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ABSTRACT

A comprehensive statistical study of  the phenomenology of  aftershock
sequences is made in this paper. The spatial distribution of  aftershocks
indicates that they are mainly crustal events; however, deeper sequences
also take place. The analysis of  the distribution of  aftershocks in 15
sequences with respect to time and magnitude leads to the statistical
confirmation of  a set of  phenomenological laws describing the process,
namely, the time-frequency law of  hyperbolic decay of  aftershock activity
with time, the magnitude stability law, and the exponential magnitude-
frequency distribution. The hypotheses involved are checked. The grouping
of  data and the statistical methods employed are chosen according to some
basic well·confirmed assumptions regarding the nature of  the process.

Introduction
A comprehensive study of  the phenomenology of

aftershock sequences must include space, time, and
magnitude distributions. Sequences which occurred in many
parts of  the world have been studied by various authors and
the results are scattered in the geophysical literature. The
determination of  the phenomenological laws describing the
aftershock process is a statistical problem, and it is therefore
desirable to employ a consistent statistical procedure and to
perform appropriate tests. We feel that some of  the methods
employed in the past were not rigorous; consequently, this
paper is an attempt to present a unified procedure for the
statistical study of  aftershock sequences. For this purpose,
15 sequences have been analyzed in detail, even if  some of
them had already been studied according to different
methods.

The study of  the space distribution of  aftershocks
within a given sequence does not present particular
problems. Its accuracy depends on the precision with which
epicentral coordinates and focal depths are computed. It has
been maintained [Page 1968a] that aftershocks are essentially
a shallow phenomenon. A review of  available information
partly confirms this view, but allowance must be made for
notable exceptions.

The situation is more complicated with respect to time
and magnitude distribution. The problem is basically that of
finding a statistical relationship between the various
quantities involved, and of  estimating the parameters

appearing in the statistical laws. First of  all, when examining
the data (which consist of  the origin times ti and of  the
individual magnitudes Mi of  the aftershocks), one must be
reasonably sure to be dealing with a complete set; that is,
ideally no aftershock with M ⩾M*, where M* is the minimum
magnitude detected in a sequence, should be missing in the
time interval considered. Moreover, it has been shown
empirically by Suzuki [1958] that the mode of  grouping the
data influences the results: therefore the mode of  grouping
should be as uniform as possible. Finally, it is desirable to
employ a statistical procedure that does not contradict the
underlying characteristics of  the phenomenon observed, it
is necessary to apply some statistical test to check the
hypothesis being entertained, and confidence limits on the
results must be given. More often than not, one or several of
these conditions are not met in the study of  aftershock
sequences, and the significance of  the results is therefore
debatable.

Among the several sequences for which origin times and
magnitude of  individual aftershocks have been published, 15
have been selected for detailed study. As far as possible we
have tried to include sequences from different geographic
regions, even if  this implied considering a few sequences
whose completeness may be in doubt. Since the
determination of  the statistical laws is more reliable when
data are more abundant, no aftershock sequence consisting
of  less than 46 shocks has been included.

Table 1 lists the aftershock sequences whose time and
magnitude distributions are studied in this paper; it includes
region of  occurrence, literature reference, main shock
parameters (t0 origin time; φ0, λ0 geographic coordinates; h0

focal depth; M0 magnitude), minimum magnitude of
aftershock included (M*), focal depth of  aftershocks (h), and
total number K of  aftershocks with M ⩾ M* recorded in the
first 100 days. (In sequence (1) the first day after the main
shock is excluded from the count.) Focal depths are in
kilometers; the term «shallow» is taken to mean «crustal»,
and often (especially in California) «upper crustal».
Magnitude are given in the M-scale or ML-scale, with the
exception of  sequence (1), where the m-scale has been
employed.

It will be seen that the results of  the analysis confirm
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able 1.List of aftershock sequences selected for detailed study.
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the 3 basic laws describing the phenomenology of  aftershock
sequences, namely, the time-frequency law (Omori's law) as
formulated by Mogi [1962], the magnitude stability law
[Lomnitz 1966], and the magnitude-frequency law
[Gutenberg and Richter 1954].

Spatial distribution of aftershocks
The spatial distribution of  the shocks in an aftershock

sequence is naturally related to the location of  the main
shock. The following considerations are based on a
comprehensive survey of  available data and are not limited to
the sequences listed in Table 1. If  one traces on a map the
boundary of  the area in which the epicenters are located, the
epicenter of  the main shock is usually close to this boundary.
Such is the case for all aftershock sequences of  large
earthquakes wich occurred in Japan from 1923 to 1963
[Matuzawa 1964]. When aftershock activity takes place along
a fault segment, as is frequently the case in California, the
domain of  the epicenters is approximately elliptical with the
long axis parallel to the active fault segment; often the main
shock occupies, roughly speaking, one focus of  the ellipse,
and the aftershocks are concentrated toward the two ends. In
some sequenze the aftershock epicenters are clustered in a
very small area (only a few kilometers in length and width),
but this is rather exceptional; usually they are spread out over
a much larger area. In the aftershock sequence of  the
Aleutian Islands earthquake of  March 9, 1957 [Duda 1962]
the distribution of  the epicenters follows closely the trend of
tectonic activity along. the Aleutian arc.

As to the focal depths of  aftershocks, a review of
available data by Page [1968a] indicates that, when
hypocenter determinations are accurate, aftershocks are
shallow events following a main shock which is itself  shallow.
Aftershock sequences therefore appear to be crustal
phenomena, with the majority of  shocks clustering in the
upper layer of  the crust (h ⩽ 20 km).
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There are, however, some exceptions. In the region of
Greece, the Southern Sporades earthquake of  March 18, 1926
had a reported depth of  50 km and was followed by 18
aftershocks with M ⩾ 3.9 which were recorded in Athens; the
sequence of  the Anatolia earthquake of  March 18, 1953 (h =
50 km) comprised 21 aftershocks in the first 13 days; the
sequence of  the Zante earthquake of  November 15, 1959 (h =
55 km) consisted of  18 shocks; the focal depths of  individual
aftershocks, however, were not determined [Papazachos et al.
1967]. In the aftershock sequence of  the Kamchatka
earthquake of  November 4, 1952 the majority of  shocks were
located near the Mohorovicic discontinuity, but some of  them
had foci as deep as 60 km [Båth and Benioff  1958]. The
sequence following the Aleutian Islands earthquake of  March
9, 1957 had an average focal depth of  74 km, and individual
shocks were as much as 150 km deep [Duda 1962].

Two more notable exceptions have occurred in
Romania and in Central Asia. Iosif  and Radu [1961] have
studied the aftershock sequence following an earthquake
with M = 7.4 and h = 150 km that took place in the region of
Vrancea, Romania, on November 10, 1940. The focal depths
of  aftershocks (3.3 ⩽ M ⩽ 5.5) were of  the same order. Lukk
[1968] has studied the aftershock sequence of  the Dzhurm
earthquake of  March 14, 1965, which occurred in the Pamir-
Hindu Kush region and had a focal depth of  210 km. The
observation period lasted for about 22 days, during which
390 aftershocks were recorded; their focal depths increased in
time from 200 to more than 240 km.

The examples of  recorded subcrustal aftershock
sequences, however, form a very small part of  the total
number of  sequences known to date; on the other hand,
subcrustal earthquakes are themselves much less numerous
than crustal ones. Therefore the comparative index of
aftershock activity should be given by the ratio of  the
percentages of  crustal and subcrustal earthquakes which are
followed by a sequence. At present there is a bias due to
instrumentation which favours the detection of  shallow
aftershock sequences whereas deep ones may go undetected.
Thus, the conclusion that aftershocks are generally a shallow
phenomenon has to be accepted and at the same time it must
be realized that exceptions exist and that the data are far from
complete.

Time distribution of aftershocks
It is customary to regard aftershocks as random events

in time, whose frequency is governed by some time-decay
law. Jeffreys [1938], in a study of  the aftershocks of  the
Tango, Japan, earthquake of  March 7, 1927, found no sign of
mutual dependence between aftershocks. That is, there was

A STATISTICAL STUDY OF AFTERSHOCK SEQUENCES

Table 4. Fluctuations of  the observed frequencies in the decay of  after-
shock activity with time.

Table 3. Estimates of  the parameters in the time-frequency law. Figure 1. Time distribution of  aftershocks: Alaska 1964.
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no indication that the chance of  an aftershock in a given
interval of  time depended on anything but the time since the
main shock, the aftershock frequency falling off  with time
according to Omori's law. The observed frequency showed
only random departures from the law. It has since become a
commonly accepted fact that aftershocks can be regarded as
random independent events. It follows that any
mathematical relationship relating time and frequency must
not be interpreted as a physical "law" giving an exact
correspondence, but as a statistical law of  chance which is
followed "on the average", observed frequencies showing
random fluctuations from the theoretically expected values.

The fact that aftershock sequences consist of

independent random events does not imply that they are a
simple Poisson process. In a simple Poisson process the
probability of  occurrence of  one event in a given time
interval is constant for all t; this is obviously not the case for
aftershocks, where the probability of  occurrence depends on
the time elapsed since the main shock. But, as Jeffreys [1938]
and many others have established, apart from the common
dependance upon the main shock, no further mutual relation
is found within the sequence.

In this section the statistical decay law of  aftershock
activity is estimated for the 15 sequences listed in Table 1.
The data have been grouped according to a procedure
suggested by Utsu [1962]. The origin time t0 of  the main

A STATISTICAL STUDY OF AFTERSHOCK SEQUENCES

Figure 2. Time distribution of  aftershocks: Aleutian Islands 1957. Figure 3. Time distribution of  aftershocks: Kern County 1952.

Figure 4. Time distribution of  aftershocks: San Francisco 1957. Figure 5. Time distribution of  aftershocks: Parkfield 1966.
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shock has been taken as origin of  the time axis, t0 = 0. The
origin times ti of  the aftershocks, obtained from the
reference listed in Table 1, have been expressed in terms of
days after the main shock. The first day has been excluded
from the analysis because of  its possible incompleteness
with respect to the number of  shocks counted, due to the
high frequency of  aftershocks. Usually, aftershocks
occurring in the time interval 1 ⩽ t ⩽ 100 have been
considered, unless a sequence comes to an end in a period of
time shorter than 100 days. The time axis has been divided
into logarithmically uniform intervals, such that their
boundaries    , satisfy the relation

Now, if  Ni is the number of  aftershocks occurring in the
time interval , the quantity

represents the observed frequency per unit time interval.
This observed frequency is associated with the centered
value of  the time interval concerned

so that one obtains a set of  points (ti, ni) in the (t, n)-plane.
The data arranged in this fashion are shown in Table 2, the

first column representing the centered time, the second the
number of  shocks in the time interval concerned, and the
third the observed frequency. In the sequences (4), (7), (10),
(12), (13) and (15), in which the number of  shocks in some of
the original time intervals was zero, the time intervals have
been grouped two by two and ni and ti have been calculated
accordingly.

The ( ti, ni)-points usually show an approximately linear
trend on doubly logarithmic paper. Consequently, it is
reasonable to assume that the frequency of  aftershocks per unit
time n and the time t are related by an equation of  the form

(1)

that is, Omori's law. The commonest procedure for
estimating the parameters a and β is the least squares
method, which has been applied to the great majority of
aftershock sequences whose time distribution has been
investigated so far. Accordingly, relation (1) is linearized by
taking logarithms on both sides

(2)

Then, setting

the following model is obtained
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Table 5. Comparison of  hyperbolic and exponential decay of  aftershock activity.
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that is, the expected value of  y is a linear function of  x.
Therefore

i.e., the observation yi, consists of  the expected value at the
given xi plus a random fluctuation εi.

In the method of  least squares, the parameters a* and β*

are chosen in such a way that the sum of  squares of  the
vertical distances of  the points from the regression line is
minimized. For the linear model, this sum of  squares is

and the necessary conditions for ξ (a*, β*) to be minimum are

from which one obtains

(3)

According to the Gauss-Markov theorem [Graybill
1961], the estimates of  the parameters calculated according
to the least squares method will be unbiased and of
maximum efficiency if, and only if, the linear hypothesis is
such that the random fluctuation ε has zero mean and
constant variance (independent of  x). In other words, if  the
calculated regression line is to give the expected value of  y
for each x, the observed values must be uncorrelated, and
the probability distribution of  y for each x must be
symmetric. In many cases, especially when the fluctuation ε
can be considered to be the sum of  many independent

factors, the conditions of  the Gauss-Markov theorem are
satisfied and the probability distribution of  y may be
regarded as approximately normal for every x. In other cases,
however, the matter is very debatable, particularly when a
transformation of  coordinates is performed in order to
linearize the least square model.

It turns out that, under reasonable assumptions, neither
the original model (1) nor the linearized model (2) satisfy the
conditions of  the Gauss-Markov theorem. This has been
noted, for instance, by Page [1968b]. An appropriate method
must take into account the probability distribution of  n for
each interval of  time considered. On the other hand, it has
been suggested [Yule and Kendall 1940] that the least squares
method is approximately correct also when the conditions
for its theoretical validity are not realized in practice. In order
to clarify these matters, in the sequel we shall estimate the
parameters in equation (1) by means of  both the least
squares method for the linearized model (2), and the
maximum likelihood method [Cramér 1946], which takes
into account the distribution of  n for each time interval. First
of  all, we analyze this distribution.

In the following discussion it is assumed that the
deviations of  the observed values ni from the expected value
n(t) reflect actual random fluctuations and that other
contributions to such deviations are negligible. Since the only
other sources of  deviations are errors of  measurement, and
these have been reduced to a minimum by excluding the first
day after the main shock and by counting only welldefined
aftershocks with M ⩾ M*, the assumption is most probably
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Figure 6. Magnitude stability in time: Aleutin Islands.

Table 7. Oscillations of  mean magnitude.

Table 6. Confidence limits on the decay parameter.
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correct. It is also assumed that, if  the number of  shocks
expected in the i-th interval is E (Ni), the probability that the
observed number is Ni , is given by

(4)

i.e., the number of  shocks in each time interval is given by a
Poisson distribution. The Poisson distribution is the most
fundamental distribution for such discrete variates as the
number of  shocks in a given time interval, and it has been
postulated for the case of  aftershocks by a number of
authors, e.g., recently, by Utsu [1962] and Page [1968b]. The
expected value E (Ni) in the i-th interval is given by

(5)

where the approximation is introduced in order to avoid
using the integral in equation (4); this is necessary
because β is unknown and could be unity. The
approximation has been checked numerically for some
randomly selected samples and the error was found to be

negligible. Then relation (4) becomes

(6)

The principle of  the method of  maximum likelihood is
to take estimates of  the unknown parameters that maximize
the probability of  obtaining the observed sample.
Considering a sample of  k independent values, each with a
probability distribution p ( Ni; a, β), the probability that the
sample consists precisely of  these k values is

(7)

The function L (a, β) is called the likelihood function.
The necessary condition for L (a, β) to have a maximum is

Since 1n L (a, β) (where 1n stands for the natural
logarithm) attains its maximum for the same values of  a and
β as L (a, β) itself, it is the function 1n L (a, β) which is
commonly maximized. It follows from equations (6) and (7)
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Table 8. Magnitude-frequency distribution (continues on next page).
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that the likelihood function in the present problem is

i.e.,

from which one obtains

The maximum likelihood estimates of  a and β are
obtained by solving the equations

i.e.,

(8)

Equations (8) are the normal equations in the maximum
likelihood method. From them one obtains,

(9)

i.e.,

(10)

Equation (10) must be solved for β, and then a can be
obtained from (9).

A program has been written to solve equation (10) by
the secant method [Ralston 1965]. The first approximation
to the root of  (10) and to the estimate of  a has been obtained
by means of  the least squares method for the linearized
model, according to formulas (3). The estimates a1, β1

obtained by the least squares method, when compared with
the maximum likelihood estimates, give an idea on how
statistically reliable the least squares method is when the
underlying assumptions are not met.

The numerical results for the 15 sequences are
summarized in Table 3. From left to right, the columns
indicate the sequence involved, the least square estimates a1,
β1 and the maximum likelihood estimates a, β. The
parameter which characterizes a sequence is the decay
parameter β, which measures the rate of  decay in time of
the frequency of  aftershocks. It can be seen that differences
between β1 and β are present but not very large. The decay
parameter is usually around unity.

Now, we proceed to check the validity of  the time-
frequency law. If  the expected value of  the frequency n varies
in time according to equation (1); and using the approximation
expressed by (5), the mean and the variance of  the Poisson-
distributed number of  shocks are in each interval

and therefore the standard deviation of  n is

A general theorem which holds for an arbitrary
distribution with a second moment is Tchebychev's theorem
[Cramér 1946]. It states that, if  X is a random variable with
mean E (X) and standard deviation D ( X), then the following
inequality holds
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where k is an arbitrary positive number. In other words, the
probability that X assumes values outside the interval E (X) ±
k D ( X) is less than 1/k². Conversely, from the viewpoint of
sampling, in the long run less than (100/k²)% of  the values
assumed by X will fall outside the interval.

The application of  Tchebychev's inequality to check the
validity of  the time-frequency law has two limits, namely, it
yields rather weak conditions, and the sample size is small.
Nevertheless it gives at reasonably safe criterion for rejecting
the validity of  the law for sequences that show too wide
fluctuations. Regarding the observed values of  n as the result
of  random sampling from a population whose expected
value varies with time according to (1), and choosing k = 2,
Tchebychev's inequality takes the form

that is, in the long run less than 25% of  the observed
values ni should fall outside the interval E (n) ± 2 D (n). If  this
condition is not satisfied, the assumption regarding the
variation with time of  the expected value n(t) must be rejected.

In order to determine a confidence band according to
Tchebychev's inequality, therefore, the quantities E (n) + 2 D
(n), E (n) – 2 D (n) have been computed at selected ti, i = 1, 2,
..., k; and compared with the observed ni. Table 4 gives the
results, showing in the columns from left to right the
sequence, the total number of  data points, the number of
points outside the confidence band, and their percentage.
Consequently, according to the selected criterion, sequenze
(10), (12), (13) and (14) do not follow the assumed

timefrequency law, inasmuch as the observed frequency
cannot be explained only in terms of  random fluctuations
from the law. The other 11 sequences appear to follow the
law and the fit is generally fairly good. .All the sequences
which show considerable departures from the assumed law
have occurred in the region of  Greece; this fact might have
some geotectonic significance. However, there exists the
possibility that relatively poor instrumentation plays a part
in some apparent irregularities. Sequence (14) originated
under peculiar conditions; the frequency of  aftershocks in it
appears to be correlated to the variations in the water
loading of  a nearby artificial lake [Comninakis et al. 1968].

Figures 1 to 5 display on doubly logarithmic paper the
results for some of  the 11 sequences which appear to decay
according to the postulated law. The dots represent the data
points, the full line the fitted n(t), and the broken lines the
confidence limits.

It is interesting to note that most decay phenomena in
physics are exponential, whereas the decay of  aftershock
activity with time appears to be hyperbolic. In order to check
rapidly the possibility of  exponential decay, the model

has been linearized, and the parameters a2 and β2 have been
estimated by the least squares method. Then the mean square
deviation (standard error of  estimate) of  the data points from
the fitted curve has been calculated by the formula

(where k is the number of  data points) and compared with
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Table 9. Estimation of  the parameter b in the magnitude-frequency law. Table 10. Validity of  the magnitude-frequency law.
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the mean square deviation from the fitted time-frequency law

that is,

(where a1 and β1 are the least square estimates). If  the
assumed time-frequency law represents a better fit, in the
least square sense, than the exponential decay. The results
are summarized in Table 5. It can be seen that      in all
but three cases, namely, sequences (7), (10), and (15). It can be
concluded that the frequency of  aftershocks usually
decreases in time hyperbolically and not exponentially.

Confidence limits on the decay parameter
The parameter β appearing in equation (1) is related to

the rate of  decay of  aftershock activity with time and is
therefore an important characteristic of  the sequence under
consideration. Consequently, it would be interesting to see
whether the differences in the computed decay parameters
for different sequences are significant or not. Confidence
limits on β, however, cannot be calculated according to the
usual least square procedure, which assumes the fluctuations
to have a normal distribution.

An approximate procedure for calculating confidence
limits on β can be based on the addition theorem for the
Poisson distribution [Cramér 1946]. Since in this procedure
the parameter a is assumed to be known exactly, it will yield
no more than an indication of  the range in which the real
value of  β is likely to fall.

The addition theorem for the Poisson distribution
states that, if  Ni, i = 1, 2, ..., k, is a sequence of

stochastically independent and Poisson-distributed random
variables with expected values Ei = E (Ni), then the sum

will be Poisson-distributed with expected
value In the present case, Ni being the number
of  shocks in the i-th time interval, the expected values are

and

The value of  E (X) for each of  the 11 sequences which
follow the time-frequency law is such that the distribution of
X can be approximated by the normal distribution. Therefore
the standardized variable

is approximately normally distributed with E (X*) = 0, V (X*)
= 1. Therefore, the probability that X* assumes a value in the
interval (λ1, λ2) is

where Φ (X*) is the normal distribution function. In particolar

Then the approximate 95% confidence limits on the
decay parameter are obtained by solving for β the equations

that is, recalling the definition of  X*,
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Figure 7. Magnitude-frequency distribution: Aleutian Islands 1957. Figure 8. Magnitude-frequency distribution: Kern County 1952.

( )n t t1
1a= b-

2
1 log log logs k n t t2

1 1e i

k

i i i1
2= a bR- - -

=
^ h6 @

E t ti i i= a D )b-

E X t t .
1i

k

i i= a R D
=

)b-^ h

X
D X

X E X
=
-) ^
^
h
h

( ) ( )P X1 2 2 1=G Gm m m mU U-)" ,

1.96 1.96 .9 .P X 0 5=G G- )" ,

1.96X = !)

s s2 2
e e1 l

s s2 2
e e1 l

X N
1i

k

i= R
=
E X E

1i

k

i= R
=

^ h



Naturally, the central value of  X* is obtained when a, β
are given by the maximum likelihood estimates. Assuming
the value of  a to be known exactly, the above equations take
the form

(11)

Equations (11) have been solved by the secant method.
The results for the 11 sequences with time-frequency law of
the form given by (1) are shown in Table 6. It can be seen
that the 95% confidence limits on the maximum likelihood
estimate always contain the least square estimate of  β, which
therefore appears to be a good approximation to the real
value of  the decay parameter.

The values listed in Table 6 must not be considered as
exact. The limits rounded to the second decimal digit are
probably fairly reliable. Most β-values cluster around the 0.9-
1.2 range. Sequence (11) stands by itself, showing a very rapid
decay in activity. Also sequence (9) has a decay coefficient
somewhat higher than usual. This fact hints at the possibility
that sequences in Greece decay more rapidly; but no
conclusion can be reached with such a small sample size.

Magnitude stability in time
When the characteristics of  aftershock sequences with

respect to magnitude are examined, two sources of  error are
added to the possibility of  the incompleteness of  data;

namely, lack of  accuracy in magnitude determination, and
confusion between different magnitude scales.
Unfortunately, authors sometimes do not specify which scale
they are using. When one single sequence is being examined,
no problems arise, because the data are consistent within the
sequence; if, however, results for different sequences are to be
compared, the use of  different magnitude scales may affect
the conclusions. In the sequel, the various "local" magnitude
scales, for the purposes of  comparison of  results among
sequences, have been assimilated to M. Thus the only
distinction left is between M and m; the latter scale has been
used only in sequence (1).

Two aspects of  the sequences have been examined in
detail, namely, the variation of  aftershock magnitudes with
time, and the magnitude- frequency distribution. For all
sequences except (1), where 1 ⩽ t⩽ 100 days, the data for t⩽ 100
days have been included in the analysis. We first consider the
distribution of  magnitude with respect to time.

The overall mean magnitude, M, has been calculated for
each sequences as

where K is the total number of  aftershocks in the sequence.
Then the mean magnitude, M´, of  each group of  10
successive aftershocks is computed, thereby eliminating
large individual fluctuations. In almost all the sequences
considered the mean magnitude M´ oscillates about
during the whole length of  the sequence and no appreciable
decrease with time is detectable for t ⩽ 100 days. When a
sequence lasts less than 100 days, the mean magnitude is
stable throughout the sequence. Sometimes higher values of
M´ are observed in the first few hours after the main shock,
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Figure 9. Magnitude-frequency distribution: San Francisco 1957. Figure 10. Magnitude-frequency distribution: Parkfield 1966.

1.96
t t

N t t

1

1 1

i

k

i i

i

k

i i

k

i i
= !

a

a

R D

R R D-

=

= =

)

)

b

b

-

-

1.96 0

1.96 0 .

N t t t t

N t t t t

1 1 1

1 1 1

i

k

i i

k

i i i

k

i i

i

k

i i

k

i i i

k

i i

=

=

a a

a a

R R D R D

R R D R D

- -

- +

= = =

= = =

) )

) )

b b

b b

- -

- -
*

1 , 1, 2, ...,M K M i K
1i

k

i= =R
=

M



55

but this can almost certainly be attributed to the fact that
some shocks with M ⩾ M* are not detected when the
frequency is very large. Figure 6 gives an example. The
dotted line represents .

Thus, the law of  magnitude stability in aftershock
sequences (first proposed by Lomnitz 1966) is fully
confirmed; during an aftershock sequence the mean
magnitude of  the shocks is constant in time. Consequently,
the decrease of  seismic activity with time is solely due to the
decrease in aftershock frequency.

Moreover, the fluctuations of  M´ about the overall mean
magnitude     are not very wide. Table 7 summarizes the
results for the sequences with a larger number of  shocks.
From left to right, the first column indicates the sequence,
the second the overall mean magnitude, the third the
number of  calculated M í        -points, and the fourth the percentage
of  such points which fall within the interval      ± 0.20. It is to
be noted that also the sequences with a lesser numher of
aftershocks and not included in the table show remarkable
magnitude stability. The only sequence in which M´ shows a
decreasing trend with time is sequence (11). In all the others,
M´ shows only random fluctuations from     and the law of
magnitude stability in time is satisfied.

Magnitude-frequency distribution
The frequency data for the 15 sequences of  Table 1 are

listed in Table 8. The first column gives the centered value of
magnitude in the interval concerned (M ± 0.05); n(M) is the
frequency; and N (M) the cumulative frequency. For brevity,
intervals in which the frequency was zero have been omitted
from the table. The magnitudes in sequence (1) are in the
m-scale. The most commonly accepted form for the
magnitude-frequency distribution, in case of  both

independent seismic events and aftershock sequences, is

(12)

where log is the logarithm to the base 10 and n(M) is the
number of  shocks with M ± dM [Gutenberg and Richter
1954].

Equation (12) is to be regarded as expressing a
statistical relationship. Usually, the coefficients a and b have
been calculated according to the least squares method.
Suzuki [1958] has pointed out that this is not rigorous,
because log n(M) is not symmetrically distributed with
uniform variance for each magnitude interval ΔM.

In this section we shall define n(M) is such a way that log
n(M) = a not when M = 0, as in equation (12), but when M = M*,
where M* is the minimum detectable magnitude in the
sequence. Then the magnitude-frequency law takes the form

(13)

Converting to natural logarithms one obtains

(14)
where

(15)
Therefore

Normalizing, i.e., imposing the condition that

one has

i.e., γ = b´. Thus we assume that the probability distribution
of  M takes the form

(16)

A procedure for estimating the parameter b´ in (16) can
be derived as follows. The mean of  the distribution is

Approximating the population mean by the sample
mean    , given by

where K is the total number of  shocks, one has
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Figure 11. Magnitude-frequency distribution: Cremasta 1966.
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i.e.,
(17)

The above procedure is but a particular case of  the time-
honored method of  moments, introduced by K. Pearson and
his school [Cramér 1946]. Formula (17) was also proposed
by Utsu at a meeting of  the Seismological Society of  Japan
(reported by Aki 1965). The estimation of  the parameter b´
given by (17) has been proved by Aki [1965] to be equivalent
to the maximum likelihood estimate, and therefore has
several desirable statistical properties.

Table 9 gives the results of  calculations. From left to
right, the columns indicate sequence, sample mean   ,
minimum magnitude M*, and the estimations of  the
parameters b´, b appearing in relations (16) and (13)
respectively . The estimate of  b´ is given by (17), and b is
given by (15). The minimum magnitude M* has been taken
to be 0.05 units less than the values given in Table 8 because
the value of  M approximated to one decimal could actually
come from anywhere in the interval M ± 0.05. It can be seen
that b is usually slightly less than unity.

The basic idea for examining the observed fluctuations
from the magnitude-frequency law is as in the case of  the
time distribution of  aftershocks. Suzuki [1958], among
others, has argued that the number of  shocks with M ± dM
must follow a Poisson distribution. Accordingly, the problem
is that of  checking whether the observed deviation can be
explained in terms of  random fluctuations from the law.

It is more convenient to consider the cumulative
distribution because individual large fluctuations in small
intervals, possibly due to inaccurate magnitude
determination, are smoothed out in this fashion, and
moreover the normal approximation can be employed. The
basic idea of  the method is due to Suzuki [1958]. Some minor
modifications have been introduced, and the normal
approximation to the Poisson distribution, instead of  the
Poisson distribution itself, has been used.

From equation (16), it follows that the cumulative
distribution function of  magnitude has the form

Assuming that the total number of  aftershocks in a
sequence, K, coincides with the theoretical value for M = M*,
the expected value of  the cumulative frequency at various
M > M* is given by

which, when transformed by taking logarithms on both
sides, is a straight line on semi-logarithmic paper, with slope
equal to –b if  the logarithms are to the base 10.

Now, to each magnitude range there corresponds a
Poisson-distributed number of  shocks. The cumulative
number of  shocks at a given magnitude M, therefore, is the
summation of  independent samples taken from each of  the
Poisson distributions corresponding to magnitudes greater
or equal to M. According to the addition theorem for the
Poisson distribution, such a cumulative number will also be
Poisson-distributed. If  the expected value is large enough,
say, N (M) ⩾ 10 for all intervals, the Poisson distribution can be
approximated by the normal distribution with mean N(M) and
standard deviation . It is then possible to calculate
the fiducial interval beyond which fluctuations are expected
with a probability smaller than 5% (2.5% on each side). The
limits of  the interval such that

are, for the normal distribution,    ; i.e., in
the present case,                                   .

Accordingly, the above quantities have been calculated at

Then, by joining all points of  ordinates

respectively, one obtains a confidence band which should
contain approximately 95% of  the data points if  they come
from a population whose expected value is given by the
magnitude-frequency law as expressed by (18). The
rightmost interval (say, from Mj to ∞) has always be chosen in
such a way that N ( M) ⩾ 10.

Table 10 gives the results. It follows that sequences (1),
(3), (9), (10), (12) and (13) do not appear to be governed by
the assumed magnitude-frequency law. When these
sequences are examined one by one, however, it is seen that
several circumstances tend to decrease the weight that must
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Table 11. Confidence limits on the frequency parameter.
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be assigned to their apparent irregularity. For sequence (1)
the body-wave magnitudes as given by the U.S. Coast and
Geodetic Survey have been employed. Page [1968b] found
them inaccurate and modified them on the basis of  records
of  five selected stations, thereby obtaining a better fit;
however, no test on the fluctuations was performed in his
study. Of  the sequences occurring in Greece, it is worth
noting that sequence (14), which was studied with a
network improved with respect to the others, appears to
follow the assumed law; this fact supports indirectly the
conclusion that the irregular behavior of  its aftershock
frequency is due to changing local stress conditions.
Sequences (10), (12) and (13) are also irregular with respect
to aftershock frequency in time. This fact points to the
likelihood that such irregularities are due to poor data,
although no definite statement can be made.

It can therefore be concluded that the magnitude-
frequency law (18) is statistically followed by the large
majority of  the sequenze under consideration. Figures 7 to
11 give some examples; the logarithmic ordinate represent
the cumulative frequency, the linear abscissa the magnitude.

Confidence limits on the frequency parameter
Differences between b-values may be significant or not.

In order to decide the question, confidence limits must be
set on the estimated value of  the parameter. We shall follow
in this matter a procedure suggested by Aki [1965].

Given a sample of  K shocks with magnitudes Mi, i = 1,
..., K, let yi and Y be defined by

where n(M) is given by formula (16). Clearly for all i,

and therefore

By the central limit theorem [Cramér 1946] the
distribution of  Y will be approximately normal if  K is
sufficiently large. Since

it follows that the variable

is approximately normally distributed with mean 0 and
standard deviation 1; therefore

Accordingly, the 95% confidence limits on b´ are
obtained by solving the inequality

which gives

i.e.,

Table 11 summarizes the results for the 9 sequences
where the assumed magnitude-frequency law appears to
hold. According to usage, the parameter b, instead of  b´, has
been employed. It can be seen that the b-values cluster
around the interval 0.8-1.0.

Although sequence (2), which occurred along an active
Island arc, shows an anomalously high value of  the
frequency parameter, the sample size is too small to support
the contention that b has some geotectonic significance.

Conclusion
The basic statistical laws describing the phenomenology

of  aftershock sequences are confirmed by the present study.
These laws are as follows:

(1) Aftershock sequences are generally crustal events,
although deeper ones also occur;

(2) The frequency of  aftershock occurrence within the
same sequence decays in time according to the law

where the decay parameter β is approximately equal to, or
slightly greater than, unity;

(3) The aftershock magnitudes, apart from individual
fluctuations, show stability in time to the end of  the sequence;

(4) The frequency-distribution of  magnitude in a
sequence is of  exponential form

where the frequency parameter b = b´ log e is usually slightly
less than unity

The importance of  the mode of  grouping the data in a
statistical analysis makes it desirable to introduce a
standardized procedure. Furthermore, an appropriate
statistical method must be employed, and the hypotheses
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involved must be checked. A systematic treatment of  data
greatly increases the reliability of  the results.

It also turns out that the least squares method, when the
observed values are uncorrelated, yields rather satisfactory
results even if  the conditions for its theoretical validity are
not met.
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