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ABSTRACT

Earthquakes are natural phenomena that can be viewed in three
dimensions: time, space and magnitude. Earthquakes can be investigated
not only physically, but also mathematically. In this study, semi-Markov
models are applied, which can be considered as useful methods to analyze
and forecast the occurrence of future earthquakes based on previous
earthquake data. In the present study, the target region, Iran, is divided
into zones, and each zone is examined as one of the semi-Markov model
states. Several methods to determine the levels of forecasting error are then
introduced and applied to the target area. The results of the application
of these semi-Markov models to investigate and forecast the occurrence of
future earthquakes are obtained and analyzed mathematically. A new
zoning method is developed and compared with that of Karakaisis,
through the proposed forecasting method. Moreover, the effects of the type
of zoning and the number of zones on the forecasting error of the next
earthquake occurrences are investigated using several algorithms.

Editor's note. The present paper revisits and completes the paper by
Sadeghian and Jalali-Naini [2008b] cited by the author in the References.

Introduction

Earthquakes can be examined both mathematically and
physically [Sadeghian 2007]. Stochastic processes represent
one of the branches of mathematics that can be applied to
probabilistic investigations of these phenomena, and one of
the stochastic process models that has been frequently
applied over recent years is the Markov model, and especially
the semi-Markov model. Semi-Markov models belong to
those that can model events that have a relationship with
previous events [Jalali-Naini 1997, Minh 2001, Rice 2007,
Sadeghian and Jalali-Naini 2008a]. For analyzing of the three
temporal, spatial, magnitudinal dimensions of earthquakes,
Markov models, including semi-Markov models, can be
applied [Patwardhan et al. 1980]. Markov models have
already been applied for earthquake occurrence analysis [Di
Luccio et al. 1997, Console 2001, Console et al. 2002];
moreover, in this regard, a few studies have recommended
the use of semi-Markov models [Patwardhan et al. 1980,
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Altinok and Kolcak 1999, Sadeghian and Jalali-Naini 2008b,
Jalali-Naini and Sadeghian 2009].

One of the advantages of the model applied in this
study is that it can forecast this triad of dimensions
simultaneously, which has not been provided in previous
studies [Kelleher et al. 1973, Nanjo et al. 2006, Papazachos
1992, Rikitake 1976]. For every semi-Markov model, and
the inspection of each event, several states have to be
defined. In this study, the Iran area was chosen as the target
for study. Seismologically, this area was divided into various
parts by Karakaisis [1994] (K94), and also in the present
study. Each part is called a zone, and each zone can be
considered as a state of a semi-Markov model. A similar
classification has to be used for the magnitudes of the
earthquake occurrences too.

Using the proposed semi-Markov models, later
earthquakes can be forecast probabilistically. Then, to
demonstrate whether the forecasting results obtained are
mathematically valid or not, several methods are
introduced to calculate the differences between the
probabilities of the occurrences of actual earthquakes and
those forecast, which from now on is called the forecasting
error. Nava et al. [2005] presented another method for
validation of their model. The forecasting error of the
algorithms presented is obtained, and the results are
investigated and analyzed. Moreover, a deterministic
forecasting algorithm, based on the provided probabilistic
one, is presented, and results related to deterministic
forecasting are also mentioned.

Modeling

Applying semi-Markov models in the forecasting of the
dimensions of earthquakes was completely examined by
Altinok and Kolcak [1999] and Jalali-Naini [1997]. One of the
most important elements of the semi-Markov models is the
interval transition probability matrix. The probability of a
transition from state i to state j in the interval [0, n] requires
the process to make at least one transition during that
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interval. The interval transition probability matrix can be
determined in matrix form as follows:

Fn)= W) + Y G® T(m)F(n—m) =
. m=0 (1)
= W°mn) + Z:ZO CmFmn—m);, n=0,1,2,..

where n is the number of time intervals, W€ (n) is a diagonal
matrix where the i-th element is equal to w¢ (n), and is the
probability that the waiting time in state i is greater than n,
and G is a transition matrix, so that G is the probability that
if the last step is in state i, the next step will be in state j. In
other words, G, is the probability of transition from state i to
state j. Also T (m) is the holding time matrix, which is defined
as follows:

T;(m) = Pr{t,=m}; m=1,.,n

The interval transition probability F(n) is obtained by a
recursive procedure. Since T(0) is equal to zero, F (n) is just
obtained for the interval 1 <m <n. In the case n =0, F(n) is
equal to the Kronecker Delta or identity matrix, which is
defined as follows:

{1 i=j
E;(0) = o
v 0 i#j
Also, C (m) is the core matrix, which is defined as
follows:

Cij(m) = GUTij(m); i,j=1.,Nm=1,.,n

Where N is the total number of states in the system
[Jalali-Naini and Sadeghian 2009].

For the earthquake phenomenon, F(n) can be used to
study earthquake hazards and to evaluate their risk.

The two interval transition probability matrices that
consist of FR (k)Vk = 1,...,n (for region-to-region transitions)
and FM (k) Vk = 1,...,n (for magnitude-to-magnitude tran-
sitions) can be determined through Equation (1). If the last
earthquake occurred in region r, with a magnitude m,, the
matrix of probabilistic forecasting after k;Vk = 1,...,n time
periods (i.e. FRM (k) Vk = 1,...,n)is obtained by the following
formula:

FﬁMw(k) = IR, (k) XM, . (k) Yk = 1,...,7;

j=1,..,m k=1,.,n 2)

where 7 is the number of zones of the assumed area considered,
m is the number of classes for all magnitudes considered, and
k specifies the number of time periods. Therefore, by
computing FIA{Mnm](k) Vi=1,.,rj=1.,mk=1,.,n,
all of the three dimensions of any earthquake can be taken
into account and specified. As in any region, any earthquake

Figure 1. The ways that the FRM matrix is determined [from Sadeghian
and Jalali-Naini 2008b].

with any magnitude can occur, the region and magnitude
can be considered as two independent random variables.
Consequently, based on probability theory, if X and Y are two
independent random variables, f(x, y)=f(x).f(y), where fis a
probability density function [Jalali-Naini 1997, Rice 2007].
The same relationship is also demonstrated by Equation (2).

Also FIAUVIYimj(k) Vi=1,.,rj=1,..mk=1,.,nis
the probability that an earthquake will occur in the region 7,
with the magnitude m, after the time period k. Figure 1
illustrates this more clearly.

In this way, forecasting the dimensions of following
earthquakes is possible, through determining the probability
forecasting matrices (i.e.FRM (k) Vk = 1,...,n). In this study,
the probabilistic forecasting matrix and deterministic
forecasting matrix are demonstrated by the FRM and FRM
symbols respectively.

For model validation, assume that FRM (k) is a probability
forecasting matrix, where its elements are the estimated
probabilities of the next earthquake occurrences according
to our proposed model, during the next k time periods, and
FMR (k) is a deterministic forecasting matrix defined as
follows:

1 If an earthquake occurs in region T
with a magnitude m; in k th time period

FRM, (k) = FRM, ,, (k) =

0 Otherwise

There are three common ways for calculating the
forecasting error: mean square error (MSE), mean absolute
deviation (MAD) [Rice 2007], and mean absolute percent
error (MAPE) [Haj Shirmohammadi 2003].

Let F, be the forecasting value for period i, and D, be the
real data for period i, then the forecasting error (E,) is
calculated by E, = D, — F. These three attributes for
comparing forecast precision can be used according to the
following relationships:

> 52
MSE = N

Z|E|
MADZT
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where N is the number of historical data for the forecasting.
Note that the MSE and MAD are not scale less, while the
MAPE is scale less. Therefore MAPE is more suitable than
MSE and MAD to compare several forecasting errors
together.

Here, two fundamental questions are posed: The first
question relates to the probable estimation of earthquake
occurrences. In other words, can FRM forecast the next
earthquake occurrences successfully? The next question is to
find out whether FRM can be used for forecasting the next
earthquake occurrences not only probabilistically, but also
deterministically. The response to the first question can be
found in methods 1, 2 and 3, and the response to the second
question is explained in method 3, as:

Method 1: MSE and MAD [Rice 2007]

Method 2: MAPE [Haj Shirmohammadi 2003]

Method 3: An innovative plan that can be used for
determining probabilistic forecasting, deterministic
forecasting and their forecasting errors (in this study, this is
called the zero and one (0-1) method technically).

In methods 1 and 2, if the total number of the past data
is equal to n, the first n, data will be used for forecasting the
next n, data, which will be used to determine the forecasting
error (i.e. n =n,+n,). With all of the n data having already
occurred and being available, the forecasting errors can be
calculated. In method 3, the first n, data are used for
forecasting the next n, data, which is applied for the making
of a pattern, and the first n,+n, data are used for forecasting
the next n, data, which is applied to the determination of the
forecasting error (i.e. n =n,+n,+n,). The whole n data have
already occurred and are available; therefore, the forecasting
errors can be calculated.

In these methods, calculation of the forecasting error
can be performed in two forms: by using successive data or
by using random data within the set of whole data. In the
first form, the first n, data are used for forecasting the next n,
data, (i.e. n =n,+n,), while in the second form, the n, data
within the main n data are eliminated randomly and then
they will be forecast by their past data.

Method 1

In this method, the relationships between MSE and MAD
are used. For this goal, an algorithm is presented for MSE,
which can be used with some changes for both MAD and
method 2.

Algorithm I:
This algorithm can be used to determine the forecasting
error by MSE as follows:
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Step 0: Begin

Step 1:n,(0)=0

Step2:i=0

Step 3: Use the first n,+n, (i) data to determine FRM, FRM
(n, is the number of the first data that can be used for
forecasting the next data, and n, (i) is the number of data that
occurred during i time periods after the first n, data).

Step 4: Determine FIA{M, FRM

Z Z (FRM, (1) — FRM, (1))2

i=1j=1

Step5: MSE(i+ 1) = 3)

rXm

Step6:i=i+1

Step 7:If n, + Z n,(j) < n then go to step 3; otherwise go
to step]8 (n is the number of total data)

i

Z M

Step 8: MSE = —

MSE (k)

i
Step 9: End.

For calculating the forecasting error by MAD, use
algorithm (I); just be careful to substitute steps 5 and 8 in
algorithm (I) by considering the following steps:

> > | FRM, (1) — FRMlj(l) |

i=1j=1

Step 5: MAD(i+ 1) = (4)

rXm
i MAD (k)
Step 8: MAD = ———
For each forecast, if the past data are more complete,
the forecast results are more accurate. Therefore applying
FRM (k,) after FRM (k,) gives more accurate information than
FRM (k, + k,). Accordingly, only FRM (1) and FRM (1) are
used in Equations (3) and (4), and in the remaining equations.
One of the disadvantages of this method is that neither
MSE nor MAD have any mathematical interpretation, nor is
there any benchmark for their degree of goodness. In other
words, if an amount is obtained for them, there is no
common mathematical interpretation for every one. For
example, by MSE = 2, regarding the forecasting error, it is not
clear whether 2 is a suitable forecasting error or not.

Method 2

In this method, a similar equation to algorithm (I) is
used, yet steps 5 and 8 in algorithm (I) are substituted by the
following intended steps:

Step 5: R
| FRM;;(1) — FRM;(1) |
. 21 ]Zl FRM;(1)
MAPE(i+ 1) = m X100 (5)
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2
Step 8: MAPE = £

MAPE (k)

i

where, as indicated above, MAPE is the mean absolute
percentage error. MAPE is a useful equation, as it specifies
the error percentage, which is both comprehensible and
interpretable for every one. Therefore, this method will be
concentrated upon in this study.

Method 3

Definition: the i-th maximum order

The i-th element in a descending sorted list, where none
of the elements are equal to each other, is named the i-th
maximum order.

This method is an innovative plan that can be used for
two goals:

a) Determining the forecasting error

b) Deterministic forecasting of earthquake occurrences.

a) Determining the forecasting error

In this section, an algorithm to determine the
forecasting error is presented. This algorithm has two parts.
The first part of the algorithm is devoted to making a
pattern, and the second part is assigned to determine the
forecasting error. This algorithm consists of the following
steps:

Algorithm II:

Step 0:
Step 1:
Step 2:
Step 3:

Begin

n,(0)=0

i=0

Use first n, +n, (i) data for determining FRM, FRM

Step 4: Determine FIA{M, FRM

Step 5: FRM1(i + 1) = FRM (1), FRM1(i + 1) = FRM(1)
Step6:i=i+1

Step 7:If n, + 2 n,(j) < n — n, then go to step 3; otherwise

R .
k, =i and go to step 8 (n, is the number of data used
to determine the forecasting error)

Step 8: Fori=1to k, do

FRM2 (i) = O (O is a zero matrix)

| FRM1,,(i) — FRM2, () |

&2 FRM], ()
MAPE2 (i) = —n X 100
ky
> MAPE2 (k)
Step 9: MAPE(0) = ’Hk—
1
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Step 10:i=1

Step 11: M= {i-th maximum orderin FRM1(j), Vj = 1,..., k,}

. FRM1 (j

Step 12: FRM2 (j) = [T@] Vji=1,.., k(4] obtains the
greatest integer ‘number smaller than the real
number a)

Step 13: All of the elements greater than or equal to 1 in
FRM2(j) Vj = 1,..., k,, are replaced by 1

Step 14: MAPE2(j) =

r » | FRML, (j) — FRM2, (j) |
z 2 FRML, (j)

_ r=1q _
= —” X100, Vj = 1,..., k,

kZ MAPE2 (j)

Step 151 MAPE(i) =

1
i=i+1
If i-th maximum order is available in FRM1 (j), Vj =
1,..., k, then go to step 11 otherwise go to step 18
If MAPE (t + 1) is the first element greater than the
MAPE obtained in method 2, the i-th maximum
order is the most correct one to be considered as a

Step 16:
Step 17:

Step 18:

benchmark to calculate the errors.

n,(0)=0

i=0

Use the first n, +n, + n, (i) data to determine FRM,
FRM (n, is the number of the first data which can be
used to forecast the next n, data, which can be used
in making a pattern, and n, (i) is the number of data
that occurred during i time periods after the first
n, +n, data)

Determine FRM, FRM

FRM1 (i + 1) = FRM(1), FRM1(i + 1) = FRM(1)
i=it+1

Step 19:
Step 20:
Step 21:

Step 22:
Step 23:
Step 24:

If n, +n,+ 2 n;(j) < n then go to step 21; other-
wise k, =1 ahd go to step 26
Step 26: M, = {t-th maximum order inFRM1(j), Vj = 1,..., k,}

Step 25:

St iy — | FRMLG) | .

Step 27: FRM2 (j) = [M] Vj = 1,..., k,([a] obtains the
greatest integer ‘number smaller than the real
number a)

Step 28: All elements greater than or equal to 1 in FRM2 (j),
Vj =1,..., k, are replaced by 1

Step 29: MAPE2(j) =

¢ ¢ | FRM1,,(j) — FRMqu(j) |
p=14q=1 FRMII"I(]) .
= m X100 ,Vj=1,.., k,
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ky
3. MAPE2(j)
Step 30: MAPE = " ———

2

Step 31: End.

Note that in algorithm (I), MAPE can be substituted by
either MSE or MAD, but because of the aforementioned
reasons, MAPE is preferred.

b) Deterministic forecasting of earthquake occurrences

Section (a) of method 3, along with the probabilistic
forecasting matrixes, such as FRM, can be used for determin-
istic forecasting of earthquake occurrences. Considering
algorithm (II), and using the following steps, this makes it
possible to forecast the earthquakes occurring in the next
several time periods, deterministically (i.e. one and zero; so
that one specifies the occurrence and zero specifies the lack
of occurrence of any earthquake).

Algorithm III:

Step 0: Begin

Step 1: Use the past n data to determine FRM (n is the number
of total data)

Step 2: Determine FRM

Step 3:FRM1 (i) = FRM (i) Vi = 1,..., k (k is the number of
predictable time periods in the future)

Step 4: M]. = {t-th maximum order in FRM1 G, Vi=1,.., k

. FRM1 (j)
Step 5: M

FRM2 (4 = [l] Vj = 1,..., k ([a] obtains the
greatest integer ‘number smaller than the real
number a)

Step 6: Replace any element(s) greater than or equal to 1 in
FRM2(j), Vj = 1,..., k by 1 and name the resulting
matrices FWDO), Vi=1,.,k

If FRMD,, (j) =1 then an earthquake in region r with
a magnitude m in j-th time period will occur, otherwise

Step 7:

any earthquake in region r with a magnitude m in j-th
time period will not occur
Step 8: End.

Application

In this section, the earthquake occurrences are forecast
probabilistically and deterministically using the actual data
collected from the Iran area. Then, two zoning methods of
the Iran area are introduced and considered, consisting of
zoning by K94 and a proposed zoning in the present study,
and the forecasting error for these zoning methods is
determined.

The Iran area was selected as the area of investigation.
This area is bounded by longitudes 44.23° E, 63.33° E and
latitudes 25.05° N, 39.78° N. The data were collected from
the United States

Geological ~Survey  website
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Magnitude (MB) Space Distance (Km) Time Interval (Days)

2.5 19.5 6
3 22.5 11.5
3.5 26 22
4 30 42
4.5 35 83
5 40 155
5.5 47 290
6 54 510
6.5 61 790
7 70 915
7.5 81 960
8 94 985

Table 1. A reference for distinguishing foreshocks and aftershocks from
main-shocks [from Sadeghian and Jalali-Naini 2008b].

(http:/ /neic.usgs.gov/neis/epic/epic.html). After filtering
and removing the unsuitable data according to Table 1
[Gardner and Knopoff 1974], 3,179 data related to
earthquakes that occurred during 1973-2007 are used. The
maximum time interval between the times of the earthquake
occurrences is 45 days, so by considering each 10 days as
one time unit, forecasting during the next % =5 time
units in each time will be possible. Also, each zone in each
zoning method is considered as a state in the region-to-
region transitions of a semi-Markov model, and the
magnitude of total occurrences is classified into 5 classes for
each of the two zoning methods, and each class of
magnitudes is considered as a state in the magnitude-to-
magnitude transitions of a semi-Markov model.

Zoning by K94 was carried out according to occurrences
or epicenters, while the zoning in the present study was
carried out by fault lines. In other words, K94 considered the
historical data of earthquake occurrences according to their
longitudes and latitudes, and classified them into 22 classes;
while the present study considered the historical data of
earthquake occurrences according to the longitudes and
latitudes of their fault lines, and obtained their linear
regressions, and then classify these linear regressions into 10
classes. Since the epicenters are positioned on the fault lines,
zoning by fault lines can be more accurate than by epicenters.

a) Zoning by K94 (based on epicenters)

Karakaisis [1994] divided the Iran area into 21 zones. In
this section, his zoning method is applied. K94 does not
considered the center of Iran as a zone; hence the zoning is
used to divide Iran into 22 zones, i.e. 21 zones by K94, plus
one central part, as shown in Figure 2.

Also, the magnitudes of the past occurrences were
classified into 5 classes, as follows:

:mb < 3.6
13.6<mb< 4.8
:4.8<mb<54
15.4<mb<6.3
:6.3 < mb

—

N

(6)

w

n

SREEER

v
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Figure 2. The siesmogenic source zones of Iran, as proposed by K94
[from Karakaisis 1994; re-edited by Sadeghian and Jalali-Naini 2008b].

These classes were obtained through the agglomerative
nesting (AGNES) method, which is a technique for data
clustering [Ghazanfari and Rezaei 2006, Jalali-Naini and
Sadeghian 2009]. The minimum of the considered
magnitudes is 3.1 MB (body wave magnitude) and their
maximum is 7.1 MB.

With respect to the K94 zoning in Figure 2 and
Equations (1), (2) and (6), the transition probability matrix
for both the magnitude-to-magnitude and the region-to-
region transitions are obtained as in Tables 7, 8a and 8b,
which are included in Appendix 1.

By applying the data in Tables 7, 8a and 8b and
Equation (1), interval transition probability matrices in both
magnitude-to-magnitude and region-to-region transitions
are determined. By using these and Equation (2), the
probabilistic forecasting matrix for the next 5 time periods
(i.e. the next 50 days) after normalizing are obtained (see also
Tables 9a and 9b in Appendix 1, and more comments in the
modeling section mentioned above).

Considering n = 3179, n, = 3000, n, = 179, hence, in
zoning by K94, the values of the forecasting error of the
algorithms mentioned are calculated as follows:

MSE = 0.022
MAD = 0.05
MAPE = 5.00%

In method 3, according to algorithm (II) in the
validation section, all of the data are divided into three
classes. The data ranging from 1 to 3,000 are used for
forecasting the next 104 data, which are used for making a
pattern. The data ranging from 3,001 to 3,104, which is equal
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Figure 3. The siesmogenic source zones of Iran proposed by Sadeghian
(present study).

to 28 time periods (each time unit is equal to 10 days), are
used for deterministic forecasting of the data ranging from
3,105 to 3,179, which are the data later used for determining
the forecasting error in the case of deterministic forecasting.
In this way, according to algorithm (II) in the validation
section, t is equal to 5. This value means that the element(s)
greater than 5th maximum order in forecasting matrixes are
replaced by 1 and the other elements are replaced by 0, then
the deterministic forecasting is the nearest forecasting to the
real occurrences and its forecasting error is the least.
However by considering t = 5 in this zoning method, its
MAPE is 2.398%.

b) The proposed zoning (based on fault lines)

In this zoning method, the estimated linear equations
of fault lines (according to their longitudes and latitudes)
were obtained. Next, the fault lines and their linear equations
were classified into 10 zones according to specific attributes,
including the Provinces of Iran, their importance, the length
of the fault lines, etc. Therefore, Figure 3 was drawn
approximately. The above steps were completely run on the
MATLAB software.

In this way, the fault lines in the Iran area (shown in
Figure 4) [Sadeghian 2007] are divided into 10 zones, as
shown in Figure 3.

The classes of the magnitudes are considered similar to the
K94 zoning method. The matrices G, (i.e. probability matrix of
region-to-region transitions) and FRM (i) Vi = 1,...,5 are
determined through a method similar to the K94 zoning
method, as with Table 10, in Appendix 2.

By using Tables 7 and 10, the interval transition
probability matrices in both region-to-region and magnitude-
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Figure 4. The fault lines in the Iran area [from the website of the International Institute of Earthquake Engineering and Seismology (Tehran, Iran),

http:/ /www.iiees.ac.ir/iiees/ English/Seismology/eng_seis_faults.html].

to-magnitude transitions are determined; in addition, using
these and Equation (2), the probabilistic forecasting matrices
for the next 5 time periods (i.e. the next 50 days) after
normalizing are determined. (See Tables 11a and 11b in
Appendix 2).

In this zoning method, the forecasting errors are
determined through a method similar to the K94 zoning
method, as follows:

MSE = 0.0112
MAD = 0.0445
MAPE = 4.45%

In method 3, similar to the zoning by K94, all of data
were divided into three sections. The value of t obtained was
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4 and its MAPE in deterministic forecasting error is 3.552%.

Discussion

With respect to the two zoning methods investigated,
the percentages of earthquake occurrences in each of the
zones are shown in Figures 5 and 6. Moreover, the
percentages of earthquake occurrences in each class of
magnitudes, which are similar in both methods, are
presented in Figure 7.

The transition probability matrices in the magnitude-to-
magnitude transitions are the same with both of the zoning
methods. Table 7 shows that the maximum and minimum
probabilities in the magnitude-to-magnitude transitions are
related to the transitions from M to M, (1.00) and from M, to
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Figure 5. The percentage of occurrences in each region, with the zoning
by K94 [from Sadeghian and Jalali-Naini 2008b].
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Figure 6. The percentage of occurrences in each region, with the zoning
by Sadeghian (present study).
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Figure 7. The percentage of occurrences in each class of magnitudes
[from Sadeghian and Jalali-Naini 2008b].

M; (0.0026), respectively (except for none-zero elements).
These results are illustrated in Figure 7.

With respect to the zoning by K94, presented in Tables
8a and 8b, it is clear that the maximum and the minimum
probabilities in these tables are related to the R, =R, (0.333)
and R, =~ R,, R,, = R, (0.0028) transitions, respectively.
Moreover, in the proposed zoning (Table 10), the maximum
and minimum probabilities are related to R,—R_ (0.355) and
R,—R,, (0.0059) transitions, respectively.

A summary of the minimum and maximum transition
probabilities is shown in Table 2.

The results forecast for the probabilities of earthquake
occurrence in the future 5 time periods with the zoning by
K94 and the proposed zoning are shown in Tables 9a and 9b,
and Tables 11a and 11b, respectively. These tables show that
in zoning by K94, the maximum probability of earthquake
occurrences pertains to R,,M, in the first time period, and
R, M, in the second, third, fourth and fifth time periods.
Similarly, in the proposed zoning, the maximum probability
of earthquake occurrences pertains to R;M, in the first time
period, and R M, in the second, third, fourth and fifth time
periods. Ultimately, the forecasting errors in both of the
zoning methods show that both the number of zones and
the type of zoning affect the forecasting probabilities and the
forecasting errors. MAPE in the proposed zoning is 4.45%,
while in zoning by K94, it is 5.0%. Therefore, it can be
concluded that the proposed zoning will be more successful
and precise, although both of these methods have rather low
forecasting errors.

A summary of the maximum probabilities in the two
types of zoning is shown in Table 3.

In the deterministic forecast method, for different t's, the
minimum errors of the forecasting are calculated. So, by
considering the forecasting errors obtained through method
3, it can be easily determined that the minimum error of
forecasting is related to t = 5 in the zoning by K94, and to t =
4 in the proposed zoning. The MAPEs in the deterministic
forecasting error of zoning by K94 and by the proposed
zoning can be obtained through the aforementioned method
(i.e. algorithm III). These values are 2.398% in the zoning by
K94, and 3.552% in the proposed zoning. These values show
that in comparison to the proposed zoning, the K94 zoning
method has fewer errors. Of course, this priority has a
rational reason, and that is because in method 3, although
the sum of the absolute percentage error (SAPE) is the same
for both methods, to find the MAPE in the K94 zoning
method, the SAPE has to be divided by 22 X 5, while, in the
proposed zoning, it has to be divided by 10 X 5 (since the
number of the classes of magnitudes is five, the number of
the K94 zones is 22, while in the proposed zoning this is just
10); therefore, the MAPE obtained through the K94 zoning
method is less than that obtained through the proposed
method in the present study. Of course, this priority exists in
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Transition Minimum probability Maximum probability
Magnitude-to-magnitude transition
probability M, — M; (0.0026) M; — M, (1.00)

Region-to-region transition
probability for the K94 zoning

Region-to-region transition
probability for the proposed zoning

R,,— R,,R,, — R, (0.0028)

R, — R, (0.0059)

R, — R4 (0.333)

R, — R, (0.355)

Table 2. Summary of minimum and maximum transition probabilities.

Period2 Period3 Period4 Periods

Zoning type Period1
Maximum probabilities R M
in K94 zoning we
Maximum probabilities R, M,

in the proposed zoning

Table 3. Summary of maximum probabilities in the two types of zoning.

Zoning type

Future time periods 1 to 5

K94 zoning method

Proposed zoning method

R16 MZ’ RIS MZ) RIQ MZ’ RZO MZ’ RZZ MZ

RS MZ’ RG M27 R7 MZ’ RS MZ

Table 4. Deterministic forecasting matrix during the first to fifth time periods for zoning by K94 and by the proposed zoning.

Period K94 zoning method Proposed zoning method
1 R, M, Ry, M, R, M, RyM,, RyM,,

2 R,M,, R, M, R, M, R,M,, R;M, R,M,,

3 R,M,, R,M, R M, RyM, R,M, R,M,, R,M, R,M, RyM,,
4 R, M, RM, RM, R,M, R, M, R;M,, R¢M,, R, M, R,M,,
5 Ry M,, Ry M, R, M, R,M,, R;M,, R,M,,

Table 5. Actual earthquake occurrences during the following 5 time periods after the last earthquake occurrence.

Zoning type Forecast (%)
Completely Region correct, Adjacent region correct,
correct Magnitude wrong Magnitude correct Not forecast
K94 zoning 42 16 16 26
Proposed zoning 56 19 19 6

Table 6. Summary of the results of the forecasting.
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deterministic forecasting just due to the greater number of
zones in the K94 zoning method, so it does not exist for
probabilistic forecasting.

Conclusion

In this study, first, the method of applying the semi-
Markov model in forecasting these triad dimensions of
earthquakes was mentioned. Then, the method of
calculating the probabilistic and deterministic forecasting
was elaborated on. Moreover, several algorithms for
validating the proposed model and obtaining the forecasting
errors are introduced. Finally, while introducing two zoning
methods, as those of K94 and of the proposed zoning, a case
study on the Iran area is carried out and the forecasting
errors of the proposed models are obtained for both of these
zoning methods. In conclusion, it can noted that both the
number of zones and the type of zoning affect the forecast
probabilities and the forecasting errors. The forecasting
errors show that the MAPE for the K94 zoning is 5.0%, while
it is just 4.45% in the proposed zoning. These levels show
that the forecasting error can be reduced through
manipulating the numbers of zones or the types of zones.

With respect to method 3, in calculating the
deterministic forecasting errors, this method can also
forecast the next earthquake occurrences deterministically.
With respect to the collected data in the case study, the last
earthquake considered in this study occurred on March 26,
2007, with a magnitude of 4.9 MB, M,, and in the regions of
RZZ
respectively). Accordingly, the deterministic forecasting
during the future 5 time periods (the future 50 days) are
determined in the K94 and the proposed zoning by algorithm
111, as shown in Table 4.

During the 50 days after carrying out the proposed
model in the Iran area, some earthquakes occurred for both
of the zoning methods. These are presented in Table 5.

These results obtained show that in the zoning by

and R, (in the K94 and the proposed zonings,

K94, 42% of the earthquakes were correctly forecast. The
areas of 16% of the earthquakes were correctly forecast,
but not their magnitudes. Then 16% of the earthquakes
occurred in areas adjacent to the forecast earthquakes,
with the correct magnitudes, and 26% of the earthquakes
were not forecast at all.

In the proposed zoning, 56% of the earthquakes were
correctly forecast in all of the three dimensions. The areas
of 19% of the earthquakes were correctly forecast, but not
their magnitudes. Then 19% of the earthquakes occurred in
areas adjacent to the forecast earthquakes, with the correct
magnitudes, and 6% of the earthquakes were not forecast at
all. The summary of these results is given in Table 6.

In addition to the errors obtained and explained above,
the statistics mentioned here show that in comparison to the
K94 zoning, the proposed zoning provides more accurate
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forecasting. One of the reasons for the priority of the
proposed zoning over that of K94 is that the K94 zoning was
not performed correctly (i.e. it did not take into account the
center of Iran, which is a very extended area, while this was
part of the zones considered in the present study).
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