levels, to assess the depend-
ence of the solution on the regularization pa-
rameter. Plotting misfit to the data (defined as
1-the variance reduction) against «total rough-
ness» (the integral of the surface gradient of the
model over the entire solid angle is computed
for each layer of the model, and then the RMS
is taken) in fig. 1, we find, for each parameteri-
zation, a set of points aligned along the expect-
ed L-shaped curve (e.g., Hansen, 1992; Boschi
et al., 2006). Each point on the L-curve corre-
sponds to a model derived at this preliminary
stage, and the roughness damping parameter
grows monotonically with increasing misfit.
The shape of the curve, resembling the letter L,

Fig. 1. Data misfit achieved by a set of solution
models, versus the integrated roughness of each mod-
el. This measure of model complexity is normalized
against model RMS. Least squares solutions were
found from a wide range of values of the roughness
minimization parameter, and no other minimization
constraint. We repeated the experiment with voxels
of lateral extent 15°×15°, 10°×10°, 7.5°×7.5°, 6°×
×6°, 5°×5°, 3.75°×3.75°, 3°×3°, 2.5°×2.5°, and con-
stant vertical thickness (∼200 km) (Soldati and
Boschi, 2004): corresponding solutions align on dif-
ferent L-curves, and squares of decreasing size corre-
spond to increasingly fine parameterization.
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confirms that the data contain coherent and sta-
tistically significant information; the decrease
in misfit is very fast in an overdamped regime,
where a small reduction in the regularization
parameter, and therefore a small increase in
model complexity, is sufficient to improve the
data fit substantially. The white noise that the
data necessarily contain, and that regularization
is supposed to eliminate, is harder to fit, even
with large increases in model complexity: this
is why the curve tends to become horizontal in
the right part of the plot. Solution models lying
in the vertical and horizontal portions of the L-

curve can be discarded as overdamped and un-
derdamped, respectively; preferred models
should be chosen near its corner. 

The selection of a damping scheme has al-
ways been a largely arbitrary process in global
seismic tomography. The L-curve criterion is a
way to reduce this arbitrarity. It is practical so
long as a large number of LSQR inversions can
be performed in a short time, and we have seen
how this is made possible by simultaneous stor-
age of the entire matrix A in memory, and/or
availability of multiple processors. 

After so selecting optimal roughness damp-
ing parameters at all parameterization levels,
we restrict ourseleves to the case of 5° voxels.
We show in fig. 2 the corresponding resolution
matrix R as derived with multiple runs of
LSQR. As to be expected (Boschi, 2003), R is
quite different from the identity matrix; entries
smaller than 1 on its diagonal indicate that the
amplitude of velocity heterogeneities in the cor-
responding voxel is underestimated. Entries
different from zero away from the diagonal
identify episodes of fictitious coupling between
model coefficients; naturally, the value of Rij is
proportional to the amount of coupling («trade-
off», «smearing», ...) between the i-th and j-th
voxels (entries xi and xj of the solution vector). 

4. Performance and accuracy of direct
versus iterative implementations 

In analogy with Yao et al. (1999), we calcu-
late R associated with one given database and
one choice of parameterization and regulariza-
tion, both in the direct (Cholesky, Section 2
above) and iterative (LSQR, Section 3) ap-
proaches, and compare the results. As opposed
to Singular Value Decomposition (SVD), the
direct algorithm implemented by Yao et al.
(1999), Cholesky factorization does not involve
the cancellation of the smallest singular factors
(Press et al., 1994), so that in our experiment
regularization is entirely controlled by the ma-
trix D, and is therefore exactly equivalent in the
direct and iterative calculations. 

We implement eq. (2.1) exactly, by Cho-
lesky factorization of AT⋅A+D, for the 5°-voxel
parameterization described in Section 3, and

981

Fig. 2. Top: 24840×24840 (5°-voxel grid) resolu-
tion matrix R for the chosen regularization scheme,
averaged (Boschi, 2003) so that it can be plotted in
this limited space; here, vertical tradeoffs are most
evident. Bottom: zooms on R, not averaged, at two
selected layers (left: mid mantle at ∼1300 km depth;
right: lower mantle at ∼2600 km).
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applying the same regularization scheme that
led to R in fig. 2. The result is shown in fig. 3,
and in fig. 4 two lines of the directly- and itera-
tively-calculated Rs are compared in a geo-
graphic view. Differences are everywhere
small, and negligible for i, j such that Rij>0.2.
Discrepancies between R calculated iteratively
and directly (with SVD) by Yao et al. (1999,
fig. 5) appear to be larger.

R in fig. 2 through 5 is a 24840×24 840 ma-
trix, as opposed to the 7240×7240 R of Boschi
(2003). With 24840 free parameters, Cholesky
factorization, backsubstitution (via the Lapack

routines SPOTRF and SPOTRS, respectively),
and all necessary input/output from and to disc
take about 10 h on a shared-memory Compaq
«Alpha» computer (an ES45 with 10 Gb RAM
and 4 CPUs at 1250 MHz). To compare this
performance with that of repeated LSQR on a
PC-cluster, it should be kept in mind that, in the
latter architecture, computation time scales per-
fectly with the number of processors; one
LSQR inversion with 24, 840 free parameters,
and applying Paige and Saunders’ (1982) crite-
rion to evaluate convergence, currently takes ∼1
min on a standard PC. 

Fig. 3. Same as fig. 2, but R was computed by Cholesky factorization of AT⋅A+D, as described in Section 4.

Fig. 4. Rows of R (figs. 2 and 3) associated with a relatively well resolved voxel i located in the mantle under
Japan, at 700 km mean depth, from the parallel LSQR (left) and Cholesky (right) approaches. For each value of
j, the color of the j-th voxel depends on the value of Rij; Rij is a measure of fictitious tradeoff between i-th and 
j-th model parameters.

3 4
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5. The covariance matrix 

R describes the fictitious coupling between
solution coefficients (model parameters); it de-
pends on the geographic distribution of sources
and stations, and on the shape of ray paths, but
not on the quality of inverted observations. The
covariance of solution coefficients depends, in-
stead, on the error and covariance of the initial
data, and on the error amplification occuring in
the inversion (Menke, 1989, Section 3.11). In the
assumption that seismic data be uncorrelated and
all have equal variance σ2, Menke (1989, eq.
3.48) introduces a covariance matrix 

(5.1)
( ) ( )C A A D A A A D AT T T T2 1 1$ $ $ $ $σ= + +− − T

6 @

(the regularization matrix D was not included
explicitly in Menke’s (1989) formula). Equa-
tion (5.1) can be rewritten 

(5.2) 

and making use of (2.1) 

(5.3) 

After Cholesky factorizing AT⋅A+D, we find C
by i) backsubsitution of the N × N identity ma-
trix, and ii) dotproduct (via the Lapack routine
SGEMM) of the (transposed) result with R. Af-
ter R is read from disc or calculated again, the
process takes about 10 more hours, with N =
= 24840, on the shared-memory machine de-
scribed in Section 4 above. Figure 6 shows C,
derived in the same parameterization (5°-vox-
els) and regularization as figs. 2 through 5
above, and assuming for Antolik et al.’s (2003)

( ) .C R A A DT T2 1$ $σ= + −
6 @

( ) ( )C A A D A A A A DT T T T2 1 1$ $ $ $σ= + +− −
6 @
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Fig. 5. Same as fig. 4, but voxel i, less well re-
solved, is located under Central America, at 2200 km
mean depth.

Fig. 6. 24840×24840 (5°-voxel grid) covariance
matrix C associated with the same data, parameteri-
zation and regularization as R above, defined as in
Section 5, and derived by Cholesky factorization and
backsubstitution.
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database a standard deviation σ = 0.5 s (Antolik,
2005, pers. comm.). 

We have not found an effective approach to
calculating C on a distributed-memory cluster. 

Except for the upper mantle, where the so-
lution is less stable owing to strong nonunifor-
mities in the data coverage, C (fig. 6) is relative-
ly close to diagonal, indicating that errors in
model parameters are not strongly correlated.
The N diagonal entries of C can be interpreted
as squared errors associated with the correspon-
ding model parameters (Menke, 1989; Taranto-
la, 2005): after taking their square root and
multiplying it by 100 (in a voxel parameteriza-
tion, solution coefficients coincide with veloci-
ty heterogeneities in the corresponding voxel,
which are typically expressed in percent), we
show in fig. 7 each diagonal entry of C at the

corresponding voxel. As to be expected, error is
smallest in regions of good data coverage, e.g.,
the upper and midmantle underlying North
America and Eurasia, where seismic stations
are most densely distributed; it is highest at the
top of the upper mantle, where the almost verti-
cal geometry of teleseismic ray paths poses a
significant limit to resolution (hence strong
«smearing»); it grows with increasing depth in
the bottom layers of the lower mantle, sampled
more uniformly than shallowest regions, but by
a decreasing number of ray paths. Mapped P-
velocity anomalies from the observations con-
sidered here (e.g., Boschi and Dziewonski,
1999; Boschi, 2003) range between ±1% in
most of the mantle, so that the error of ±0.15%
or less that we have derived from C is general-
ly nonnegligible, but small. 

Fig. 7. Absolute error on mapped percent P-velocity heterogeneity, calculated from the diagonal entries of C
(fig. 6) and plotted at each corresponding model voxel. All 15, ∼200 km thick layers of the 5°-voxel grid are
shown; the shallowest layer is at the top and to the left, the plot below corresponds to the second shallowest lay-
er, and so on; the deepest layer (~2700 km depth to coremantle boundary) is at the bottom and to the right. Con-
stant, uncorrelated variance σ=0.5 is assumed on all traveltime observations.
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6. Summary 

We have presented two approaches to the
solution of large mixed-determined inverse
problems, both exploiting the quickly increas-
ing speed and RAM of modern computers (e.g.,
Bunge and Tromp 2003). We have verified
(Section 4) that the two approaches, applied to
the same problem, yield coincident results. 

The first approach, described in Section 2, is
inherently sequential, and is best applied to
shared-memory computers. It rests on the direct
implementation of the least squares formula to
derive the least squares solution xLS and model
resolution matrix R associated with the inverse
problem A⋅x = d. xLS and R are computed with
one Cholesky factorization of AT⋅A and N+1
repetitions of the backsubstitution process, N
being the number of model coefficients. In this
approach, the derivation of R is thus relatively
fast. Unfortunately, the number of floating
point operations required to Cholesky-factorize
AT⋅A grows like N 3, as finer parameterizations
are implemented (e.g., Trefethen and Bau,
1997, p. 175). Likewise, as N grows, the size of
AT⋅A grows like N 2, and RAM can also become
an issue: routines performing Cholesky factor-
ization, available in the literature (e.g., Press 
et al., 1994) or through optimized libraries, do
not allow for efficient storage of AT⋅A (which
could be quite sparse), and require a compara-
bly large additional amount of RAM to be left
free for temporary storage. 

The second approach (Section 3) involves the
repeated application of an iterative, CG-type al-
gorithm (LSQR in our implementation). xLS is
found after one run of LSQR, the calculation of
R requires N runs of the same algorithm. Howev-
er, we have shown that the problem can be sim-
ply parallelized, and it is thus most appropriate
for implementation on distributed-memory PC-
clusters. As N grows, the growth in the number
of floating-point operations will not be as fast as
in the case of the first approach, and it will be rel-
atively cheap to speed up the process by simply
making use of a few more processors. As long as
A is sparse, which is always the case in the ray-
theory approximation and with local-basis-func-
tion (voxels, splines, ...) parameterizations, the
amount of disc space (and/or RAM) needed to

store A also grows more slowly with increasing
N than that needed store AT⋅A: in the experiment
discussed in Section 3, A occupies roughly 1 Gb
of RAM or disc space; AT⋅A would need twice
this amount, plus the temporary storage men-
tioned above. 

One drawback of the CG/LSQR multi-
processor approach resides in the difficulty of
computing the covariance matrix C. We have
shown in Section 5 how C can instead be com-
puted via the first, «sequential» approach, and
we have made use of C to evaluate model error
in typical, global tomographic inversions of
seismic travel time observations (fig. 7). 

In summary, both approaches should prove
profitable, depending on the available hard-
ware. The optimization of tomographic algo-
rithms for use with modern computers is lead-
ing to a better understanding of the tomograph-
ic inverse problem, and to more reliable evalu-
ations of model quality and resolution. 
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