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ABSTRACT

Using available sets of  magnitude determinations, primarily from
Uppsala seismological bulletin, various extensions are made of  the Zurich
magnitude recommendations of  1967. Thus, body-wave magnitude (m)
and surface-wave magnitudes (M) are related to each other for 12 different
earthquake regions as well as world-wide. Depth corrections for M are
derived for all focal depths. Formulas are developed which permit
calculation of  M also from vertical component long-period seismographs.
Body-wave magnitudes from broad-band and narrow-band short-period
seismographs are compared and relations deduced. Applications are made
both to underground nuclear explosions and to earthquakes. The
possibilities of  explosion-earthquake discrimination on the basis of
magnitudes are examined, as well as the determination of  explosive yield
from magnitudes. For earthquakes, relations between magnitudes of  main
earthquakes and largest aftershocks are investigated. A world-wide station
network for more homogeneous magnitude determinations is suggested in
order to provide the necessary reference system.

1. Introduction
At the assembly of  the International Association of

Seismology and Physics of  the Earth's Interior (IASPEI) in
Zurich in 1967, certain recommendations were adopted in
order to create better homogeneity in seismic magnitude
calculations. In the past decade, the Zurich recommendations
have had both a stabilizing and a stimulating effect on
magnitude calculations and related research. In the past
years, numerous sets of  magnitude determinations have
been collected which call for more detailed study, both in
order to revise earlier magnitude relations and to make any
possible extensions. In general, relations between body-wave
magnitudes (m) and surface-wave magnitudes (M) have
hitherto been given as world-wide averages, a notable
exception being Bormann and Wylegalla [1975]. It now
becomes evident that significant regional deviations exist.
Likewise, the focal-depth correction of  surface-wave
magnitudes (M), hitherto only known approximately for
focal depths less than 100 km, could now be derived for any
focal depth. The differences between body-wave magnitudes
(m) as derived from different instruments, have also called for
more detailed study. There are numerous applications of  the
magnitude concept which can be subjected to further

investigation and possible refinement, such as for
discrimination between explosions and earthquakes, for
determination of  explosive yield, and in the study of
aftershock sequences.

Problems as those just mentioned and related ones,
together with the present existence of  homogeneous sets of
magnitude determinations, prompted the present study. In
this paper, I shall attempt to contribute to the solution of  the
problems mentioned, using primarly observational material
from the Swedish seismograph network. Improved and
estended magnitude relations will contribute to our
knowledge of  the underlying causes, i. e. both source and
path properties. Naturally, not all magnitude problems have
been dealt with. For example, the calibrating functions
(distance and depth dependence, attenuation) have been
assumed as given in the Zurich recommendations. This will
not affect the methods used, nor the main results as these are
primarily based on relative measurements.

In the past decade, numerous valuable papers have
appeared in the literature with close relations to one section
or another in the following. These papers would rather
deserve a special detailed review than brief  mentioning here.
From such considerations, I have restricted the present paper
essentially to my own contributions and limited the
references accordingly. To a certain extent, the present paper
follows up and extends results derived earlier by me,
especially in Båth [1956].

2. List of symbols and abbreviations
a, b, a´, b´ parameters in derived solutions;
A ground amplitude, microns;
AP, AR ground amplitude of  P wave and of  Rayleigh

wave, respectively, microns;
B Benioff  instrument, used as subscript;
c calculated, used as subscript;
D standard deviation (subscripts are used to 

specify which quantity the deviation refers
to, e. g. Dm , DM);

E seismic wave energy, ergs;
E, N, Z east-west, north-south and vertical 

components, respectively, used as subscripts;
g depth parameter in the calculation of  M;
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G Grenet instrument, used as subscript;
h focal depth, km;
H horizontal component, used as subscript;
log decadic logarithm;
L wavelength, km;
m body-wave magnitude, average of  UPP and

KIR;
m (US) body-wave magnitude, as given by NEIS;
M surface-wave magnitude, average of  UPP 

and KIR;
M1 surface-wave magnitude of  largest 

aftershock, average of  UPP and KIR
N number of  observations or

pairs of  observations;
o observed, used as subscript;
p perpendicular distance of  a straight line 

from the origin;
q (Δ, h) calibrating function for m;
T wave period, sec;
x,y Cartesian coordinates;
Y yield of  underground nuclear explosion, kt;
α angle between abscissa and normal to 

straight line;
γ seismic efficiency;
Δ epicentral distance, degrees;
ISC International Seismological Centre;
KIR Kiruna, Sweden: 67˚50.4´ N, 20˚25.0´ E;
NEIS National Earthquake Information Service 

(U. S. Geological Survey);
NTS Nevada Test Site;

PAL Palisades, New York, U. S. A.: 41˚00.4´ N, 
73˚54.5´ W;

UME Umeå (WWSSN), Sweden: 63˚48.9´ N,
20˚ 14.2´ E;

UPP Uppsala, Sweden: 59˚51.5´ N, 17˚37.6´ E.

3. Methods
In short, the Zurich recommendations can be stated as

follows [Båth 1969, p. 131]:
Body-wave magnitudes m are calculated for P, PP, S

from:
(1)

where q (Δ, h) is the calibrating function after Gutenberg and
Richter [1956].

Surface-wave magnitudes M are calculated for
horizontal-component surface waves (Rayleigh) from:

(2)

i. e. the so-called Moscow-Prague formula [Vanek et al.
1962].

The calculations in this paper will essentially consists in
relating various quantities two and two, like m and M. In
graphical plots of  such quantities, generally quite a large
scatter is observed resulting in oval-shaped point clouds. This
fact has been of  dominating influence on our methods of
dealing with the data. As a general notation of  the two
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Table 1. Observational material for m, M and m (US).
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quantities to be related we use y (ordinate) and x (abscissa).
With a and b as constants, we can in our cases then best
describe the relation between y and x as a linear equation:

(3)

Putting a = 1, i. e. assuming a constant difference b
between y and x, proves generally not to be an acceptable
procedure. On the other hand, it proves unnecessary to
include second-degree terms in x. Actual tests on our
observational material demonstrate that the scatter is such
that a second-degree polynomial on the right-hand side of
equation (3) does not improve the accuracy.

With the straigh-line representation as in equation (3),
there are three different possibilities to place such a line to fit
a given point cloud:

1. Regression of  y on x, which we denote as . This
is the common procedure, which by a least squares solution,
i. e. minimizing the sum of  the squares of  the vertical
distances from individual points to the line, yields the
following expressions for the constants a and b:

(4)

where the sums are extended over all points, i. e. all pairs of
values y, x.

2. Regression of  x on y, which we denote as . The
same procedure applied to the horizontal distances (parallel
to the x-axis), leads to a solution of  the following equation:

(5)

3. Major axis solution or orthogonal regression, denoted
, reproduces the major axis of  the point cloud and is

obtained by minimizing the sum of  the squares of  the
distances perpendicular to the line. A least squares procedure
leads to the following solution for the major axis:

with
(6)

In the following we have applied all three methods, as
they have each their merits. Methods 1 and 2 are mainly
justified for computational purposes, providing the
minimum error of  the required quantity. Thus, the
regression       of  the form of  equation (3), is used for
calculating y for a given x. Conversely the regression          ,
i. e. equation (5), is used for calculating x for a given y. On the
other hand, the major axis solution, which best represents
the point cloud as such, is to be preferred for physical
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Table 2. Relations between m and M for h ≤ 50 km.
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reasons. While the major axis solution can be inverted, i. e.
solved for either x or y, an inversion is generally not
permitted for the regressions. The relations between the
three solutions 1, 2 and 3 depend on the shape and slope of
the point cloud. If  the point cloud is very narrow,
approaching a straight line, the three solutions will be closely
similar, whereas they diverge more and more for a broad
oval-shaped point cloud. The slope will also influence, an
extreme case being a horizontal point cloud, for which the
regression         and the major axis solution will agree,
whereas the regression            will be at righ angle to the
other two. In general, the three solutions show best
agreement with each other in the central parts of  the point
clouds and they may diverge strongly towards their
extremities.

The scatter as observed in the point clouds is not due to
measuring errors but to the circumstance that quite a
number of  factors influences the measurements, such as
source and path properties. To correct each reading for such
influences would be a practically hopeless task. Instead we
apply statistical averaging and assume that by the mentioned
straight-line fittings to a sufficient sample, the various effects
will cancel each other. In the regressions, evidently one
variable is assumed to be correct and the deviation is assigned
exclusively to the other variable, whereas in the major axis
solution both variables are assumed to exhibit deviations.

In earthquake statistical research, where homogeneous
magnitude series over long periods of  time are needed,
relations of  the types mentioned will have to be used.
Therefore, a good rule for seismograph stations replacing old
equipment by new one is to have both running in parallel for
such a long time as to permit reliable comparisons. From
overlapping series of  records, it is possible to relate one
magnitude to another magnitude (from a different
instrument or a different station, etc.), which will permit

reductions of  long observational series to one homogeneous
magnitude scale. An example of  such calculations can be
found in a paper by Alsan et al. [1975]. It is then important to
use the proper regressions, also to use only direct or
immediate relations and to avoid the consecutive use of
intermediary relations. The latter will rapidly lead to
accumulation of  errors and becomes increasingly unreliable.

The observational scatter is in each case expressed as the
standard deviation of  the respective formulas. For the
regression solutions the standard deviations Dy and Dx are
calculated, respectively, while in the case of  major axis
solutions, we give three standard deviations, i. e. in addition
to Dy and Dx also D, which refers to the perpendicular
distances from the points to the line. It is obtained from the
following equation:

(7)

In dealing with observations of  this kind, it is important
to test that the sample used is large enough to be
representative. An efficient method was found to use
successively 5, 10, 15, 20, ... observations, until the whole set
is used up, and to calculate the parameters in each case.
Plotting the respective parameters against the number of
observations, we find that after some initial, sometimes large
oscillations, the parameters stay within the limits
corresponding to the standard deviation of  the total sample.
The number of  observations at the point where the
parameters begin to stay within the final limits, is the
minimum number of  observations needed for a
representative sample.

4. Relations between m and M
The observational material consists of  magnitudes

published in the Uppsala monthly seismological bulletin for
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Table 3. Correlations and regressions between the parameters a and b, a´ and b´ (earthquakes).
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the period from January 1970 to April 1975. The body-wave
magnitudes m are averages of  short-period vertical-
component P from Uppsala and Kiruna (Grenet), and the
surface-wave magnitudes M are averages of  long-period
measurements from Uppsala (Benoff ) and Kiruna (Galitzin).
These magnitudes ought to be rather homogeneous, having
all been measured and calculately by the present author. The
material has been divided into 12 regions according to
epicenter location, as listed in Table 1. To avoid the influence
of  local depth h on M, only earthquakes with h ≤ 50 km are
used in the present section.

The regressions and the major axis solutions are
summarized in Table 2 for each region and for the total
material, together with respective standard deviations. We
note that the major axis solution for the total material, that is:

(8)

agrees almost exactly with the one included in the Zurich
recommendations:

(9)

An interesing result is that the parameters a and b are
strongly connected to each other, as evidenced by their
correlation coefficients and regressions, summarized in Table
3. Geometrically, this means that all the lines in each group
intersect in nearly one and the same point, but have different
slopes. Without loss of  accuracy, it is thus possible to
substitute these regressions into those between m and M,
with the results given in the last column of  Table 3. This
means that just one parameter, instead of  two, is enough to
define each relation between m and M. This parameter bears
the characteristics of  a regional magnitude parameter. It is
probably a complicated function of  source and path properties,

but it does not show any obvious dependence on M.
Even though calculated magnitudes agree between the

different regions within error limits, at least in the central
parts of  the point clouds, the parameters a and b differ
significantly from region to region (Db = Dm and Db´ = DM).
This could not be caused by insufficient sampling, because
tests as describbed in Section 3 reveal that already 20 to 30
observations per region represent a sufficient sample. The
different parameters for different regions must reflect some
physical differences. A physical explanation, however, can
only be formulated in general terms. The differences of  the
regional magnitude parameters a, i. e. the slope Dm/DM,
refer to unequal amplitude increase of  P and of  surface
waves, as source energy increases, or in formula:

(10)

This ratio is less than 1, but significantly different in
different regions. Source mechanism and radiation pattern
could be suggested as factors of  significance in this
connection.

5. Focal depth correction of M
Amplitudes of  surface waves, and hence the calculated

M, decrease as focal depth h increases. So far only scanty
information is available on this effect on M, and generally
restricted to h ≤ 100 km. As a consequence, in nearly all cases,
no depth correction is applied to M given in bulletins.

For the horizontal amplitude of  Rayleigh waves in a
homogeneous medium, we have the following depth relation
[Bullen 1963, p. 90]:

(11)

For h = 0, this expression is = 0.42; it becomes = 0 at
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Table 4. Depth dependence of  surface-wave magnitudes M.
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h/L = 0.19 and attains its (negative) maximum = 0.10 at
h/L = 0.46. This result may be strongly modified by the
crustal layering. Partly due to this effect, partly due to
inevitable inaccuracies of  h, no clear-cut dependence is to be
expected for the depth range h = 0-50 km, as also verified by
our observations. Below h = 50 km, the second term in
equation (11) dominates more and more, which would mean
that the depth dependance would be more purely
exponential. The magnitudes, i. e. logarithms of  amplitudes,
could thus be expected to vary linearly with h for h > 50 km.

The depth effect on M is calculated from the following
relations:

(12)

where Mo = observed M and Mc = M calculated from given m
using the regional regressions                 (Table 2,) which yield
the highest accuracy. For the calculation of  g we have used
the material for h > 50 km (Table 1), and the results are
summarized in Table 4.

We find rather large and apparently irregular variations
of  g for 50 < h < 100 km, with an average g = 0.0088 (in close
agreement with some earlier determinations by Båth, 1952,
1956). On the other hand, for h > 100 km, g exhibits a steady
decrease with increasing depth, with the remarkable result
that g (h – 50) is constant = 0.38 ± 0.03. For h > 100 km, this
implies a constant correction to M. Depth corrections to
apply to M can thus be summarized as in the right-hand
column of  Table 4. Certainly, regional variations of  this
depth dependence are to be expected, but our present
material is insufficient to establish this reliably. It is of  interest
to note that a constant correction for h ≥ 100 km was
obtained already earlier for depths down to 300 km [Båth
1952, figure 2], but that scarcity of  data then precluded its

further study.
The theory of  Rayleigh waves in a homogeneous

medium is clearly insufficient to explain this result. It could
do so for the depth range 50 < h < 100 km, corresponding
approximately to the lithosphere. But for greater depths, the
Rayleigh wave theory would require far greater M
corrections than observed. A plausible explanation could be
that the asthenosphere occupies the range below 100 km
depth and that the deeper earthquakes take place in
subduction zones. The downgoing slab may act as a conveyer
of  the surface waves, leading to the observed effect. It is quite
pronounced in deep earthquakes in the Japan and Bonin
Islands area, but it is apparently a general property of  deep
earthquakes.

6. Determination of M from vertical-component records
Where the Moscow-Prague formula for M, equation (2),

was developed only for the horizontal component of  surface
waves, it is obvious that it would be convenient to have a
corresponding farmula for the vertical camponent. Partly,
this would need measuring only one record instead of  two
for the M calculation, partly and above all, the vertical
component shows pure Rayleigh waves with no interference
of  Love waves as the horizontal components. The problem
can be stated as to develop a formula for the vertical
component giving the closest possible fit in M to the
horizontal component, equation (2). This reduces to
determining the following regression:

(13)

where we admit a parameter           an the basis of  earlier
experience from Pasadena [Båth 1952]. On the other hand,
we are assuming the same distance dependence (geametrical
spreading, attenuation, dispersion) for the vertical as for the
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Table 5. Review of  observational material for Sections 6 to 9.
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horizontal component. The resulting horizontal amplitude is in
each case calculated as the vectorial sum af  AE and AN, that is:

(14)

This will include also Love waves in AH, but this effect is
found to be relatively insignificant in the total material. TH is
taken as the average of  TE and TN.

Our observational material is reviewed in Table 5. In this
case I have also included a set of  long-period measurements
which I made on Palisades records (Columbia University
seismographs) on a visit in 1952. The depth range has been
restricted to h ≤ 50 km, even thoug the relations between H
and Z components are expected to be valid for any depth.
Least squares solutian of  equation (13) yields the following
results:

Uppsala:
Kiruna:
Palisades:

(15)

In these equations the standard deviations refer to each
station separately, i. e. they are the deviations of  MZ from MH

for Uppsala, Kiruna and Palisades, separately. In our bulletins,
we report the average M for Uppsala and Kiruna, and for this
average the standard deviation is calculated as follows:

(16)
where

We find DM= ± 0.11 (N = 232), which means that the fit of
the vertical components to the horizontal ones has been
made with a deviation well within errors of  any single
magnitude calculation.

The resulting vertical-component magnitude formulas
become:

Uppsala:
Kiruna:                                                                                     (17)
Palisades:

Two conclusions are obvious from these results:
1. The Pasadena result [Båth 1952] with         in

equation (13) is not confirmed. The present result appears
more agreeable also from a theoretical viewpoint.

2. Formulas for M from the vertical component can be
written as for the horizontal component, equation (2), and
the deviation can be introduced as a station correction. As
the ratio of  the vertical to the horizontal component

depends on the structural layering around the station, this is
a correct procedure also theoretically. A further refinement
could be to express this station correction as a function of
wave period and of  azimuth, considering structural
variations with depth and azimuth. However, this proves
superfluous, considering the small deviations already
achieved.

Focal depth corrections of  M (Section 5) are assumed to
be the same as for the horizontal component.

7. Relations between m and m (US)
Although the type of  short-period seismograph to be

used in calculating m is not stated in the Zurich
recommendations, it soon became clear that there are
significant differences in m from narrow-band instruments,
like Benioff, compared to even slightly more broad-banded
seismographs, like Grenet. In our bulletins, m from Uppsala
and Kiruna is based on Grenet instruments. On the other
hand, m (US), closely agreeing with m (ISC), is based on
Benioff  instruments. As both magnitudes are in current use,
it appears desirable to have clear relations between the two.

Regressions                    and                   as well as
major axis solutions                      have been derived using
the same material as in Table 1, but this time including
earthquakes of  any depth, as the relations between m and m
(US) are expected to be depth-independent. The results are
summarized in Table 6.

As in Section 4, it is found that the parameters a and b,
a´ and b´ are strongly correlated to each other, as evidenced
by the results summarized in Table 3. Again, we are therefore
in a possibility to replace the two parameters by just one
parameter in each case, as given in the last column of  Table
3. As in Section 4, these results imply that the straight lines
in each group intersect in nearly one and the same point, but
have different slopes. As in Section 4, we also find that the
results in terms of  m and m (US), respectively, generally agree
between regions, at least in the central parts of  the point
clouds, but that the parameters a and b´, a´ and b´ show
significant deviations between regions. On the other hand,
there are no relations between a, b, a´, b´ for m – m (US) and
those for m – M (Section 4), which means that the underlying
factors are different in the two cases.

The significant difference between m and m (US) makes
it necessary to specify in each case (bulletins, publications,
etc.) which kind of  m is used or which type of  instruments is
used. Judging from the worldwide relation between m and
M, equation (8), it is suggested that m is in better agreement
with the definition of  Gutenberg and Richter [1956] than is
m (US) or m (ISC).

It is instructive to compare the different standard
deviations for the m – M relations (Table 2) and the m – m
(US) relations (Table 6). Due to the larger slope of  the point
clouds in the latter case, with α approximating 135˚, all four
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standard deviations Dm and Dm (US) are approximately equal.
But in the m – M case, the slopes are smaller with the
consequence that DM > Dm both for regressions and for major
axis solutions. Comparing the two latter, we find that DM is
about equal but that DM is larger for the major axis solutions
than for the regressions.

Proceeding into more detail and comparing the different
regions, we find similar relations between standard
deviations and point cloud slopes. Estimating the average
deviation of  any single magnitude determination as around
±0.3 units, we find that all D are within or equal to this limit,
except DM.

While m is derived from records at UPP and KIR, m (US)
is based on a number of  various stations reporting to NEIS.
Therefore, it would appear desirable to have not only m but
also m (US) under more direct control. For this purpose, we
operated at Umea (UME) for a few months in 1966 a Grenet
seismograph side by side with the Benioff  instruments. With
the material as specified in Table 5, measurements on the
two instruments could be related to each other, with the
following regressions as result:

(18)

The corresponding relation between the magnitudes is thus:

(19)

with sufficient accuracy. This means that there is a constant
difference between these two magnitudes. Similar results are
also found from parallel recordings at Uppsala.

Identifying mG with our m, and mB with m (US), we
find approximate agreement with results in Table 6 only
for the major axis solutions for Region 5 and the regression

for Region 12. But a significant difference is that
the correlation between our G and B is much stronger, with
considerably smaller standard deviation in the results. We
have anticipated the differences between G and B to be due
to different bandwidths of  their response curves. Even
though this is at least a partial explanation, it is possibly not
the whole explanation. Partly do the response curves for G
and B not deviate considerably from each other, partly are
the recorded periods identical in all the 159 cases investigated
at Umeå. Other instrumental differences, not fully clarified,
may contribute to the difference.

8. Underground nuclear explosions
Magnitudes have found extensive application in

explaining dynamic properties of  seismic events. We shall
illustrate this by two examples, in this and the following
sections. Due to the special source mechanism of
underground nuclear explosions, the relation between m and
M is generally different from the relation for earthquakes
(Section 4). For any given M, the corresponding m is
generally much higher for explosions than for earthquakes.
In order to investigate the m – M and m – m (US) relations for
explosions we collected material from the Uppsala
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Table 6. Relations between m and m (US) for all h.
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seismological bulletins and from the Preliminary
Determination of  Epicenter monthly listing of  NEIS (Table
5). The results are summarized on the bottom lines in Tables
2 and 6. A certain trouble arises from the fact that in some
instances the period or the distance is below the range
stipulated for the Moscow-Prague M-formula, equation (2).

There are quite clear deviations between results for
different shot locations. For both the regressions                and

, the residuals mo – mc are generally negative for
Nevada, positive for Semipalatinsk and the Aleutians and
around zero for Novaya Zemlya and the Caspian Sea area.

The relations between m and m (US) have remarkably
different slopes compared to earthquakes, but they do not
contribute anything to the discrimination problem. On the
other hand, the relations between m and M are of  interest for
discrimination between underground explosions and
earthquakes. Our results indicate that discrimination based
on magnitudes is not so fully reliable as has sometimes been
suspected in the past. Comparing the major axis solutions,
as best representing the point clouds, we find, including the
standard deviations, that separation is best for low
magnitudes and can be trusted up to about M = 6.3 for
earthquakes with h ≤ 50 km but only up to M = 5.6 for
earthquakes of  greater depth. This holds even though
surface waves are usually more important in earthquakes of
any depth than in explosions. Discrimination on this basis is
generally more favourable for Semipalatinsk and the
Aleutians than for Nevada. If  instead of  comparing major
axes and respective standard deviations, we compare the
point clouds directly, we find even worse results. The point
clouds overlap partially from M about 5.5 and up, whence
more reliable discrimination on the basis of  magnitudes
alone would be possible only for magnitudes below this
value. This is an argument in favour of  the installation of
more high-sensitive long-period seismographs.

Another application of  magnitudes to underground
explosions is to calculate their yield. The needed information
on yields for the derivation of  such relations is available only
for American shots [Bolt 1976]. We find a good relation
between our m (average of  Uppsala and Kiruna) and the
yields Y in kiloton for NTS shots (Table 5), as follows:

Correlation between m and log Y = +0.95 ± 0.03

Regression           :              m = 0.53 log Y + 4.95 ± 0.08
Regression            :             log Y = 1.70 m – 8.20 ± 0.16
Major axis solution :  m = 0.54 log Y + 4.92 ± 0.08

log Y = 1.84 m – 9.05 ± 0.16
Resulting D = ± 0.08               (20)

The regression           with a standard deviation of
±0.16 in log Y, implies that Y can be calculated with an error
of  37 percent. This error compares favourably with results

of  spectral calculations, and in fact, by subdividing the Y-
range, it is possible to decrease the error to 18 percent of  the
yield for Y ≤ 200 kt for NTS shots from magnitudes only.
Tests on other explosions with approximately given yields,
not used in deriving equations (20), give in general acceptable
agreement. But this is true only for NTS shots. Caution is
required in using these relations for other shot areas. For
instance, shots in the Aleutians and probably also in the
Semipalatinsk area give too high magnitudes at our stations.
In other words, yields calculated from equation (20) by our
magnitudes are too high. This depends probably on
structural properties near the source, especially downgoing
asthenospheric slab in case of  the Aleutians and exceptionally
good propagation properties in the Semipalatinsk case.

The regression , equation (20), permits an estimate
of  the seismic efficiency γ, i. e. the fraction of  the explosive
energy that is converted into seismic wave energy. From the
E – M relation [Båth, 1958, 1966]:

(21)

in combination with the world-wide major axis solution
for earthquakes (Table 2):

(22)
and the energy relation:

(23)
we find:

(24)

Numerical results are given in Table 7. Values of  γ lie
generally between 10–2 and 10–1 and exhibit a slight increase
with increasing yield. This could be due to a positive
correlation between yield and depth of  explosion, the greater
depths implying better seismic efficiency.

9. Main earthquakes and largest aftershocks
A dynamic property of  aftershock sequences is that the

difference in M between the main shock and the largest
aftershock averages 1.2 units (the so-called Båth's law, cf.
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Richter 1958, p. 69). In other words, there is a finite
magnitude difference between these two events. When first
formulated, it was based on relatively few sequences, but it
has got additional confirmation in course of  time and been
studied by several authors both from statistical and physical
sides. With the greater abundance of  reliable magnitudes
now available, it appears desirable to test this formula on a
larger material.

From the Uppsala seismological bulletins, 116
aftershock sequenze were listed (Table 5). The aftershocks
have occurred within a few hours up to several months after
their respective main earthquakes. Sometimes there may be
two or several main earthquakes of  nearly equal magnitude,
likewise there may be two or several about equally large
aftershocks. In such cases the main earthquake is assigned a
magnitude M corresponding to the total energy release in all
main earthquakes, and similarly the largest aftershock is
assigned a magnitude corresponding to the total energy of
these aftershocks, using equation (21) and following a
principle suggested by Båth [1965]. If  M´, M˝, ... , (M´ ≥ M˝ ≥
... ) is the sequence of  nearly equally large main shocks (or
aftershocks), then the magnitude for the main shock (or
largest aftershock, respectively) is obtained from the
following formula:

(25)

In spite of  this procedure, it is unavoidable that some bias
creeps into this work, as it is not always obvious if  an
earthquake is to be considered as a main earthquake or as an
aftershock. Cases of  more swarm-like characteristics have to
be excluded. In a few cases, even large main shocks are not
followed by any aftershocks recorded by our long-period
seismographs, and these have naturally also to be excluded.
Still, it is believed that such effects will have only a minor
influence on the result.

As an average of  all magnitude differences M – M1 we
find:

(26)

which is in perfect agreement with the original formulation
[Richter 1958, p. 69]. In combination with our relation
we then get the corresponding relation for m:

(27)

Expressed in energy, this means that the energy of  the largest
aftershock is only about 2 percent of  the energy of  the main
earthquake.

We have further investigated possible relations between
M – M1 and other parameters, with the following results.

1. Magnitude M. Plotting M – M1 versus M we find in

spite of  large scatter some suggestion for a dependence of
the type:

(28)

As seen, the standard deviation is practically as large as in
equation (26) and no improvement in accuracy has been
achieved.

2. Epicentral region. Listing M – M1 for different regions,
as defined in Table 1, we find clear regional variations, as
follows for regions with a sufficient number of  observations:

Region 3 M – M1 = 1.2 Normal N = 13
4 1.2 Normal 19
5 0.8 Low 7
7 1.2 Normal 14
8 1.0 Normal 18

11 1.6 High 13
Kermadec-New Zeland 1.0 Normal 6
New Hebrides 0.9 Low 7

3. Focal depth. Our present material has been restricted
to h ≤ 70 km, and within this depth range no dependence
exists between M – M1 and h. Observations are too scanty to
deduce any relation between M – M1 and h for deeper events,
even though a dependence is expected, as tentatively
suggested by Båth [1965].

Probably the most extensive use that magnitudes have
found in earthquake statistics is represented by magnitude-
frequency relations of  the type:

(29)

Our bulletin material does not prove very suitable for
this kind of  study. As a world-wide average for M = 5.5 – 8.0
and h ≤ 50 km, we find the value of  b to be as low as around
0.7. It is not excluted that this may be influenced by a gradual
tapering off  of  our material towards the lower magnitudes in
the range studied.

10. Homogeneous magnitudes
Complete magnitude formulas should include both

source correction and station correction [Båth 1973, p. 110].
Theoretically this is naturally a step in the right direction, i.
e. to correct for radiation patterns from the source, for path
properties and for receiver structural influences, etc. But in
practice we are quite handicapped in determining reliable
corrections because of  the lack of  acceptable reference
magnitudes. Usually this is circumvented by using
determinations at one or a few stations, considered to be
reliable. However, even if  they may be very reliable, their
readings are also subjected to the same influences as at any
other station. Such reductions can therefore hardly be
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considered to be more than a relative calibration.
One way to approach a solution of  this problem would

be to use a world-wide net of  magnitude reference stations.
I have earlier [Båth 1969, p. 80] suggested such a world
system of  magnitude stations, numbering about 15, well
located and well distributed around the earth. By an even
distribution we would eliminate influences of  source
mechanism, path and station properties, which are unavoidable
for individual stations, however good they may be.

Instead of  forming a simple average magnitude from
these stations, I like to discuss an alternative procedure. The
underlying principle is to deduce a magnitude which
corresponds to the energy radiated from the source. In other
words, the adopted magnitude should correspond to the
average energy. Due to the relation between E and M,
equation (21), the average energy is not equivalent to the
average magnitude. The magnitude corresponding to the
average energy is calculated from the following equation:

(30)

obtained by applying equation (21) and where M´, M˝, ... are
the individual station magnitudes. As an example, with only
N = 2, M´ = 6.5, M˝ = 7.5, the magnitude average is 7.0, while
the magnitude which corresponds to the average energy is
7.3 from equation (30). The latter magnitude would then be
considered more representative than the simple average.

Having this, other stations could calibrate their own
magnitudes against this standard. Calibration for a sufficient
number of  earthquakes, well distributed around the earth,
would permit calculation of  a station correction. Then, a
further improvement would be to calculate corrections for
each seismic region separately, i. e. source corrections. The
two corrections can naturally be combined into one value,
for each region. Along these lines, magnitude residuals could
be made equally unbiased as travel-time residuals. A related
suggestion for the Eurasian region has been given by
Christoskov et al. [1974].

Availability of  homogeneous magnitudes would also
assist considerably in further development of  the formulas
for m and M (Section 3), especially to bridge the gap between
about 10˚ to where local scales (ML) may be applicable, and
the lower limits of  16˚ and 20˚ for m and M, respectively.

11. Conclusions
Main results of  general validity can be summarized in

the following points.
1. Relations between body-wave magnitude (m) and

surfacewave magnitude (M) depend on the earthquake
region concerned and can be expressed in terms of  one
regional magnitude parameter.

2. The focal deph correcfon to M incereases from zero at
50 km depth to +0.4 at 100 km depth and after that it remains

constant = + 0.4 for all greater depths.
3. Surface-wave magnitudes (M) can be calculated from

the vertical component by the same formula as for the
horizontal component, only by including a minor station
correction.

4. Body-wave magnitudes (m) determined from broad-
band short-period seismographs show consistent differences
from those determined from narrow-band seismographs.
This is illustrated by differences between Grenet and Benioff
instruments.

5. Relations between m and M for underground nuclear
explosions demonstrate that discrimination from
earthquakes on the basis of  magnitudes alone is trustworthy
only for M less than about 5.5 to 6.0.

6. Relations between m and the yield of  underground
nuclear explosions in Nevada suggest a seismic efficiency of
the order of  10–2 to 10–1, increasing slightly with yield (or
depth).

7. Main earthquakes and largest aftershocks show an
average difference of  1.15 in surface-wave magnitude (M).
The difference increases slightly with magnitude of  the main
shock, it also varies from region to region, but it is
independent of  focal depth at least down to h = 70 km.

8. A homogeneous world-wide network is suggested for
establishing more relable magnitudes, particularly for
deducing corrections to individual station determinations
and for further development of  magnitude scales.
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