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Abstract We describe the procedures used to combine into a uniform velocity solution 

the observations of more than 80 continuous GPS stations operating in the central 

Mediterranean in the 1998-2004 time interval. We used a distributed processing 

approach, which makes efficient use of computer resources, while producing velocity 

estimates for all stations in one common reference frame, allowing for an effective 

merging of all the observations into a self-consistent network solution. We describe the 

CGPS data archiving and processing procedures, and provide main results in terms of 

position time-series and velocities for all stations that observed more than three years. 

We computed horizontal and vertical velocities accounting for the seasonal (annual and 

semi-annual) signals, and considering the off-sets in the coordinate time-series caused 

by station equipment changes. Weighted post-fit RMS of the north, east and vertical 

velocity components are in the range of 1.57-2.08 mm, 1.31-3.28 mm, and 3.60-7.24 

mm, respectively, which are reduced by solving for seasonal signals in the velocity 

estimates. The annual and semi-annual signals in the height components, with 

amplitudes up to 4.8 mm, are much stronger than those in the horizontal components. 

The mean amplitudes of annual and semi-annual signals are within 0.18-0.47 mm, 0.23-

0.52 mm and 0.55-1.92 mm in the north, east and vertical components, respectively. 

  

Key words: Global Positioning System (GPS), Continuous Monitoring, Central 

Mediterranean, Time Series Analysis. 
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1. INTRODUCTION 
 The rapid development of modern space geodesy techniques over the last two 

decades provided new important data that introduced significant constraints on the 

active geological processes occurring in the Mediterranean area (e.g., Battaglia et al., 

2004; D’Agostino and Selvaggi, 2004; Goes et al., 2004; D’Agostino et al., 2005; 

Serpelloni et al., 2005 among others). Earlier GPS studies used either very large or 

sparse global networks (e.g., Larson et al., 1997), focusing only on the large scale 

tectonics aspects (i.e., the motion of major tectonic plates, intra-plate rigidity), or dense 

but small aperture networks, focusing only on local tectonic processes, such as 

deformation along particular segments of fault zones (e.g., Anzidei et al., 1998). The 

difficulties to tie such a different scale networks into a common reference frame has 

been one of the main obstacles in understanding the active tectonic processes in 

diffusely deforming continental plate boundaries, which are of great scientific interest 

for seismic hazard aspects. During the last 10 years, the rapid development of the global 

GPS technique, mainly under the umbrella of the International GPS Service for 

Geodynamics consortium (IGS; http://igscb.jpl.nasa.gov), provided more precise 

determination of satellite orbital parameters, through the enlargement of the GPS 

satellite constellation, and the improvement of the global Continuous GPS (CGPS) 

tracking station coverage. Moreover, the establishment of regional networks of CGPS 

stations (e.g., EPN-EUREF, ASI, Regal, FredNet networks) increased the number of 

stations available to tie observations together interferometrically. This technological 

development significantly increased the precision of station position determinations, 

reducing the noise spectra of the solutions, and allowing for a better resolution of the 

coordinate changes detection, even in the vertical component. This is fundamental in 

areas characterized by low deformation rates, such as the western and central 

Mediterranean and the European region (McClusky et al., 2003; Nocquet and Calais 

2003), where an accurate estimate of crustal deformation parameters require mainly the 

use of CGPS stations. 

 In Italy, several CGPS stations are operated and managed by different agencies, 

private companies and national scientific institutions (see Sansò and De Lacy, available 

at http://geomatica.como.polimi.it/gps/articoli/asi.pdf), but have been built for different 

purposes (i.e., topography, cartography, telecommunication, crustal deformation 

monitoring, navigation, etc…). Unfortunately, the number of sites that match the 
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minimum requirements needed for geophysical applications (antenna/receiver features 

and monumentation quality), and for which raw data are freely available on the internet 

is actually not enough to provide an exhaustive description of the deformation pattern of 

such a high tectonically fragmented zone. For this reason, at present days, the use of 

high quality non-permanent GPS data, collected over significantly long time span (at 

least 5 years) by means of repeated campaigns, is still fundamental to improve the 

spatial and temporal resolution of the crustal deformation field in the study area (e.g., 

Serpelloni et al., 2002, 2005). 

 In the last years the number of CGPS stations suitable for geophysical 

applications is rapidly increasing, particularly in the frame of INGV activities. In this 

prospective, we developed automatic facilities to handle the CGPS data archiving and 

data processing procedures. In this work we present an application of the “distributed 

processing” technique, used to merge most of the available CGPS networks operating in 

the central Mediterranean, with the goal of obtaining a single network solution, and 

formally no more considering the different networks separately. The data analysis 

approach followed allows us to obtain velocity vectors of stations belonging to 

networks whose raw data are not directly processed. We describe in details the 

procedures used to collect, archive and process the raw data in order to combine all 

these information into one uniform crustal velocity field. Results can be further used for 

geo-kinematics purposes, and for a better understanding of the active geodynamic 

processes that are deforming the Earth’s surface in Italy and surrounding regions. A 

detailed tectonics interpretation of the presented results is, however, out of the scope of 

this work. 

 

2. CONTINUOUS GPS NETWORKS IN THE STUDY AREA 
 In the last ten years the number of CGPS sites operating in the central 

Mediterranean region significantly increased. Since the number of stations belonging to 

the global and European networks (i.e., IGS and EUREF networks) is still too small, in 

order to enlarge our analysis outside Italy we collect and process data coming from 

other regional CGPS networks in France and Austria. Figures 1a and 1b show the 

distribution of the 81 CGPS stations for which we routinely download and process raw 

data to produce position time-series. Table 1 reports some information related to these 

sites, which belong to the networks described in the following paragraphs. 
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 IGS. The International GPS Service, along with a multinational membership of 

organizations and agencies, maintains a global network of over 350 continuously 

operating dual-frequency GPS stations, which provides high-quality data on line in near 

real time. These data sets are used by the IGS to generate several data products (i.e., 

GPS satellite ephemeredes, Earth rotation parameters, tracking station coordinates and 

velocities, GPS satellite and IGS tracking station clock information, Zenith tropospheric 

path delay estimates, global ionospheric maps, etc …), available through the Internet. 

The accuracies of IGS products are sufficient for the improvement and extension of the 

International Terrestrial Reference Frame (ITRF), the monitoring of solid Earth 

deformations, the monitoring of Earth rotation and variations in the fluid Earth (sea 

level, ice-sheets, etc.), for high precision satellite orbit determinations, ionosphere and 

troposphere studies. While from a constructive point of view the IGS network is largely 

heterogeneous, the stations have to meet some restricted requirements, both in terms of 

data quality and monument stability trough time. We currently download and analyze 

the raw data coming from 11 IGS stations in the Euro-Mediterranean region (black 

squares in Fig.1a and 1b; NYA1 is outside map), which have been chosen to constitute 

the sub-set of sites that are in common to all the sub-networks analyzed and allows for 

further combinations. 

 EUREF. The EUREF Permanent Network (EPN; http://epncb.oma.be/) 

represents the densification of the IGS network in Europe, and has been setup starting 

from 1995. The EPN is a science-driven network of permanent GPS tracking stations 

whose weekly computed positions are used by EUREF to realize the European 

Terrestrial Reference System. The EPN is also valuable for scientific applications, such 

as geodynamics, sea level monitoring and weather prediction. More than 150 EPN 

stations, distributed over 32 European countries, provide near real time high quality 

GPS data, archived at local and regional data centers. EPN analysis centers routinely 

analyze the data from this network and deliver to the GPS community data products, 

including  precise coordinates for all stations, satellite ephemeredes, Earth orientation 

parameters (EOP), etc. The EPN tracking stations are integrated in the successive 

realizations of the International Terrestrial Reference System. As for the IGS network, 

also the EPN stations must follow some restricted requirements in terms of data quality 

and monument stability. However, the large part of these stations are built on roof of 

buildings or set up with quite poor monuments, which can reduce the tectonic 
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significance of the detected signal. We routinely process the data coming from 25 EPN 

stations, which are located in and around the Italian region (see Fig.1a and 1b). 

 ASI. The Italian Space Agency (ASI), since 1995, established some permanent 

GPS stations to constitute the Italian GPS Fiducial Network, together with some of the 

fundamental stations, like Matera (belonging to the IGS core sites network), active from 

the 1991. The ASI network (http://geodaf.mt.asi.it/html/browse.html) is constituted by 

32 stations, some of them belonging to other networks (e.g., IGS, EPN, INGV and 

Frednet). This network includes stations for which data and monument quality 

requirements are not as tight as for the IGS and EPN networks. ASI stations, in fact, 

display a large variability of monument typologies and antenna/receiver combinations, 

and most of them are built on roof of buildings. Standard station log-files are available 

on the GEODAF web site. We analyze all the RINEX data coming from the ASI 

network. 

 INGV. The Istituto Nazionale di Geofisica e Vulcanologia (INGV), since 1997 

began to setup a permanent GPS network in Italy. The network has been established 

with the aim to detect crustal deformation for geodynamics, seismic hazard and civil 

protection goals. The network considered in this work is constituted by 6 stations (Fig. 

1b). The number of vertices is rapidly increasing over the Italian region, either in 

correspondence of the new and old INGV seismic stations or independently from them. 

The GPS monuments are realized by means of reinforced concrete pillars, linked to the 

coherent rock outcrops or deeply anchored in non consolidated deposits. The GPS 

antenna is connected to the pillar by means of two different devices: the INGV-3D 

antenna mount (http://www.ingv.it/labtel2/ufpage.htm) and the SCIGN antenna mount 

(http://jacinto.ucsd.edu/gpsmon/adaptor_design/intro.html). For some of the stations the 

raw data are daily transferred on a server, for other, where telemetric connection is still 

not available, the raw data are downloaded locally and later archived. 

 FREDNET. The Friuli Regional Deformation Network (FREDNET; 

http://www.crs.inogs.it/frednet/) is operated and maintained by the Centro Ricerche 

Sismologiche (CRS) of the Istituto Nazionale di Oceanografia e di Geofisica 

Sperimentale, in Udine. The network has been installed to monitor crustal deformation 

along the northeastern boundary of the Adriatic microplate. The goal is to estimate 

interseismic strain accumulation on active faults for a better assessment of the regional 

seismic hazards, but also to provide infrastructure for geodetic data management and 
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processing. The network is presently constituted by 8 stations, characterized by high 

and uniform construction standards. Most of the stations are built on stable rock 

outcrops (with the exception of UDIN and TRIE, which are located on buildings) and 

all are equipped with the same GPS equipment. The choke-ring antennas, covered with 

a SCIGN dome, are mounted on a 1-m reinforced concrete pillar founded in the surface 

bedrock by means of epoxied metal rods. Since most of the stations are located on 

remote areas, cellular modems are used to telemeter the data to the local archive. All the 

data of this network are routinely analyzed.  

 REGAL. The Réseau GPS permanent dans les Alpes network (REGAL; 

http://kreiz.unice.fr/regal/) is a permanent GPS array located in the western Alps and 

their surroundings. The network, which is dedicated to crustal deformation monitoring 

(Calais et al., 2000), started operating in 1997 and currently consists of 22 stations, 

some of which contributes to the France RGP (Reseau GPS Permanent) and EUREF 

networks. The REGAL station monuments are mainly concrete pillars founded on stable 

bedrock, equipped with choke-ring antennas. We analyze data from 7 stations, selected 

considering their data availability trough time and their monumentation quality. 

 AUSTRIA. The Austrian Continuous GPS Network is constituted by more than 

35 stations, some of them contributing to the EUREF network, and is operated by the 

Department of Satellite Geodesy of the Austrian Accademy of Science 

(http://www.iwf.oeaw.ac.at/english/research/earth/geodynamics/gps_e.html). This 

network has been established to investigate geodynamic processes in the eastern alpine 

region, but also for commercial applications, such as mapping and cadastral purposes. 

We do not process observations from the whole network, but we analyze data from 5 

sites selected using as criteria the data availability trough time and the monument 

quality (when available as information on the web site). 

 OTHER. Other CGPS stations are presently operating in the Italian region. 

Some of them have been installed in the frame of national projects (i.e., CADM), some 

other are maintained by University departments (ASIA, BASO, BRAS and ROVI), or 

by Administrative agencies (MERA and TREN). 

 

3. RINEX DATA ARCHIVING 
 In order to manage the large amount of data coming from the CGPS networks 

considered, we developed several procedures, under Linux operating system, to setup an 
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archive for RINEX data and meta-data (i.e., orbits) files. We used the File Transfer 

Protocol (FTP), automated by means of Bourne Shell (BASH) and Enhanced Courne 

Shell (CSH, TCSH) scripts and FORTAN77 programs, to download and archive 

RINEX files from remote ftp archives and to check antenna/receiver inconsistencies. 

This is crucial to maintain a database of observations that follows the IGS standards, 

and to built an historical record of stations equipment changes. 

 Figure 2 displays a flow-chart of the data archiving steps. On a weekly basis, we 

download RINEX data from several remote FTP archives (listed in Table 1), and 

archive them, together with orbits (precise and broadcast) and station information (i.e., 

station log-files). Considering that some of the sites collected display inconsistencies 

and errors in their RINEX file headers (e.g., wrong antenna/receiver codes and/or wrong 

antenna heights), which can significantly affect the data processing or further 

interpretations, an important module of the archiving procedures is devoted to the 

detection and correction of such errors to IGS standards 

(ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex210.txt). To perform this task we 

developed several automated programs, both using FORTAN77 and BASH, which 

make use of the Unavco-TEQC software for GPS data and meta-data handling 

(http://www.unavco.org/facility/software/teqc/teqc.html). 

 Station information required to process and interpret GPS observations are 

obtained for most of the stations from the station.info table 

(ftp://lox.ucsd.edu/gamit/table), a machine readable file that lists the equipment history 

(i.e., receiver, antenna, offsets, agencies, domes, firmware, and the epochs of any 

change in the station configuration) of all the CGPS stations archived and processed by 

the Scripps Orbit and Permanent Array Center (SOPAC; http://sopac.ucsd.edu) of the 

University of California in San Diego. This file is derived by a daily analysis, through 

the SOPAC’s Oracle Relation Database Management System (RDBMS), of all the 

standard log-files archived at SOPAC. For other sites not included into the SOPAC data 

base, these information are retrieved from EUREF-EPN historical station equipment 

configuration summary file (available at 

http://www.epncb.oma.be/ftp/station/general/extlog.hst) or directly from the station-log-

files. 

 It is worth noting that some of the CGPS stations considered in this work 

(labeled as LOCAL in Table 1) are presently collecting data locally, and do not transmit 
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data to remote archives. For this reason their RINEX files are checked and archived 

only when available. For some other stations the RINEX data are not freely available on 

the Internet, and we process these data in agreement with the local operating institutions 

(labeled as CONV in Table 1).  

 At the end of the archiving procedure, the standard RINEX files are compressed, 

using the Hatanaka format (http://igscb.jpl.nasa.gov/mail/igsmail/1998/msg00012.html), 

and stored in the archive, which is maintained on a weekly basis. Ancillary data 

required to analyze the GPS phase observations, including broadcast ephemeredes and 

apriori orbits, stations coordinates and velocities, Earth orientation parameters, UT1 and 

Leap Second tables, are weekly retrieved from CDDIS (ftp://cddisa.gsfc.nasa.gov/) and 

SOPAC archives. All files are collected weekly, just prior to subsequent processing, and 

stored in the orbits and tables archives (see Fig. 2). We use the final SOPAC orbits (in 

g-file format, the internal GAMIT format), instead of the final IGS orbits, in order to 

maintain the highest homogeneity and uniformity in combining our solutions with the 

SOPAC regional and global ones. 

 

4. CGPS DATA PROCESSING 
 Determining a self consistent set of station velocities from a vast amount of 

space geodetic data requires methods for reducing the large number of raw GPS 

observations to geodetic parameter estimates, such as site positions and velocities, Earth 

orientation parameters, satellite orbital parameters, and methods for combining the 

results to form a set of velocities in a uniform reference frame. The technique of CGPS 

is severely affected by problems of data volume and data consistency and, 

computationally, it is not feasible to treat all of the data available from the hundreds of 

stations operating in the Mediterranean and European region on any given day 

simultaneously. Over the last several years, however, some techniques have been 

developed to make efficient use of the ever growing GPS data set using the 

computational resources available (Blewitt et al., 1993). These techniques, which are 

defined as “distributed processing” approach, also provide a convenient means of 

combining results from different space geodetic techniques (i.e., Dong et al., 1998), 

such as VLBI, SLR, and campaign GPS measurements, while preserving uniformity in 

the reference frame definition. The basic approach is to analyze the data in subnetworks 

(clusters of stations), and then combine the subnetwork solutions using procedures 
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analogous to sequential least squares (i.e., Kalman filter). Because subnetworks are 

processed separately, this strategy affords also for the opportunity to combine the 

reduced data products derived from different techniques and by different analysts at 

different institutions, saving a very large amount of time and effort. The SOPAC facility 

routinely analyzes, starting from 1991, RINEX data coming from several CGPS 

networks all over the world, including the entire IGS network, and a sub-set of EUREF-

EPN stations. The SOPAC facility provides to the scientific community daily loosely 

constrained solutions for all the networks they archive, and we took advantage of the 

distributed processing mode by not processing stations already analyzed by SOPAC, but 

choosing a set of IGS and EUREF stations that are in common between our three 

regional subnetworks and SOPAC global/regional ones (stations reported in Fig. 1a and 

1b with black squares, plus NYA1 that is outside the map). 

 Another important feature of the distributed processing approach is that the 

reference frame is not defined until the last step of the analysis. This is achieved by 

applying loose constraints to all parameters (site positions, satellite orbital parameters, 

Earth orientation parameters) when reducing the raw data such that reference frame 

indeterminacy is regularized, but without affecting the invariant properties of the 

parameters estimates (i.e., Herring et al., 1991; Heflin et al., 1992). Moreover, this 

approach, based on the “quasi-observation” theory (Dong et al., 1998), allows for a 

rigorous combination of CGPS and non-permanent networks. Hence, different analysts 

can share data products without having to worry about the particular values the other 

analysts adopted to define their reference frames. Although we do not “fix” orbital and 

Earth orientation parameter estimates to precise values, we do use precise values for 

these parameters provided by the SOPAC facility as it benefits data editing and 

analyses. 

 The RINEX data coming from more than 80 stations (Table 1) are routinely 

processed using the GAMIT/GLOBK software (King and Bock, 2000), installed on two 

Linux machines, equipped with Intel-Pentium 4 processors and 1 GB of RAM memory, 

and a SUN-Ultrasparc station. Considering that the stations analyzed are equipped with 

largely different GPS instruments (i.e., different receivers and antennas), building 

clusters using the GPS equipment as criteria, which would be the best solution in order 

to avoid antenna mixing, is not practically feasible with the computational facilities 

available. For this reason we first used a geographical criteria, dividing the network into 
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two main subnetworks, a northern and a southern one. We than set-up a third cluster for 

all the stations that display lower regularity in the data availability, or that, in previous 

analysis, displayed lower data quality. In Table 1 the belongings of each station to the 

three clusters is also given. 

 Our raw data analysis procedure is divided into three main steps that include the 

phase data analysis, the combination of solutions and the position time-series analysis 

(Fig. 3). Each step is performed by means of three different software packages. The 

same processing scheme is applied uniformly to each day of the 5 years analysis 

considered in this work, but considering that changes in weighting schemes and 

software versions are thought to have minimal effects on the coordinate time-series. At 

the end of the three steps we obtain three dimensional motion rates in the most recent 

release of the ITRF frame. 

 

4.1 Raw Data Reduction 

 The first step is performed through the GAMIT module, which uses double-

differenced, ionosphere-free linear combinations of the L1 and L2 phase observations to 

generate weighted least square solutions for each daily session (King et al., 1985; Bock 

et al., 1986; Schaffrin and Bock, 1988; Dong and Bock, 1989). An automatic cleaning 

algorithm (AUTOCLN; for more details see Herring, 2000, King and Bock, 2000) is 

applied to postfit residuals, in order to repair cycle slips and to remove outliers; no 

attempt is usually made to recover edited data using manual techniques. The 

observation weights vary with elevation angle and are successively derived individually 

for each site from the scatter of postfit residuals obtained in a preliminary solution. 

Estimated parameters for each daily solution include the 3-dimensional Cartesian 

coordinates for each site, 6 orbital elements for each satellite (semi-major axis, 

eccentricity, inclination, longitude of ascending node, argument of perigee, and mean 

anomaly), Earth orientation parameters (pole position and rate and UT1 rate), and 

integer phase ambiguities (more details about bias-fixing procedures can be found in 

Serpelloni et al., 2002). We also estimate hourly piecewise-linear atmospheric zenith 

delays at each station to correct the poorly modeled troposphere, and 3 east-west and 

north-south atmospheric gradients per day, to account for azimuthal asymmetry; the 

associated error covariance matrix is also computed and saved. The elevation cutoff is 

set to 10° and we use the IGS elevation dependent models for modeling the effective 
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phase center of the receiver antennas. The effect of solid-earth tides, polar motion and 

oceanic loading are taken into account. Diurnal, semidiurnal and long period tide 

components are modeled according to the IERS/IGS standard 1996 (IERS Tech. Notes, 

21, 1996). The correction for the polar motion are computed following the IERS 

convention (McCarthy, 1996); the largest period modeled is the Chandler Wobble 

(about 460 days). The oceanic loading correction is based on the Scherneck model 

(Scherneck, 1991), where amplitudes and phase of 11 components are determined. 

 The three subnetworks (see Tab. 1) are processed in parallel, with 11 

overlapping “tie” sites included in each cluster, to provide a means of combining the 

individual solutions later in GLOBK, and also with the solutions given by SOPAC. 

 The basic products of this step are loosely-constrained solutions for each 

subnetwork, containing set of one-day site position estimates, Earth orientation 

parameters, and associated error covariance matrices. For the second step of the analysis 

it is also convenient to save in addition the satellite orbital parameter estimates. These 

data products, together with the loosely-constrained “h-file” solutions provided by 

SOPAC for the IGS1, IGS2, IGS3, IGS4, IGS5, EURA and EMED subnetworks (more 

information can be found at the SOPAC web page: 

http://sopac.ucsd.edu/processing/gamit/), are stored in the ASCII “h-file” format to form 

the h-file archive (see Fig. 3). In the following discussion we refer to the vector of 

parameter estimates derived from the raw data from the kth subnetwork as hk, with Hk 

denoting the associated variance-covariance matrices. 

 

4.2 Combination of Loosely Constrained Solutions 

 Once the loosely-constrained GPS parameter estimates from the individual 

GAMIT solutions (hk, Hk) are obtained from the analysis of each subnetwork, these are 

combined using the GLOBK software (Herring, 2000) to form a daily unconstrained 

combined network solution (hT, HT). As in all intermediate steps, in our procedures the 

reference frame is only loosely defined in forming these combined network solutions. 

We effectively achieve this by solving the system of equations 
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where k is the total number of subnetworks being combined (in this case 10), Ak are 

design matrices which related the total parameter set hT to the kth subset hk, and ek 

represent the errors in the estimates hk such that Eekek
T = Hk, where E is the 

mathematical expectation operator. The hT vector contains estimates for the site 

positions and Earth orientation parameters at the epoch T. We compute one total 

network solution for each day, which is stored in the binary GLX format (binary 

GLOBK format for the loosely-constrained bias-fixed solutions) and archived (see Fig. 

3). These files are thus converted into ASCII QOB (Quasi-Observation) file format, and 

stored in the QOB archive (see Fig. 3). It is worth noting that after combination into 

total network solution, we no longer need and retain the satellite orbital parameter 

estimates. A more detailed description of the mathematics involved in data combination 

and specific implementation in the GLOBK software can be found in Herring et al. 

(1990), Dong et al. (1998), and Herring (2000). 

 One of the main advantages of the adopted processing scheme is that the 

obtained QOB files carry the position time-series of all the CGPS stations included into 

the subnetworks we combined, that is more than 320 sites, distributed all over the 

Earth’s surface. This allows for further tectonic studies at different scales, from the local 

fault segment scale to the global plate motion scale, using a uniform and self-consistent 

set of three dimensional station velocities. Figure 4a and 4b display the sites for which 

we have position time-series available. 

 

4.3 Position Time Series Analysis and Velocity Estimate 

 The loosely constrained daily combined solutions (in ASCII QOB format) are 

input as quasi-observations to the Quasi-Observation Combination Analysis (QOCA) 

software (available at http://gipsy.jpl.nasa.gov/qoca), which is used to define a common 

reference frame, deriving the position time-series for all the stations. For each daily 

QOB file the network constraint solution (see Dong et al., 1998, Appendix C) is 

constructed using the 50 globally distributed core sites listed in Table 2. A seven-

parameter transformation (three network rotations, three network translations, and one 

scaling parameter) is performed, aligning each solution to the 2000 realization of the 

International Terrestrial Reference Frame (Altamini, 2002). 

 The particular set of stations used to define the global reference frame is chosen 

in order to provide optimal global stability over time, but not only over the time interval 
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considered in this work. In fact, since the current network of IGS core sites was not 

complete until 1997 and one of our goal is also to combine continuous and non 

permanent GPS observations from the early nineties (Serpelloni et al., 2002) as 

uniformly as possible, the IGS core sites are supplemented with other stations (Table 2) 

characterized by a very long history and good-quality data, and with positions and 

velocities well-determined in the ITRF2000, or at least in the ITRF97. For the selected 

core stations we assume rates equal to the current site rates estimated in the ITRF2000 

solution (Altamini et al., 2002). Since the vertical coordinates usually have poorer 

accuracy than the horizontal ones, we reduced the weight of vertical positions at core 

sites by a factor 100, in determining the 7 network parameters. 

 The observed motion f(t) of each site in each direction (north, east, up) can be 

written as (e.g., Ding et al., 2005): 

∑
=

+−++++++=
gn

j
igjijiiiiii TtHgtftetdtcbtatf

1

)()4cos()4sin()2cos()2sin()( εππππ

where ti for i = 1…N are the daily solutions epochs in units of years, and H is the 

Heaviside step function (Abramowitz and Stegun, 1972). The first two terms are the 

constant bias with respect to 1998.00, a, and the linear rate, b, respectively. Coefficients 

c and d describe the annual periodic motion, while e and f describe the semi-annual 

motion. The next term corrects for any number (ng) of offsets, with magnitudes g and 

epochs Tg. In some time-series, in fact, there are offsets due mainly to antenna or 

receiver changes, which we model as step functions. Assuming that the offset epochs 

are known, the model is linear with respect to the coefficients. How epochs of 

equipment changes  are derived is described in this work in the data archiving section. 

 Because of the existence of abnormal outliers in daily solutions, so that the 

scatter does not obey Gaussian statistics, the robust-fit algorithm embedded in the 

QOCA software, which resists outliers better than conventional least squares (Bock et 

al., 2000), is employed to estimate all the parameters simultaneously. 

 Table 3 provides the time-series parameters described above and derived for the 

central Mediterranean stations that observed for more than 3 years, and in particular the 

annual and semiannual amplitudes (c, d, e and f) terms, referred to January 1th, the 

Weighted Root Mean Squares (WRMS) of the time-series after removal of constant 

slope (velocity), and the computed offsets values, with 1σ uncertainties, are listed. 

ITRF2000 horizontal and vertical velocities, with 1σ uncertainties, are listed in Tab. 4. 
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The north, east and up detrended position time-series, with annual and semi-annual 

signals, for the Italian stations are shown in Figures 5a, 5b, 5c and 5d. 

 

4.4 GPS Rate Error Estimate 

 The use of least-squares procedures to compute station velocities from position 

time-series provides formal uncertainties that are rather unrealistic. The usual 

assumption that measurement errors are random and uncorrelated from one epoch to the 

next (white noise), in fact, is violated with GPS data (Johnson and Agnew, 1995). The 

source of time-correlated (colored) noise in GPS data includes orbits, atmospheric 

effects and monument motions (Langbein and Johnson, 1997; Mao et al., 1999). If 

colored noise is present, but only pure white noise is assumed, GPS velocity errors can 

be significantly underestimated (Zhang et al., 1997). Williams et al., (2004) studied the 

position time-series of 414 CGPS sites, and confirmed previous studies, suggesting that 

white and flicker noise are clearly the dominant noise model, although there are more 

sites in their solutions where white noise plus random walk noise is the preferred one. 

The random walk noise component is in any case more difficult to be detected, since it 

asks for much longer time spans. 

 The temporally correlated noise that dominates GPS time-series can be 

adequately described as flicker noise, which is spatially correlated, and has a clear 

latitude dependence. Although the amplitude of the flicker noise has decreased in time 

since the first CGPS sites began producing data (early ‘90), it is still the dominant 

colored noise process (Williams et al., 2004). The vertical magnitudes are about 3 times 

larger than the horizontal ones. 

In order to compute more realistic rate errors we adopt the approach of Mao et 

al., 1999, who developed an empirical model for estimating the GPS rate error (σr) for 

individual velocity components (north, east and vertical) using position time-series in 

presence of combined white and colored noise (flicker plus random walk). In our 

analysis we compute final rate errors using the formula: 

gTTg
a

gT
rw

b
fw

r

2

2

2

3

2
2 12 σσσ

σ ++≅

where g is the number of measurements per year, T is the total observation time span of 

observations (listed in Tab. 3), a and b are empiric constants, given in Mao et al., 1999 

(a=1.78; b= 0.22). Noise magnitudes for white and flicker components, given in mm, 
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and for the random walk component, given in mm/√yr, have been computed considering 

the strong linear correlation observed by Mao et al., (1999) between the WRMS of GPS 

time-series and the corresponding white and flicker noise amplitudes. We use the 

WRMS obtained from the roust fit analysis of each individual position component and 

the linear relationship given by Dixon et al., 2000 to compute σw , σf  and σrw. 

 Our choice of modeling the velocity errors as a function of white, flicker and 

random walk noise components, should provide over conservative uncertainties, but we 

presently prefer to be 10% more conservative than 500% optimistic (Mao et al., 1999). 

 

5. DISCUSSION 
 We described the processing strategy used to analyze and combine CGPS 

observations collected at different networks in the Euro-Mediterranean region, with the 

aim of producing a self-consistent three dimensional velocity field suitable for 

geodynamics and tectonic applications. Caporali (2003), from the analysis of CGPS 

stations, found that the rates estimated from position time-series become stable after an 

observation window of at least three years. For this reason we only discuss results 

obtained from the analysis of the 31 sites of our data set that observed more than three 

years (see Tab.3). 

 The main product of our analysis is, for each station, a set of three dimensional 

position time-series, provided in a uniform and well defined global frame of reference 

(the ITRF2000). These time-series are used to compute horizontal and vertical 

velocities, assumed constant in time, and obtained trough a robust fit algorithm, which 

is less sensitive to the outliers and blunders present in the raw series, together with 

annual and semi-annual seasonal signals and epoch offsets. Although seasonal signals 

are in general quite small (at mm level), some stations display offsets as large as 9 cm 

(i.e., VENE). It is worth noting that larger offsets are usually observed in the vertical 

components, and are commonly due to changes in the GPS antenna configuration, as 

deduced by station log-files. 

 The mean values of post-fit WRSM for the north, east and vertical components 

(see Tab. 3) are about 1.7 mm, 1.8 mm and 4.8 mm, respectively. The station TGRC, in 

particular, is the worst site analyzed, displaying values of 2.08 mm, 3.28 mm and 7.24 

mm in the three components as above, with a large data scatter, and an unclear seasonal 

signature (see Fig. 5c). In general, a model that considers also the seasonal terms 
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reduces the mean WRMS values by 4%, 3% and 6% for the north, east and vertical 

components, respectively. 

 The computed seasonal signals, listed in Tab. 3, and displayed in Fig. 5a, 5b, 5c 

and 5d only for some of the stations analyzed, are in average significantly below the 1 

mm level for the horizontal components, whereas are larger than the 1 mm level in the 

vertical component. 

 The mean annual cosine and sine amplitudes for the north components are 

0.55±0.06 mm and 0.39±0.06 mm, respectively, with the largest value observed at 

Venice (VENE: 2.40 mm) and Sarajevo (SRJV: 1.04 mm). The mean annual cosine and 

sine amplitudes for the east component are 0.66±0.08 mm and 0.39±0.08 mm, 

respectively, with the largest values observed at Rome (INGR: 2.58 mm) and Venice 

(VENE: 1.38 mm). The mean annual cosine and sine amplitudes for the vertical 

component are 2.79±0.20 mm and 1.06±0.21 mm, respectively, with largest values 

observed at Venice (VENE: 4.83 mm) and Osje (OSJE: 3.41 mm). 

 As regard the semi-annual terms, the mean cosine and sine amplitudes for the 

north component are 0.19±0.06 mm and 0.18±0.06 mm, respectively, with the largest 

values observed at Venice (VENE: 0.59 mm and 0.96 mm). The mean cosine and sine 

amplitudes for the east component are both 0.23±0.08 mm, with the largest values 

observed at Reggio Calabria (TGRC: 0.92 mm) and Venice (VENE:0.56 mm). The 

mean cosine and sine amplitudes for the vertical component are 0.57±0.20 mm and 

0.53±0.20 mm, respectively, with the largest values observed at Castel del Monte 

(CADM: 1.61 mm) and Reggio Calabria (TGRC: 2.40 mm). 

 In our processing procedures we compute and remove the seasonal terms in 

order to reduce the daily data scatter and look at residual time-series, with the aim of 

improving the determination of the constant velocity term, which is the main goal of our 

analysis. Seasonal signals are generally related to: 1) gravitational excitation, 2) thermal 

origin coupled with hydrodynamics, 3) sources that are indirect due to geophysical 

processes, or of instrument, or modeling deficiency (Dong et al., 2002). The first 

category comprises rotational displacements due to seasonal polar motion (UT1), and 

loading induced displacement caused by solid Earth, ocean and atmospheric tides, 

which are modeled in the raw data reduction step (see section 5.1). However, residual 

ocean tide effects should still be present, and are mainly due to the use of global ocean 

tide models instead of higher quality local tidal models. Pole tide loading also belongs 
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to this first category, with the spectrum of mostly annual and Chandler wobble periods 

(~465 days). The deformation caused by pressure field variation, non-tidal sea surface 

fluctuation, ground water changes in both liquid and solid form, bedrock expansion 

beneath the GPS benchmark, and wind shear belong to the second category. The third 

category contains other error sources, which also generate apparent seasonal variations, 

such as orbit modeling errors caused by imperfect reference frame, which is defined 

through a set of stations that are subject to seasonal variations. There are other 

important phenomena that should affect the position time-series with a seasonal 

signatures; these involve tectonic-induced deformation, due to possible seasonal 

variations in regional fault slip or regional stress (e.g., slow earthquakes; Miller et al., 

2002), and this is one of the main reasons for which detecting non-tectonic signatures is 

a fundamental task. Table 5 provides the magnitudes of some individual sources that 

can potentially affect the GPS time-series (Dong et al., 2002). Although most of the 

sources can be modeled and removed from the time-series (e.g., atmospheric mass 

loading, non-tidal mass loading, snow and soil moisture loading related effects) there is 

a set of complex sources that are much more difficult to asses and model. These 

includes: 1) neglected seasonal effects in the definition of the ITRF reference frame; 2) 

imperfect atmospheric modeling (Williams et al., 1998); 3) bedrock thermal expansion, 

which may affect the site vertical position at 0.5 mm level (Dong et al., 2002); 4) other 

environmental factors, including types of domes or monuments (Bock at al., 2000; 

Meertens et al., 1996; Hatanaka et al., 2001). Time independent antenna phase center 

model and multipath are also influenced by environmental factors, such as filling level 

of lakes, frozen/unfrozen of large water bodies, even tree trimming (King et al., 1995). 

 At different sites and networks different noise sources may dominate, and 

includes residual common mode positioning noise (white plus flicker noise), monument 

instabilities (random walk noise), and localized deformation due, for example, to 

changes in groundwater, or other non tectonic local loading. The spatially correlated 

common mode error (Wdowinsky et al., 1997), is removed, or at least significantly 

reduced, by performing the 7 parameters Helmert transformation, with regional stations 

included, and by removing annual and semi-annual signatures; this reduces by a factor 

of 2-3 the amplitudes of both white and flicker noise components, supporting Williams 

et al. (2004) explanation that a significant amount of the flicker noise is due to a 

common physical basis, with large spatial extend. The remaining flicker noise is 
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probably due to regional-scale processes such as atmospheric effects, and not to 

monument motions. Geodetic monument instability due to varying conditions of the 

anchoring media (e.g., soil, bedrock, building) is considered an important source of 

noise, thought to follow a random walk process (Johnson and Agnew, 1995; Langbein 

and Johnson, 1997). Whether or not the random walk noise is detectable depends on the 

length of the time-series, the sampling frequency, and the relative amplitudes of the 

other noise components. Random walk noise has been identified in continuous strain-

meter data (Wyatt, 1982; Wyatt et al., 1989), and can be as high as 3 mm/√yr for some 

geodetic data (Johnson and Agnew, 1995). However, this type of disturbance can be 

mitigated by carefully designed monuments. The use of deeply anchored Wyatt design 

monuments (Wyatt et al., 1989; Bock et al., 1997), for example, provide an amplitude 

of only 0.4 mm/√yr (Johnson and Agnew, 2000). However, regional GPS networks have 

much longer inter-station spacing so that other sources of error, such as known random 

atmospheric propagation effects (Williams et al., 1998) could dominate the budget. 

 The network we analyze is realized through stations characterized by several 

different monument types (described in Tab.1). Pillars, or steel musts, anchored to 

stable buildings represent the largest number, while monuments directly founded on 

more and less consolidated bedrock are of different types: mainly concrete pillars, with 

some mast (i.e., VVLO) and tripod (i.e., TRO1). Since potential monument noise should 

be related to the stability of the monument itself with respect to potential local processes 

(i.e., soil humidity content and water table level changes, bedrock thermal expansion, 

etc), its constructive quality depends on how much the monument is able to reduce its 

response to those effects. However, we do not find any significant correlation between 

seasonal terms amplitudes and monument types. Stations realized through pillars 

founded directly on bedrock (e.g., AJAC, AQUI, CAGL, CAME, ELBA, GRAS, 

NOT1, ORID, VVLO) perform very well, with relatively lower amplitudes on both 

horizontal and vertical components. It is worth noting that also stations realized on 

buildings (e.g., BRAS, GENO, GRAZ, MATE, PRAT, UNPG) perform quite well, 

displaying horizontal seasonal amplitudes significantly below the 1 mm level. Only 

very bad monuments, like the one used for the station VENE, display very large 

amplitudes on both horizontal and vertical seasonal components. These observations, 

even if preliminary, are in agreement with results given by Williams et al., (2004), who 

analyzed noise characteristics of regional network solutions (in particular from the 
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SCIGN network in Southern California) to put some constraints on the quality of the 

different CGPS monuments involved. They found that deeply anchored Wyatt-designed 

monuments perform better that all other types, but also stations monumented on stable 

buildings are quite good, while the classic geodetic concrete pillars seem to perform 

indeed quite poorly. 

 To map our velocity solution into a reference frame that can be used for geo-

kinematics interpretations of the study area, the horizontal ITRF velocities are rotated 

into a fixed Eurasian frame, and the vertical velocities are given with respect to an 

external stable frame (i.e., Sardinia-Corsica block or Central Europe). Figure 6a 

displays the residual velocities given with respect to the Eurasian fixed frame proposed 

by Serpelloni et al. (2005) of CGPS stations that observed for more than three years, 

ogether with velocities of CGPS stations that observed less than three years and non-

permanent stations from Serpelloni et al. (2005). Vertical velocities are instead 

proposed with respect to a regionally stable external frame. In this work we used as 

stable area the Corsica-Sardinia region, which has been observed to be stable with 

respect to Eurasia both in terms of horizontal and vertical motions. Figure 6b displays 

the vertical rates, with one standard deviation errors, of CGPS stations that observed for 

more than three years. 

 

6. CONCLUSIONS 
We described the procedures routinely used to download, archive and analyze 

data from continuous GPS networks operating in the Mediterranean and European 

region, with the goal of deriving a self-consistent three dimensional velocity field that 

can be used for further geodynamics and geo-kinematics applications. The method used 

is based on a “distributed session” approach and provides several advantages, that can 

be summarized as following: 1) it makes an efficient use of computing resources; 2) it 

allows for the determination of a self-consistent set of station velocities in a uniform 

reference frame; 3) it allows for a rigorous combination among different space geodetic 

solutions; 4) it allows for a combination of continuous and campaign GPS observations 

into the same reference frame. 

We performed an analysis of the position time-series for all the stations that 

observed for more than three years, with the aim of providing station velocities, together 

with the amplitudes of the annual and semi-annual signals and the offsets observed in 
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the series. The final result of our analysis is presented in terms of tables, reporting the 

velocity values and the amplitudes of the detected signals, and in terms of maps of 

horizontal and vertical velocities, given with respect to uniformly defined external 

stable frames. 

 Recent papers dealing with GPS observations in Italy and its surroundings 

revealed scientific problems about the kinematics and geodynamics of this region that 

will certainly benefit from the enlargement and improvement of the CGPS network, but 

that also require a multidisciplinary approach through the integration of seismological, 

geological and other geophysical and geodetic data (e.g., non-permanent networks, 

leveling measurements). In particular, the kinematics of Sicily with respect to Nubia 

(Africa), and its possible microplate-like behavior, is still matter of debate (Hollenstein 

et al., 2003; D’Agostino and Selvaggi, 2004; Serpelloni et al., 2005). In northeastern 

Sicily and Central Aeolian region large deformation rates and “anomalously” high 

horizontal velocities have been observed at non-permanent GPS stations (Hollenstein et 

al., 2003; Serpelloni et al., 2005), and earthquake focal solutions reveal a rapid change 

in the seismotectonic setting east and west of the Salina-Lipari-Vulcano lineament 

(Pondrelli et al., 2004). Open questions for this area, which interests also the Messina 

Straits, involve the role of the Calabrian slab and the kinematics of the Ionian and 

Calabrian blocks, in the frame of a complex plate-boundary configuration (Goes et al., 

2004). While upper bounds of active extension across the Apennines have been recently 

proposed (e.g., Hunstad et al., 2003; Serpelloni et al., 2005), detailed information on 

how this deformation is distributed or localized across the active fault zones are still 

missing for most of the chain, and only dense non-permanent GPS networks are 

providing preliminary results (Anzidei et al., 2005). GPS data revealed the motion of 

the Adriatic block as independent, or partially independent, from the African plate 

(Battaglia et al., 2004). However, Adria internal deformation and boundaries with 

respect to the African and Ionian domains are still unclear. At the same time, the 

possible presence of two partially independent Adriatic blocks is still matter of debate 

(Oldow et al., 2002; Battaglia et al., 2004; D’Agostino et al., 2005; Serpelloni et al., 

2005). The Northern Apennines and Po Plain region are still poorly understood from a 

kinematic point of view, also due to the low deformation rates involved (Serpelloni et 

al., 2005), and the main goal of geodetic research in this region is to study where active 
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extensional and compressional strains are localized across the belt, toward the Po Plain 

and the Adriatic (http://earth.geology.yale.edu/RETREAT/). 

The distributed processing mode adopted in this work allows us to look at the 

data collected at regional or local scale GPS networks, both permanent and non-

permanent, from a global point of view, that is to include local or regional deformations 

(related for example to single fault segments) in a “plate tectonic” framework, with 

large advantages for a better comprehension of the tectonic and geodynamics processes 

that are deforming the crust in the Italian region. 
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TABLE CAPTIONS 

 
Table 1. List of the Continuous GPS stations archived and analyzed in this work. 

Columns from left to right display: station number, full name, longitude, latitude, four 

character ID, network to which the station formally belongs (IGS = International GPS 

Service network; EUREF: EUropean REFerence network; ASI: Agenzia Spaziale 

Italiana network; FREDNET: FRiuli REgional Deformation NETwork; INGV: Istituto 

Nazionale di Geofisica e Vulcanologia network; REGAL: REseau GPS permanent dans 

les ALpes network; AUSTRIA: Austrian GPS network; OTHER: other stations not 

belonging to any specific network), remote ftp archive addresses for data downloading, 

source for the equipment changes information (sopac: from SOPAC station.info file; 

epn: from EUREF station history file; log: from station log file; rnx: from RINEX file 

header), number referring to the cluster in which the station is processed (1: southern 

cluster, 2: northern cluster; 3: mixed cluster), station monument descriptions. 

 

Table 2. List and coordinates of the 50 global and regional tracking stations used to 

apply the internal constraints in the reference frame definition. 

 

Table 3. Amplitudes of the annual, semi-annual signals and offsets detected from the 

analysis of position time-series of stations that observed more than 3 years. For each 

station (ID code), the observation interval (∆T), the annual and semiannual cosine and 

sine amplitudes (in mm), the weighted RMS, the epochs of breaks in the time-series and 

the related offsets are listed for the north, east and vertical components. One standard 

deviation errors are also given. 

 

Table 4. Velocity values and 1σ uncertainties for the CGPS stations that observed for 

more than three years. Residual horizontal velocities are given with respect to the 

Eurasian frame of Serpelloni et al. (2005), and residual vertical velocities are given with 

respect to the Corsica.Sardinia block. 

  

Table 5. Contributions of geophysical sources and model errors to the observed annual 

and semiannual variations in site positions. 
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FIGURE CAPTIONS 
 

Figure 1a. Euro-Mediterranean map showing the distribution of the CGPS stations 

archived, processed and discussed in this work. The names of the IGS stations used are 

also displayed. 

 

Figure 1b. Central Mediterranean map showing the distribution and names (4 character 

ID code), of the CGPS stations archived, processed and discussed in this work. 

 

Figure 2. Flow chart of the CGPS data archiving procedures. 

 

Figure 3. Flow chart of the CGPS data processing steps. 

 

Figure 4a, b. Maps of the whole combined CGPS network that is obtained from the 

combination of out three regional solutions with the SOPAC loosely constrained 

solutions. Position time-series, and three dimensional velocities, are available for all the 

stations displayed. 

 

Figure 5a, b, c, and d. Position time-series (after removing the constant velocity) of the 

Italian stations that observed for more than 3 years. The red error bars represent 1 

standard deviation formal uncertainties obtained from the GAMIT/GLOBK analysis. 

Annual and semiannual signals are also displayed, with uncertainties (red curve). Dotted 

black lines show the epochs of the significant offsets in the time-series that have been 

computed and corrected (epochs and offsets values are listed in Tab. 3). 

 

Figure 6a. Residual velocities (in mm/yr), and 95% error ellipses, given with respect to 

the stable Eurasian frame described in Serpelloni et al. (2005). Red arrows: velocities of 

CGPS stations that observed fro more than three years; yellow arrows: velocities for 

CGPS stations that observed for less than three years; white arrows: velocities from 

non-permanent stations surveyed in the 1991-2004 time span (Serpelloni et al., 2005). 
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Figure 6b. Residual vertical velocities (in mm/yr), with one standard deviation error 

bars, given with respect to the stable Corsica-Sardinia block. Numbers are given only 

for stations showing significant vertical rates. 
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N°        Station Name Lon. Lat. ID Net FTP archive Stinfo SN Monument type             
1 Ankara         32.75 39.88 ANKR IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Pillar on weathered bedrock (limestone) 
2 Cagliari          

         
           

     
           

        
         

       
    
       

             
       
       
       
       
  
  
       
    
      
       
  
  
    
      
      
  
  
 
 
      
 
  
      
    

8.97 39.13 CAGL IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Pillar on igneous bedrock 
3 Herstmonceaux 0.33 50.87 HERS IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 8 m height steel mast on unconsolidated soils 
4 Kootwijk 5.81 52.18 KOSG IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 - 
5 Madrid -4.25 40.43 MAD2 IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Brass disk on roof of building founded on unconsolidated soils (sands)  
6 Mas Palomas -15.63 27.76 MAS1 IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Pillar on bedrock 
7 Matera 16.70 40.65 MATE IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Pillar on roof of building founded on sedimentary bedrock 
8 Potsdam 13.06 52.38 POTS IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Pillar on building founded on sediments 
9 Tromso 18.94 69.66 TRO1 IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 5.5 m steel mast on fresh sedimentary/metamorphic bedrock 

10 Wettzell 12.88 49.14 WTZR IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Steel plate on concrete tower founded on weathered igneous bedrock 
11 Zwen Astronomical 36.75 55.69 ZWEN IGS ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Pillar on the roof of building 

    
12 Ajaccio 8.76 41.93 AJAC EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1 Reinforced concrete pillar on igneous bedrock 
13 Aquila 13.35 42.37 AQUI EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1 Pillar on sedimentary bedrock 
14 Bolzano 11.34 46.49 BZRG EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 2 Steel pillar on the roof of building 
15 Camerino 13.12 43.11 CAME EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1 Pillar on sedimentary bedrock 
16 Como 9.09 45.80 COMO EUREF ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 2 Stable pillar on roof of building founded on fresh sedimentary bedrock (sand/clays)  
17 Dubrovnic 18.11 42.65 DUBR EUREF ftp://igs.ifag.de/EUREF/obs/year/doy epn 1 Steel tripod anchored to flat roof of building founded on weathered sedimentary bedrock 
18 Elba 10.21 42.75 ELBA EUREF ftp://igs.ifag.de/EUREF/obs/year/doy epn 1 Stable pillar on bedrock 
19 Genova 8.92 44.42 GENO EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 2 Pillar on the roof of building founded on folded sedimentary bedrock 
20 Geoservis GS-REF1 14.54 46.05 GSR1 EUREF ftp://igs.ifag.de/EUREF/obs/year/doy epn 2 1.5 m steel mast on the top of building 
21 Lampedusa 12.60 35.50 LAMP EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1 Steel mast on the roof of building 
22 La Palma -17.32 28.27 LPAL EUREF ftp://igs.ifag.de/EUREF/obs/year/doy epn 1 Reinforced concrete pillar on the top of roof of a 3 m height building founded on bedrock 
23 Marsiglia 5.35 43.28 MARS EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 2 Aluminum plate on the terrace of building founded on sedimentary bedrock (clays)  
24 Noto 14.99 36.87 NOT1 EUREF ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Concrete pillar founded on sedimentary bedrock 
25 Oberpfaffenhofen 11.18 48.06 OBE2 EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 2 2.51 m height steel mast on the roof of building 
26 Ohrid 20.79 41.12 ORID EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1 Concrete pillar on jointed sedimentary bedrock 
27 Oroshaza 20.40 46.33 OROS EUREF ftp://igs.ifag.de/EUREF/obs/year/doy epn 1 Forced centered marker tied on an unused chimney founded on weathered sedimentary bedrock 
28 Osijec 18.68 45.56 OSJE EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1 1 m height steel mast anchored on the wall of roof on weathered sedimentary bedrock 
29 Padova 11.89 45.41 PADO EUREF ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Steel plate on the roof of building founded on sedimentary bedrock (clay/sand)  
30 Penc 19.28 47.78 PENC EUREF ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 2 Concrete pillar on the roof of building founded on stable sedimentary bedrock  
31 Pfaender 9.78 47.51 PFAN EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 2 2 m steel mast on fresh sedimentary bedrock 
32 Prato 11.09 43.88 PRAT EUREF ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd sopac 2 Concrete pillar on roof of building founded on sedimentary (send/gravel) bedrock  
33 Saint Jean des Vignes 4.67 45.88 SJDV EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 2 Steel mast on top of small concrete building directly anchored into bedrock (limestone) 
34 Saraievo 18.41 43.87 SRJV EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1 Steel mast on chimney of stable building 
35 Torino 7.66 45.06 TORI EUREF ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1,2,3 Steel mast at top of wall on stable building founded on sediments 



36 Perugia 12.35 43.12 UNPG EUREF  
             

   
 
 
 
 
    
          
 
          
      
    
   
      

             
   
   
   
   
   
     
   

             
     

       
       
      
      
      

             
     
     
     
 
     
      

ftp://igs.ifag.de/EUREF/obs/year/doy sopac 1 Stale concrete pillar on top of roof of building founded on jointed sedimentary (fluvial) bedrock 
    

37 Brescia 10.23 45.55 BRIX ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 2 Pillar on roof of building founded on sediments (sand/gravel)  
38 Cosenza 16.31 39.20 COSE ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd sopac 3 Stable pillar on the roof of building founded on fresh metamorphic bedrock  
39 ING-Roma 12.51 41.83 INGR ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 1 Stable pillar on roof of building founded on not fractured piroclastic bedrock  
40 Lecco 9.24 45.51 LEC1 ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 3 Stable pillar on roof of building founded on sedimentary bedrock (sand/gravel)  
41 Maratea 15.69 40.00 MARA ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 1 Stable pillar on roof of building founded on jointed sedimentary bedrock  
42 Milo (Trapani) 12.58 38.01 MILO ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 1 Stable concrete pillar founded on sedimentary bedrock 
43 Novara 8.61 45.44 NOVA ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd sopac 1 -
44 Palma Campania 14.33 40.52 PACA ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 1 Stable iron pillar on the roof of building founded on  sedimentary bedrock  
45 Pavia 9.13 45.20 PAVI ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd rnx 2 -
46 Reggio Calabria 15.64 38.11 TGRC ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 1 Stable pillar on roof of building  
47 Tito Scalo 15.72 40.60 TITO ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd log 1 Stable pillar on roof of building founded on shale 
48 Ferrara 11.60 44.83 UNFE ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd sopac 2 Metallic pillar on the roof of building founded on alluvial sends 
49 Vallo della Lucania 15.26 40.23 VLUC ASI ftp://geodaf.mt.asi.it/GEOD/GPSD/RAW/yyyy/ddd sopac 1 Stable pillar on the roof of building

    
50 Monte Acomizza 13.52 46.55 ACOM FREDNET ftp://wave.crs.inogs.it/pub/gps/rinex/yyyy/ddd sopac 2 Concrete reinforced pillar founded on fresh bedrock (limestone) 
51 Alpe Faloria 12.18 46.53 AFAL FREDNET ftp://wave.crs.inogs.it/pub/gps/rinex/yyyy/ddd sopac 2 Concrete reinforced pillar founded on fresh bedrock (limestone) 
52 Caneva 12.43 46.00 CANV FREDNET ftp://wave.crs.inogs.it/pub/gps/rinex/yyyy/ddd sopac 2 Concrete reinforced pillar founded on fresh bedrock (limestone) 
53 Colle di Medea 13.44 45.92 MDEA FREDNET ftp://wave.crs.inogs.it/pub/gps/rinex/yyyy/ddd sopac 2 Concrete reinforced pillar founded on fresh bedrock (limestone) 
54 Mont di Prat 12.99 46.24 MPRA FREDNET ftp://wave.crs.inogs.it/pub/gps/rinex/yyyy/ddd sopac 2 Concrete reinforced pillar founded on fresh bedrock (limestone) 
55 Trieste 13.76 45.71 TRIE FREDNET ftp://wave.crs.inogs.it/pub/gps/rinex/yyyy/ddd sopac 2 Steel mast anchored to the wall of building 
56 Zouf 12.58 46.33 ZOUF FREDNET ftp://wave.crs.inogs.it/pub/gps/rinex/yyyy/ddd sopac 2 Concrete reinforced pillar founded on fresh bedrock (limestone) 

    
57 Brasimone 11.11 44.12 BRAS INGV/UNIBO ftp://lox.ucsd.edu/pub/rinex/yyyy/ddd sopac 1,2,3 Concrete block on roof of building 
58 Gibilmanna 14.03 37.98 GBLM INGV CONV log 1 Concrete pillar on bedrock 
59 Preturo 13.32 42.38 INGP INGV LOCAL log 3 Concrete pillar on bedrock 
60 Roseto degli Abruzzi 14.00 42.65 RSTO INGV CONV log 3 Concrete pillar founded on sediments 
61 Teolo 11.70 45.37 TEOL INGV CONV log 2 Concrete reinforced pillar on jointed bedrock 
62 Villa Valle Longa 13.62 41.87 VVLO INGV CONV log 3 Steel mast on sedimentary bedrock (limestone) 

    
63 Chatel de Joux 5.78 46.52 JOUX REGAL ftp://kreiz.unice.fr/pub/Regal/serrurier/yyyy log 2 Concrete pillar on fresh sedimentary bedrock 
64 La Feclaz  5.98 45.63 FCLZ REGAL ftp://kreiz.unice.fr/pub/Regal/yyyy log 2 Concrete pillar on fresh sedimentary bedrock 
65 Saint Michel l'Obs. 5.72 43.92 MICH REGAL ftp://lareg.ensg.ign.fr/pub/rgp/yyyy/ddd log 2 Concrete pillar on fresh sedimentary bedrock 
66 Modane 6.70 45.20 MODA REGAL ftp://lareg.ensg.ign.fr/pub/rgp/yyyy/ddd log 2 Antenna fixed on top of concrete platform anchored into fresh metamorphic bedrock 
67 Le Sauvan 4.47 44.25 SAUV REGAL ftp://kreiz.unice.fr/pub/Regal/yyyy log 2 Concrete pillar on fresh sedimentary bedrock 
68 Saint Vèran 6.90 44.68 SVRN REGAL ftp://kreiz.unice.fr/pub/Regal/yyyy log 2 Concrete pillar on fresh bedrock 



69 Welschbruch 7.35 48.40 WELS REGAL          
             

    
    
    
          
      

             
           
       
       
           
           
           
  

                 

ftp://kreiz.unice.fr/pub/Regal/yyyy log 2 -
    

70 Patscherkofel 11.47 47.20 PATK AUSTRIA ftp://olggps.oeaw.ac.at/pub/outdata/patk rnx 2 Concrete pillar and steel mast anchored on granite bedrock 
71 Rottenmann 14.35 47.52 RTMN AUSTRIA ftp://olggps.oeaw.ac.at/pub/outdata/rtmn rnx 2 Concrete pillar and steel mast on roof of building 
72 Salzburg 13.12 47.80 SBGZ AUSTRIA ftp://igs.ifag.de/EUREF/obs/year/doy sopac 2 Concrete pillar and steel mast anchored on sedimentary bedrock 
73 Villach 13.87 46.60 VLCH AUSTRIA ftp://olggps.oeaw.ac.at/pub/outdata/vlch rnx 2 -
74 Vienna 16.38 48.22 WIEN AUSTRIA ftp://olggps.oeaw.ac.at/pub/outdata/wien rnx 2 Steel mast on roof of building 

    
75 Asiago 11.53 45.85 ASIA OTHER CONV rnx 2 -
76 Basovizza 13.85 45.63 BASO OTHER LOCAL log 3 Concrete block on bedrock 
77 Castel del Monte 16.27 41.07 CADM OTHER CONV log 3 Pillar on roof of building 
78 Merano 11.17 46.67 MERA OTHER CONV rnx 3 -
79 Rovereto 11.04 45.89 ROVE OTHER CONV rnx 3 -
80 Rovigo 11.79 45.07 ROVI OTHER CONV rnx 2 -
81 Trento 11.07 46.04 TREN OTHER CONV rnx 3 Steel mast on roof of building           

Tab. 1a 
 



Station Lon Lat Station Lon Lat Station Lon Lat Station Lon Lat Station Lon Lat 

ALBH -123.49 48.39 GRAS 6.92 43.76 MAC1 158.94 -54.50 PERT 115.89 -31.80 TRO1 18.9 69.7 
ALGO -78.07 45.96 GRAZ 15.49 47.07 MALI 40.19 -3.00 PIE1 -108.12 34.30 TSKB 140.1 36.1 
BOR1 17.07 52.28 GUAM 144.87 13.59 MAS1 -15.63 27.76 POTS 13.07 52.38 USUD 138.4 36.1 
BRMU -64.70 32.37 HARK 27.71 -25.89 MATE 16.70 40.65 REYK -21.96 64.14 VILL -4.0 40.4 
BRUS 4.36 50.80 HERS 0.34 50.87 MDO1 -104.02 30.68 SHAO 121.20 31.10 WES2 -71.5 42.6 
CAGL 8.97 39.14 IRKT 104.32 52.22 METS 24.40 60.22 STJO -52.68 47.60 WETT 12.9 49.1 
DAV1 77.97 -68.58 JOZE 21.03 52.10 NLIB -91.58 41.77 TELA 34.78 32.07 WTZR 12.9 49.1 
DRAO -119.63 49.32 KERG 70.26 -49.35 NYAL 11.87 78.93 TIDB 148.98 -35.40 YAR1 115.3 -29.0
FORT -38.43 -3.88 KOKB -159.67 22.13 NYA1 11.87 78.93 TOUL 1.48 43.56 YELL -114.5 62.5 
GOLD -116.89 35.43 KWJ1 167.73 8.72 ONSA 11.93 57.40 TROM 18.94 69.66 ZIMM 7.5 46.9 

 
Tab. 2 



Station        Comp Annual Annual Semiannual Semiannual WRMS Offsets

name onent Cos (mm) Sin (mm) Cos (mm) Sin (mm) mm d/m/y mm d/m/y mm d/m/y mm 

AJAC North 0.40 ± 0.06 0.77 ± 0.06 -0.07 ± 0.06 -0.63 ± 0.06 1.43             
∆T (yrs) East -0.34 ± 0.08 -0.07 ± 0.08 0.33 ± 0.08 -0.10 ± 0.08 1.86       
3.3648 Up -2.08 ± 0.18 1.63 ± 0.17 0.21 ± 0.17 -0.33 ± 0.17 4.09             

AQUI North 0.19 ± 0.06 0.79 ± 0.07 -0.02 ± 0.07 -0.25 ± 0.06 1.77 27/08/2001 0.76 ± 0.17         
∆T (yrs) East -0.56 ± 0.08 0.67 ± 0.08 0.40 ± 0.08 -0.21 ± 0.07 2.02 27/08/2001 3.75 ± 0.21     

4.547 Up -3.00 ± 0.21 -1.12 ± 0.21 0.41 ± 0.21 1.03 ± 0.20 5.6 27/08/2001 -7.40 ± 0.54         

BRAS North -0.18 ± 0.07 -0.32 ± 0.07 -0.04 ± 0.07 -0.39 ± 0.07 1.77             
∆T (yrs) East -0.49 ± 0.06 -0.29 ± 0.06 0.19 ± 0.06 -0.09 ± 0.06 1.65       
3.5948 Up -4.06 ± 0.19 -1.43 ± 0.19 0.29 ± 0.19 -0.01 ± 0.19 4.71             

BZRG North 1.44 ± 0.05 0.36 ± 0.06 0.00 ± 0.05 -0.13 ± 0.05 1.58 29/11/2000 3.81 ± 0.16         
∆T (yrs) East -0.06 ± 0.07 -0.37 ± 0.07 0.01 ± 0.06 -0.32 ± 0.06 1.85 29/11/2000 -2.06 ± 0.21     
5.9959 Up -2.99 ± 0.18 -1.78 ± 0.18 -0.03 ± 0.18 -0.04 ± 0.18 5.17 29/11/2000 -20.12 ± 0.52         

CADM North 0.26 ± 0.08 0.34 ± 0.08 0.56 ± 0.08 0.05 ± 0.07 1.29             
∆T (yrs) East -1.75 ± 0.11 -1.00 ± 0.12 0.65 ± 0.11 0.33 ± 0.10 1.77       
3.1786 Up -3.18 ± 0.29 0.73 ± 0.30 1.61 ± 0.28 1.22 ± 0.26 4.56             

CAGL North -0.56 ± 0.05 -0.15 ± 0.05 0.06 ± 0.05 -0.02 ± 0.05 1.54 11/07/2001 -1.36 ± 0.13         
∆T (yrs) East -1.89 ± 0.07 -0.64 ± 0.07 0.13 ± 0.07 -0.04 ± 0.07 2.14 11/07/2001 4.22 ± 0.20     
5.8617 Up -2.72 ± 0.17 2.04 ± 0.17 0.40 ± 0.17 -0.48 ± 0.17 5.28 11/07/2001 0.35 ± 0.46         

CAME North -0.35 ± 0.09 0.16 ± 0.09 -0.09 ± 0.08 -0.15 ± 0.08 1.57 15/12/2003 1.27 ± 0.35         
∆T (yrs) East -0.81 ± 0.11 -0.61 ± 0.11 0.23 ± 0.10 -0.07 ± 0.10 2.08 15/12/2003 3.11 ± 0.41     
3.6769 Up -0.71 ± 0.32 -0.32 ± 0.30 0.99 ± 0.28 -0.54 ± 0.28 6.06 15/12/2003 11.29 ± 1.27         

COSE North 0.12 ± 0.09 0.22 ± 0.10 0.50 ± 0.09 -0.02 ± 0.10 1.44             
∆T (yrs) East -0.90 ± 0.14 0.18 ± 0.15 0.33 ± 0.14 0.20 ± 0.16 2.22       
3.3484 Up -1.98 ± 0.37 2.93 ± 0.38 -0.86 ± 0.37 0.33 ± 0.40 5.65             

DUBR North -1.05 ± 0.07 -0.77 ± 0.07 -0.48 ± 0.07 0.00 ± 0.07 1.61             
∆T (yrs) East -0.36 ± 0.08 0.88 ± 0.08 0.30 ± 0.08 -0.35 ± 0.08 1.74       
3.2745 Up -3.97 ± 0.19 -0.55 ± 0.19 0.28 ± 0.18 0.90 ± 0.18 4.1             

ELBA North 0.21 ± 0.07 0.28 ± 0.07 -0.15 ± 0.07 -0.48 ± 0.07 1.62             
∆T (yrs) East -0.28 ± 0.09 -0.24 ± 0.09 0.02 ± 0.09 -0.27 ± 0.09 2.05       
3.1431 Up -3.23 ± 0.23 -0.85 ± 0.24 0.88 ± 0.23 -0.84 ± 0.23 5.33 30/03/2003 5.39 ± 0.58         

GENO North 0.57 ± 0.05 0.54 ± 0.05 0.08 ± 0.05 -0.22 ± 0.05 1.61             
∆T (yrs) East -0.10 ± 9.06 0.17 ± 0.06 0.14 ± 0.06 -0.41 ± 0.06 1.8       
5.4428 Up -2.35 ± 0.17 -0.21 ± 0.17 -1.19 ± 0.17 -0.03 ± 0.17 5.23             

GRAS North 0.01 ± 0.04 0.61 ± 0.04 0.25 ± 0.04 -0.33 ± 0.04 1.15 23/04/2003 -0.83 ± 0.12         
∆T (yrs) East -0.33 ± 0.06 0.17 ± 0.05 0.15 ± 0.05 -0.33 ± 0.05 1.59 23/04/2003 2.61 ± 0.14     



5.8261 Up -1.42 ± 0.13 0.61 ± 0.13 -0.43 ± 0.12 -0.93 ± 0.13 3.6 23/04/2003 3.74 ± 0.37         

GRAZ North 0.15 ± 0.03 -0.10 ± 0.03 0.17 ± 0.03 0.17 ± 0.03 0.97     07/05/2001 -1.46 ± 0.10 -1.46 ± 0.10 -1.46 ± 0.10 
∆T (yrs) East 0.08 ± 0.04 0.00 ± 0.04 0.08 ± 0.04 -0.25 ± 0.04 1.31   07/05/2001 -2.30 ± 0.14   
5.9959 Up -3.48 ± 0.13 -0.68 ± 0.12 0.06 ± 0.12 0.10 ± 0.12 3.71 01/07/2000 4.20 ± 0.37 07/05/2001 -0.68 ± 0.38                  

INGR North 0.42 ± 0.07 0.78 ± 0.07 -0.23 ± 0.06 -0.16 ± 0.07 1.5             
∆T (yrs) East 2.58 ± 0.08 1.20 ± 0.08 0.27 ± 0.08 -0.23 ± 0.08 1.88       
3.5975 Up -2.91 ± 0.20 -1.02 ± 0.21 0.72 ± 0.19 0.08 ± 0.19 4.48 25/01/2002 -9.66 ± 0.60 28/05/2002 9.29 ± 0.62     

LAMP North -0.70 ± 0.06 0.030 ± 0.06 -0.12 ± 0.06 -0.22 ± 0.06 1.61             
∆T (yrs) East -1.06 ± 0.07 -0.03 ± 0.07 0.37 ± 0.07 -0.35 ± 0.07 2.07       
4.7666 Up -2.87 ± 0.18 2.57 ± 0.18 1.13 ± 0.18 0.49 ± 0.18 5.1             

MATE North -0.04 ± 0.04 -0.05 ± 0.04 0.07 ± 0.04 -0.11 ± 0.04 1.26 18/06/1999 -3.10 ± 0.12         
∆T (yrs) East 0.44 ± 0.05 -0.13 ± 0.05 0.04 ± 0.05 0.08 ± 0.05 1.6 18/06/1999 3.75 ± 0.16     
5.9959 Up -3.18 ± 0.12 0.10 ± 0.13 0.11 ± 0.12 0.59 ± 0.12 3.98 18/06/1999 3.27 ± 0.39 22/08/2002 -5.59 ± 0.36     

MEDI North -0.22 ± 0.05 -0.91 ± 0.05 0.29 ± 0.05 0.17 ± 0.05 1.51 03/04/2001 -3.78 ± 0.14         
∆T (yrs) East -0.01 ± 0.07 1.18 ± 0.06 0.13 ±  0.06 -0.49 ± 0.07 1.96 03/04/2001 0.10 ± 0.20     
5.9959 Up -3.94 ± 0.15 0.01 ± 0.14 -0.35 ± 0.14 0.36 ± 0.14 4.27 03/04/2001 -7.40 ± 0.40         

NOT1 North 0.62 ± 0.07 0.96 ± 0.07 -0.24 ± 0.07 -0.31 ± 0.07 1.62             
∆T (yrs) East -1.44 ± 0.10 -0.22 ± 0.10 -0.17 ± 0.10 -0.09 ± 0.10 2.4       
3.3128 Up -2.08 ± 0.23 1.16 ± 0.23 0.34 ± 0.23 0.40 ± 0.23 5.38             

NOVA North 1.65 ± 0.07 0.42 ± 0.08 -0.15 ± 0.07 -0.00 ± 0.07 1.44             
∆T (yrs) East -0.45 ± 0.07 -0.12 ± 0.09 0.19 ± 0.08 -0.05 ± 0.07 1.5       
3.5318 Up -2.60 ± 0.20 1.12 ± 0.22 -1.26 ± 0.21 -0.20 ± 0.21 4.23             

OBER North -0.07 ± 0.04 0.06 ± 0.04 0.49 ± 0.04 0.16 ± 0.04 0.99             
∆T (yrs) East -0.29 ± 0.06 0.07 ± 0.06 0.11 ± 0.06 -0.07 ± 0.06 1.33       
3.4634 Up -1.97 ± 0.17 -0.09 ± 0.16 -0.39 ± 0.16 0.33 ± 0.16 3.76             

ORID North -0.10 ± 0.06 0.08 ± 0.07 -0.14 ± 0.06 -0.10 ± 0.06 1.24             
∆T (yrs) East 0.07 ± 0.09 -0.36 ± 0.10 0.30 ± 0.09 -0.17 ± 0.09 1.8       
3.4661 Up -1.99 ± 0.25 -2.05 ± 0.28 -0.36 ± 0.24 0.86 ± 0.25 4.65             

OSJE North -0.75 ± 0.05 0.46 ± 0.05 0.11 ± 0.05 -0.09 ± 0.05 1.17             
∆T (yrs) East -0.56 ± 0.07 -0.28 ± 0.07 0.11 ± 0.07 -0.10 ± 0.07 1.59       
3.2827 Up -1.74 ± 0.13 -3.41 ± 0.19 -0.04 ± 0.18 0.38 ± 0.18 4.2             

PRAT North -0.19 ± 0.07 -0.15 ± 0.07 0.23 ± 0.07 0.20 ± 0.07 1.97             
∆T (yrs) East -0.27 ± 0.06 0.47 ± 0.06 0.20 ± 0.06 -0.14 ± 0.06 1.68       
5.6509 Up -2.28 ± 0.17 0.10 ± 0.17 -0.59 ± 0.17 0.09 ± 0.17 4.97             

SRJV North 0.55 ± 0.09 1.04 ± 0.09 0.06 ± 0.08 -0.17 ± 0.08 1.68             
∆T (yrs) East 0.06 ± 0.09 0.17 ± 0.11 -0.31 ± 0.09 -0.39 ± 0.09 1.75       

4.46 Up -2.48 ± 0.25 1.38 ± 0.27 0.24 ± 0.24 0.20 ± 0.24 4.82 14/06/2003 9..95 ± 0.62         



TGRC North -0.52 ± 0.09 -0.02 ± 0.09 -0.10 ± 0.09 -0.04 ± 0.09 2.08             
∆T (yrs) East -0.52 ± 0.14 0.30 ± 0.14 0.92 ± 0.14 0.40 ± 0.14 3.28       
3.4497 Up -2.52 ± 0.31 1.18 ± 0.32 0.83 ± 0.32 2.40 ± 0.31 7.24             

TORI North -1.10 ± 0.05 0.17 ± 0.05 -0.02 ± 0.05 0.06 ± 0.05 1.42             
∆T (yrs) East 1.01 ± 0.06 0.05 ± 0.06 0.01 ± 0.06 -0.20 ± 0.06 1.74       
5.7851 Up -3.79 ± 0.18 -1.01 ± 0.18 0.25 ± 0.18 0.25 ± 0.18 5.35             

UNPG North -0.44 ± 0.05 -0.19 ± 0.05 0.31 ± 0.05 0.01 ± 0.05 1.36 19/05/2002 -7.33 ± 0.16         
∆T (yrs) East 0.38 ± 0.06 0.05 ± 0.06 0.27 ± 0.06 -0.33 ± 0.06 1.74       
5.7851 Up -2.95 ± 0.17 0.91 ± 0.16 -0.20 ± 0.16 -0.01 ± 0.16 4.63 23/11/1998 -18.48 ± 0.48 10/02/2000 10.33 ± 0.50 25/11/2000 5.15 ± 0.51 

UPAD North 0.99 ± 0.06 -0.02 ± 0.05 0.14 ± 0.06 0.17 ± 0.05 1.32             
∆T (yrs) East -1.32 ± 0.07 -0.77 ± 0.06 0.30 ± 0.07 0.19 ± 0.06 1.54       
3.8741 Up -3.49 ± 0.19 1.35 ± 0.18 -0.72 ± 0.18 0.14 ± 0.18 4.31             

VENE North 2.40 ± 0.06 0.84 ± 0.07 0.59 ± 0.06 -0.96 ± 0.06 1.83   01/02/2001 3.20 ± 0.17   
∆T (yrs) East -1.78 ± 0.06 -1.38 ± 0.06 0.13 ± 0.06 0.56 ± 0.06 1.68   01/02/2001 1.13 ± 0.17   
5.9959 Up -4.00 ± 0.20 0.22 ± 0.23 -0.08 ± 0.20 0.29 ± 0.20 5.84 22/08/1999 -52.99 ± 0.68 01/02/2001 94.53 ± 0.64 15/12/2001 10..34 ± 0.54 

VLUC North -0.66 ± 0.08 0.28 ± 0.08 0.15 ± 0.08 -0.03 ± 0.08 1.71             
∆T (yrs) East -0.24 ± 0.10 -0.47 ± 0.10 0.35 ± 0.10 -0.00 ± 0.10 2.16       
5.4073 Up -4.83 ± 0.24 -0.79 ± 0.24 0.91 ± 0.24 1.22 ± 0.23 5.14             

VVLO North -0.65 ± 0.08 0.49 ± 0.09 -0.00 ± 0.09 0.06 ± 0.09 1.92 31/08/2001 -2.36 ± 0.27 11/01/2003 1.09 ± 0.26   
∆T (yrs) East 0.28 ± 0.09 0.03 ± 0.10 -0.29 ± 0.10 -0.09 ± 0.09 2.11       
3.5838 Up -2.76 ± 0.26 -0.14 ± 0.27 1.38 ± 0.27 1.64 ± 0.26 5.9 31/08/2001 -2.00 ± 0.82 11/01/2003 5.70 ± 0.79   

ZIMM North -0.10 ± 0.03 -0.15 ± 0.03 0.09 ± 0.03 0.02 ± 0.03 1.06 06/11/1998 0.98 ± 0.10         
∆T (yrs) East -0.31 ± 0.04 -0.03 ± 0.05 -0.02 ± 0.04 -0.31 ± 0.04 1.41 06/11/1998 3.01 ± 0.13     
5.9959 Up -1.62 ± 0.12 -0.58 ± 0.12 -0.58 ± 0.12 -0.39 ± 0.12 3.78 06/11/1998 -11.63 ± 0.34         

             

Tab. 3 
 



Site Velocity  
(mm/yr) 

 Uncertainty 
(mm/yr) 

 Residual velocity
(mm/yr) 

 Velocità
(mm(yr)

Uncertainty
(mm(yr) 

Residual Velocity  
(mm/yr) 

ID East North  East North  East North  Vertical Vertical Vertical 

AJAC 21.11 14.69  0.55 0.58  -0.12 -0.40  -0.60 1.32 0.60 
AQUI 20.72 15.69  0.48 0.49  -1.23 1.18  0.56 1.01 1.76 
BRAS 21.81 16.08  0.54 0.57  0.56 1.28  1.08 1.26 2.28 
BZRG 19.67 14.61  0.41 0.42  -1.18 -0.16  0.82 0.79 2.02 
CADM 23.66 18.17  0.57 0.59  1.03 4.08  0.75 1.45 1.95 
CAGL 21.85 15.28  0.42 0.44  0.12 0.21  -1.80 0.82 -0.60 
CAME 22.42 17.19  0.59 0.61  0.63 2.65  -2.91 1.49 -1.71 
COSE 23.66 16.65  0.55 0.57  0.76 2.57  -3.20 1.40 -2.00 
DUBR 22.40 16.84  0.56 0.58  -0.30 3.04  -1.16 1.35 0.04 
ELBA 20.76 15.10  0.57 0.60  -0.58 0.19  -0.60 1.40 0.60 
GENO 21.11 14.87  0.43 0.44  0.31 -0.20  -1.09 0.85 0.11 
GRAS 20.86 15.38  0.42 0.43  0.30 0.09  -2.02 0.82 -0.82 
GRAZ 22.29 14.64  0.41 0.42  0.79 0.44  -1.52 0.80 -0.32 
INGR 22.02 16.21  0.53 0.55  0.13 1.59  -0.79 1.24 0.41 
LAMP 20.33 17.74  0.46 0.48  -2.47 3.13  -0.15 0.96 1.05 
MATE 23.85 18.46  0.41 0.43  1.09 4.44  1.08 0.80 2.28 
MEDI 22.81 17.50  0.41 0.42  1.53 2.77  -2.69 0.79 -1.49 
NOT1 21.69 18.75  0.56 0.59  -1.30 4.47  -0.95 1.35 0.25 
NOVA 20.14 14.89  0.53 0.55  -0.41 -0.21  -0.09 1.28 1.11 
ORID 24.46 9.72  0.58 0.60  1.13 -3.65  -1.94 1.46 -0.74 
OSJE 22.01 14.05  0.56 0.58  -0.32 0.34  -2.34 1.36 -1.14 
PRAT 22.16 17.12  0.42 0.44  0.87 2.32  -2.09 0.83 -0.89 
SRJV 22.95 15.16  0.56 0.58  0.39 1.41  0.75 1.38 1.95 
TGRC 24.12 16.27  0.55 0.57  1.18 2.09  -0.23 1.31 0.97 
TORI 20.87 15.01  0.42 0.43  0.43 -0.20  -0.72 0.82 0.48 
UNPG 21.93 15.94  0.42 0.43  0.28 1.30  0.40 0.82 1.60 
UPAD 21.61 16.87  0.51 0.53  0.46 2.17  -3.61 1.17 -2.41 
VENE 22.22 15.47  0.41 0.42  0.99 0.83  -0.24 0.80 0.96 
VLUC 22.27 16.39  0.43 0.45  -0.32 2.15  -0.14 0.91 1.06 
VVLO 22.81 18.10  0.53 0.57  0.74 3.63  0.95 1.26 2.15 
ZIMM 20.26 15.21  0.41 0.42  0.23 -0.02  0.16 0.79 1.36 

 
Tab. 4 

 



Source Range of effects 

Pole tide ~4mm 
Ocean tide ~0.1mm 
Atmospheric mass ~4mm 
Non-tidal ocean mass 2-3mm 
Snow mass 3-5mm 
Soil moisture 2-7mm 
Bedrock thermal expansion ~0.5mm 
Errors in orbit, phase center, and tropospere models No quantitative results yet 
Error in network adjustment ~0.7mm 
Differences from different software ~2-3mm, at some sites 5-7mm 

 
Tab. 5 
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