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ABSTRACT

Magnetotelluric directional analysis and impedance tensor decomposition
are basic tools to validate a local/regional composite electrical model of  the
underlying structure. Bayesian stochastic methods approach the problem of
the parameter estimation and their uncertainty characterization in a fully
probabilistic fashion, through the use of  posterior model probabilities.We
use the standard Groom-Bailey 3-D local/2-D regional composite model in
our bayesian approach. We assume that the experimental impedance
estimates are contamined with the Gaussian noise and define the likelihood
of  a particular composite model with respect to the observed data. We use
non-informative, flat priors over physically reasonable intervals for the
standard Groom-Bailey decomposition parameters. We apply two numerical
methods, the Markov chain Monte Carlo procedure based on the Gibbs
sampler and a single-component adaptive Metropolis algorithm. From the
posterior samples, we characterize the estimates and uncertainties of  the
individual decomposition parameters by using the respective marginal
posterior probabilities. We conclude that the stochastic scheme performs
reliably for a variety of  models, including the multisite and multifrequency
case with up to several hundreds of  parameters. Though the Monte Carlo
samplers are computationally very intensive, the adaptive Metropolis
algorithm increase the speed of  the simulations for large-scale problems.

1. Introduction
Magnetotelluric (MT) directional analysis and impedance

tensor decomposition have since long become standard MT
data analysis techniques that have largely extended
possibilities of  the MT interpretation of  data with
evidently a 3-D character [e. g., Zhang et al. 1987, Bahr
1988, Groom and Bailey 1989, Bahr 1991, Smith 1995, Jones
and Groom 1993, Groom et al. 1993, Lilley 1998a, Lilley
1998b, McNiece and Jones 2001]. MT composite models
reflect well the natural conditions in which the main
distortions to the MT data often come from very complex
near-surface inhomogeneities, while the deeper structure
shows smoother conductivity trends and often a higher
degree of  symmetry. Since shallow inhomogeneities
distort the MT impedances in solely a static way
starting from a certain period, a possibility exists to
separate the static and inductive parts of  the impedance

tensor by utilizing their different frequency dynamics.
Various schemes of  the MT decomposition have been

suggested, and those by Bahr [1991] and Groom and Bailey
[1989] have become standards in this respect. They are both
primarily single site and single frequency approaches that
may often produce largely scattered estimates of  the
decomposition parameters if  noisy data and strong
distortions are involved. Then, in order to obtain sufficiently
stable decomposition results, an iterative procedure must be
applied based on successively correcting the composite
model parameters with respect to the data considered for a
series of  neighbouring periods. In general, superior estimates
of  distortion and regional MT parameters are obtained by
fitting, in a least-squares sense, a parametric physical model
of  distortion to the observed impedance tensor, and the fit of
the model tested statistically [McNeice and Jones 2001], as
has been done in many studies since the beginnings of  the
decomposition approach [e.g., Bailey and Groom 1987,
Groom and Bailey 1989, Groom and Bailey 1991, Groom et
al. 1993]. Recently, McNeice and Jones [2001] have published
a practical linearized multi-site and multi-frequency inverse
procedure which stabilizes the MT decomposition by least-
squares optimizing the composite model jointly for a series
of  periods and a whole array of  sites.

Static distortions frequently cause the deep regional
structure to become largely blurred in the surface MT data.
As the regional parameters are of  primary interest for the
interpretation, a proper characterization of  the uncertainties
of  their estimates is of  essential importance. Bayesian
inference is a stochastic approach frequently used in similar
situations. In the bayesian approach, prior information about
the decomposition parameters is updated by combining it
with the experimental impedance observations. The updated
posterior probability distribution of  the parameters
conditioned on the experimental data then presents the most
complete description of  the parameter space for the
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decomposition problem. Though the bayesian approach is
sometimes criticized as a procedure that may inject
subjective views into the inference via the choice of  the prior
probability, this is usually not an issue if  non-informative flat
priors are used for the parameters, when the inference results
can be often rigorously shown to be close to those provided
by classical statistics [e.g., Gelman et al. 2004].

The outstanding feature of  the bayesian techniques is
that they explicitly operate with probability distributions
related to the composite model under study, and are thus
capable of  providing the most exhaustive quantitative
information on the model parameter space [e. g., Gelman et
al. 2004]. Clearly, this exhaustive probabilistic mapping of  the
model parameter domain needs an extensive exploration of
the parameter space, which is often a computationally
extremely intensive task.

In this contribution, we present simple Monte Carlo
(MC) procedures to analyze the distorted MT data and
conclude on both the point estimates of  the decomposition
parameters and their uncertainties by simulating marginal
posterior probability density functions for the parameters.
The structure of  the paper is as follows: in Section 2, we
briefly recall the basics of  the MT distortions, MT composite
models and decomposition procedures. In Section 3, we
present a bayesian formulation of  the MT decomposition
problem for the classical Groom-Bailey factorization of  a 3-
D local/2-D regional composite model and summarize the
main ideas on the numerical sampling procedures used,
specifically the Markov chain Monte Carlo (MCMC) method
with Gibbs sampler [Geman and Geman 1984] and an
adaptive single-component Metropolis algorithm adopted
from [Haario et al. 2004]. In the subsequent Section 4, we
apply our stochastic decomposition procedure to the

synthetic as well as practical MT data sets presented by
McNiece and Jones [2001] in their recent multi-site, multi-
frequency decomposition study, and discuss the performance
and efficiency of  the stochastic approach for those data sets.
Finally, we outline some perspectives of  the stochastic
decomposition in the conclusion, Section 5.

2. MT tensor decomposition

2.1.  3-D local/2-D regional composite model
Static distortions of  the MT impedance tensor due to

shallow 3-D electrical inhomogeneities can be formally
described by 

(1)

where Adist (r) is a frequency independent distortion tensor,
and Zobs (r, T) and Zreg (r, T) are, respectively, the observed and
regional impedance tensors at the location r and period T.
For a 2-D regional structure, the regional impedance in the
direction of  the regional strike is given by an antidiagonal
tensor,

(2)

Two factorizations of  the distortion tensor in terms of
more elementary distortion factors are widely used. Bahr's
approach expresses the distortion matrix in terms of  telluric
deviations and anisotropic gains [Bahr 1991],

(3)

while that by Groom and Bailey [1989] factorizes it as a product
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Figure 1. MCMC sampling procedure illustrated on the case of  a stochastic estimation of  the regional strike for one realization of  the impedance tensor
from Subsection 4.1. In the left, the data are combined with a non-informative, flat prior for the strike. Ten Markov chains, with seven decomposition
parameters in (7), are run in parallel starting at different points in the parameter space. The normalized misfit and the strike are shown in the top and
bottom evolution pannels, respectively, for 10000 iterations of  the Gibbs sampler. After about 100 iterations (burn-in period), the chains stabilize around
a common strike value. After 10000 iterations, the histogram for the strikes may be considered a good approximation of  the marginal probability density
function of  the strike. The histrograms to the right show that the form of  the marginal distribution of  the strike is practically stable after the first 1000
iteration steps.
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of  elementary distortion types, twist t, shear e, anisotropy s,
and gain g,

(4)

By comparing (3) and (4), a simple relation between the
directional distortion parameters of  those two factor sets can
be written immediately,

(5)

with f = arctan e, x = arctan t.

2.2. Fitting the composite model
MT decomposition is an ambiguous task. From a single-

site single-frequency impedance tensor, we can uniquely
recover only the regional strike ireg2D, the directional
distortions twist t and shear e, and scaled (by unknown real
factors) regional impedances,                    ,                    .

MT decomposition leads to the solution of  a system of
eight real, non-linear algebraic equations that result from the
condition of  fitting the experimental impedances to those
produced by the composite model,

(6)

where R (i) is a 2-D rotation matrix through i.
As the near-surface distortion often mask the deep

structure to a considerable degree, estimates of  regional
parameters, and especially those of  the regional strike ireg2D,
are often unstable and largely scattered if  they are evaluated
separately for individual frequencies within some frequency
range. In the procedure by McNeice and Jones [2001] the
observed impedance data are fitted by a composite model for
a whole range of  periods and for multiple sites
simultaneously. Specifically, the multi-site multi-frequency
decomposition minimizes the target

(7)

where d are the decomposition parameters, i. e., the regional
strike common to all sites and periods, the twist and shear
parameters common to all periods at a specific site, and the
regional impedance pairs specific for each period and each site.
In what follows, we use the normalized value of  U (d)/ND to
characterize the misfit between the observed and model
data, where ND is the total number of  the data items. If
experimental (complex) impedances are available for NT

periods at each of  NS sites, then ND = 8 NT NS. The total
number of  decomposition parameters to be recovered by a
decomposition procedure is NP = 4 NT NS + NS +1, where the
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Figure 2. MT decomposition parameters from the MCMC sampling applied individually to each of  30 noisy realizations of  the impedance tensor derived
from (17). Left panels show the normalized misfit (RMS squared) for each decomposition run, and histograms, transformed into gray-shade maps, for the
regional strike, twist and shear parameters. For comparison, point estimates of  the latter three parameters from Bahr's decomposition [Bahr 1988] are
shown by white circles. Right panels show the approximate marginal probability densities for the recovered regional impedances, in terms of  their modules
and phases. Exact values of  the parameters from the generating impedance tensor (14) are: yreg2D= 00, arctan t = – 2.20, arctan e = 24.950, {E = 40.630, {H = 20.590.
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three summands are for the number of  the (real) scaled
regional impedances, number of  twists and shears, and one
common value of  the regional strike, respectively.

The problem of  minimizing equation (7) with respect
to the parameters d is a standard non-linear optimization
problem. McNeice and Jones [2001] use an efficient iterative
procedure based on a sequential quadratic programming
algorithm to minimize the difference between the observed
and model impedances and to obtain point estimates of  the
decomposition parameters in the least-squares sense. To
quantitatively characterize the parameter uncertainties
recovered from the non-linear minimization of  (7), McNiece
and Jones [2001] use a slightly modified bootstrap procedure
of  Groom and Bailey [1991] to derive the confidence limits
for the individual decomposition parameters.

3. Bayesian approach to the MT decomposition

3.1. Bayesian formulation of  the MT decomposition problem
In a bayesian approach, both the parameter estimation

and the assessment of  the parameter uncertainties are
treated as problems of  determining the posterior probability
of  the composite model conditioned on the observed data, i.
e., according to the Bayes rule,

(8)
[see, e. g., Gelman et al. 2004]. The posterior probability
density function Prob (d|Zobs.exp, M) is considered a solution to
the inverse problem (7) and is further used to evaluate point

estimates for the parameters and to derive their confidence
intervals.

In the general formula (8), the prior probability,
Prob (d|M), describes the available knowledge about the
decomposition parameters prior to the data being observed.
The symbol M stands for the assumptions made on the
decomposition model a priori. In our particular
decomposition problem, M represents a class of  3-D local/2-
D regional composite models (1) used throughout this paper.

As we generally do not assume any particular
knowledge about the decomposition parameters a priori, we
use flat (constant) priors on the individual parameters within
reasonable physical bounds, specifically

(9)
where i0 is used to adjust limits of  the regional strike range,
and tmin, tmax define wide enough limits to accomodate
sufficiently large impedance shifts. The lower and upper
bounds for the twist and shear correspond to the limit angles
of  ± arctan 63.4˚ for the twist and ± arctan 45˚ for the shear.
Of  course, one of  the stregths of  the bayesian analysis is that
more informative priors on the parameters can be
introduced into (8) if  additional structural information is
available a priori.

The other fundamental term in (8), the likelihood, Prob
(Zobs.exp|d, M), represents the probability of  obtaining the
observed impedances given a particular set of  values for the
decomposition parameters, and can be written in the form
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Figure 3. MT decomposition parameters form the stochastic sampling applied to five groups of  six realizations the impedance tensor derived from (17).
For each group, the twist and shear parameters are considered constant. The regional strike is assumed to be the same for all data. For details on the figure
structure, see caption to Figure 2.
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(10)

if  Gaussian noise distribution in the observed data is
assumed. Here, U (d) is the misfit defined by (7). The likelihood
function allows us to rate models according to their fit to the
particular experimental data observed. By foulding the
likelihood with the prior information on the parameters, we
arrive at the parameters' posterior probability distribution.
The denominator in (8), Prob (Zobs.exp, M), plays just a role of
a constant scaling factor which guarantees that the posterior
probability distribution integrates to one over the admissible
parameter space domain.

Clearly, the posterior probability (8) with the specific
likelihood (10) combined with the uniform priors on the
parameters (9) shifts the bayesian formulation very close to
the standard Gaussian stochastic model. Classical maximum
likelihood estimation (MLE) maximizes the likelihood
function over the parameter space,

(11)

The maximum aposteriori parameter estimate (MAP)
from (8) is

(12)

for a constant prior, Prob (d|M) = const > 0. To assess the
parameter uncertainties, either a full stochatic sampling from
the likelihood must be carried out, or, as most common in
practice, an approximation of  the likelihood by a multivariate
normal distribution in the vicinity of  the MAP solution can
be used [Laplace approximation, e. g. MacKay 2003],

(13)

where
evaluated at the point dMAP. A full stochatic sampling may

BAYESIAN APPROACH TO MAGNETOTELLURIC TENSOR DECOMPOSITION

Figure 4. Marginal probability densities for the regional strike from the PNG101 through PNG108 data set [Jones and Schultz 1997]. Top row: Sum of  strikes
estimated for the sites and periods separately. Middle row: Strikes obtained from a multi-site, single frequency decomposition applied to all eight sites jointly.
Bottom rows: Strikes from a multi-site, multi-frequency decomposition over all eight sites and over period bands of, respectively, half  a decade and one
decade width.
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then be useful in capturing deviations from this approximate
normal distribution.

3.2. MT decomposition via stochastic sampling
Analytic solutions to bayesian inference problems are

rare and are mostly limited to linear statistical models in low-
dimensional settings and to simple standard probability
distribution functions. Most of  the practical applications of
the bayesian methods, especially in higher dimensions and
with non -linear models involved, are based either on
qualified approximations of  the target probability
distributions by simpler standard probability densities, like
Gaussians or their mixtures, or on generating samples from
the posterior probability function numerically, e. g., by
Monte Carlo simulation procedures.

In our study, we have used a version of  the Monte Carlo
method with Markov chains (MCMC) to simulate samples
from the posterior probability of  MT composite models
conditioned on the observed impedances. Without going

into details of  the MCMC technique [for details see, e. g.,
Gelfand et al. 2004 or, within a geoelectrical context, Grandis
et al. 1999], the procedure consists (i) in constructing an
ergodic Markov chain with the limit probability distribution
equal to our target posterior probability (8), and (ii) in
obtaining a partial realization from the corresponding
Markov chain. After a certain burn-in period, during which
the chain transits to its stationary state, the samples from the
Markov chain realization can be considered approximate
draws from our target posterior distribution (8).

MCMC sampling algorithms represent general rules for
the construction and generation of  the Markov chains with
the above desired properties. Here, we have at first tested the
standard Gibbs sampling procedure [e. g., Geman and
Geman 1984, Grandis et al. 1999, Gelman et al. 2004], which
proceeds as follows: starting from the latest state of  the
Markov chain, say k-th, with parameters d (k) , the Gibbs
sampler loops through all the components of  the vector d,
and, for each individual component, di, updates its value by
drawing from the univariate conditional probability density

(14)
After all the NP components of  the parameter vector

have been updated in this way, one iteration step of  the Gibbs
sampler, and the transition to its new state d(k+1), is
completed.

The convergence of  the MCMC procedure to the target
probability is theoretically guaranteed for Markov chains of
infinite length only. In practice, various indicators are used
to assess the convergence, the simplest being the stability of
the marginal probabilities of  the model parameters over long
enough sections of  the chain. To assist the convergence,
several parallel chains can be started from different points in
the parameter space. Figure 1 illustrates the basic steps of
the MCMC sampling procedure for the regional strike
assessment from a synthetic impedance tensor realization
treated later in Section 4.1.

After a sample from the posterior probability density
function is obtained, basic bayesian integrals (mean values,
covariance matrices, etc.) can be easily evaluated from the
posterior sample and used to assess both the decomposition
parameters (mean values) and their uncertainties and inter-
dependencies (variance-covariance matrix, correlations).

Since the conditional probabilities in (14) are not given
in a closed form, they are standardly approximated on a grid
of  points within the parameter domain. As the likelihood
function (10) has to be evaluated at each grid point, that
approximation may require extreme computing times,
especially if  the direct problem solution is demanding, or if
vast domains of  the parameter space with very low
likelihood are sampled. In some of  our practical experiments,
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Figure 5. Fit of  the data generated by the composite model and the
experimental impedances for the site PNG101 from the MT-DIW2 Papua-
New Guinea data set [Jones and Schultz 1997]. The decomposition was
run for one decade of  periods, 1 to 10 s (6 periods). Rows 1 and 2:
Distribution of  normalized residuals between the experimental impedance
components and the corresponding data replicas given the simulated
decomposition parameters compared with the standardized normal
distribution by means of  the q-q plots for one arbitrarily chosen period
3.56 s. Rows 3 and 4: q-q plots for selected parameters of  the
decomposition model from the Markov chain with respect to the
respective best-fit Gaussian curves. The anomalous q-q plot for the real
part of  the first regional impedance is due to our setting the lower limit for
that parameter too high by mistake.
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we have used grid steps as small as 0.5˚ for the regional strike,
0.01 for the twist and shear parameters, and 0.005 for the
logarithms of  the components of  the regional impedances.
Considering the parameter limits specified in (9), with
tmin= 10–² Xm and  tmax= 105Xm used, the number of  misfit
(7) evaluations totals to more than 25 millions in such cases
for one iteration step of  the Gibbs sampler. Coarsening the
grid over areas with small likelihood, by using more
sophisticated, data driven approximation schemes, such as
the neighbourhood interpolation suggested by Sambridge
[1997], or by narrowing the parameter bounds helps in
reducing the computation burden.

As an alternative to the Gibbs sampler, we have also
tested a slightly simplified version of  the componentwise
adaptive Metropolis algorithm suggested recently by Haario
et al. [2003] in the context of  upper atmosphere studies. The
algorithm proceeds in similar cycles as the Gibbs sampler
above except that the updates to the individual component di

are generated by an adaptive Metropolis rule. For this, first a
proposal draw is made from a normal distribution centered
at the current value    with a data adaptive variance,
specifically

(15)
where            is the variance of  di estimated from the previous
steps of  the sampler, the factor s is an multiplicative constant
tuned experimentally to optimize the rejection/acceptance
ratio of  the algorithm (here, s = 2.4 has been used according
to the suggestion by Haario et al. 2003), and f is a small
regularizing factor. Then, the Metropolis decision step is
made, i. e., the candidate point is accepted,                        ,
with the probability

(16)

If  the proposal is rejected, the old value of  the
parameter is retained, i.e.,                     with the probability
1 – π (accept). As in this algorithm a longer history of  the chain
is employed for adapting the variances in (15), the chain is
evidently not Markovian any more. Nonetheless, Haario et
al. [2003] have proved its convergence to the target posterior.
As compared to the original Gibbs sampler, the adaptive
Metropolis procedure requires only one solution to the direct
problem per component and per iteration. The adaptive
variance in (15) should take care of  a quasi-optimality of  the
acceptance/rejection ratio for updating the model
parameters in the chain evolution, regulating thus the
convergence of  the chain.

4. Numerical experiments

4.1. Synthetic example I:
multiple realizations of  a single impedance tensor
To have a possibility to compare results of  our

numerical experiments with a reliable reference, we have
tested the stochastic MT decomposition procedure on several
data sets presented lately by McNiece and Jones [2001] in
their multi-site, multi-frequency decomposition study. Their
first example uses a single synthetic impedance matrix

(17)
They further generate a series of  31 realizations of  this

distorted impedance tensor by contamining its components
by Gaussian noise with the standard deviation of  4.5 % of
the largest impedance element. Though artificial, the
example is suitable for estimating the impact of  the noise on
the decomposition results under otherwise equivalent
conditions as regards the regional structure as well as the
local distorter.
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Site True twist True shear MNJ twist MNJ shear ACM twist ACM shear

SYN001 – 20 20 – 20.1 20.1 – 20.0 ± 0.1 19.9 ± 0.1
SYN002 40 – 10 40.2 – 10.1 39.9 ± 0.1 – 10.2 ± 0.1
SYN003 – 15 25 – 15.1 25.2 – 15.2 ± 0.2 25.0 ± 0.1
SYN004 20 40 19.7 39.9 19.9 ± 0.2 40.0 ± 0.2
SYN005 – 40 – 25 – 40.0 – 25.0 – 40.0 ± 0.1 – 25.0 ± 0.1
SYN006 30 – 20 30.1 – 20.2 29.9 ± 0.1 – 20.0 ± 0.1
SYN007 – 50 – 35 – 50.1 – 34.9 – 50.1 ± 0.2 35.2 ± 0.1
SYN008 – 10 25 – 10.1 – 25.1 – 10.3 ± 0.2 25.0 ± 0.1
SYN009 – 5 35 – 5.3 35.1 – 5.1 ± 0.2 35.1 ± 0.1
SYN0010 45 15 45.1 14.8 44.9 ± 0.1 15.0 ± 0.1

Table 1. Strike and twist parameters, in degrees, for the synthetic data produced by the 2-D conductive block in Section 4.2. True parameters were used
to distort 2-D impedances of  the box model. MNJ are results of  the reverse decomposition presented by McNeice and Jones [2001]. ACM parameters are
results of  the adaptive componentwise Metropolis sampling used in this paper. For the common regional strike, we have 300 for the true strike, 30.30 from
the MNJ analysis, and 30.1 ± 0.20 from the stochastic procedure.
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In Figures 2 and 3, we show results of  the stochastic
decomposition runs for the set of  thirty data realizations,
which were combined in various ways to simulate different
decomposition modi. Specifically, Figure 2 displays results of
the decomposition applied to each of  the thirty tensors
individually. We applied the Gibbs sampler with 10k steps.
The first 2k samples were used to equilibrate the chain (burn-
in period). Histograms of  the individual parameters from the
remaining 8k samples were used as approximates to their
marginal probability densities. The relative frequencies of
occurence of  particular values were mapped onto a gray-
shade scale, and are shown in Figure 2. For comparison,
point estimates of  the regional strike, twist and shear
obtained by Bahr's decomposition analysis [Bahr 1988] are
also indicated.

While the previous example illustrated the stochastic
decomposition approach in a setting typical for a single site
and single frequency decomposition, Figure 3 illustrates
results of  a simulation for a multiple site and multiple
frequency case from the same data set. Now, the noisy
impedance tensors are arranged into five groups, with six
impedance realizations in each of  them. Each group
simulates a site, with a common value of  the twist and shear
parameters. Each realization within a particular group
simulates one frequency. The regional strike is assumed to
have the same value common to all the data.

4.2. Synthetic example II:
multi-site multi-frequency decomposition over a 2-D block model
The second example adopted from McNeice and Jones

[2001] is their synthetic study of  distorted impedances
generated by a simple 2-D model. A 50 Ωm 2-D body, 5 km
deep with a 4 km depth extent and a width of  25 km, was
embedded in a 1000 Ωm half-space. Observations were made
at ten sites equispaced at 8 km intervals across the surface. At
each site, impedances were modelled numerically for 31
periods within the range 0.01 to 1000 s and subsequently
distorted by a predefined, site-specific distortion matrix. The
distorted tensors were then rotated away from the regional
strike direction (by –30˚), and contamined with Gaussian
noise with the standard deviation corresponding to 2 % of
the maximum impedance element at each period.

Though apparently simple and straightforward, this
example bears some specific features that might be rather
unfavourable for the stochastic decomposition approach.
First, stochastic global optimization and sampling
procedures are known to fail frequently for problems with a
large number of  variables. In the model above, the total
number of  decomposition parameters to be resolved is 1261,
which may be considered very large for a stochastic
approach. Especially, this number of  variables practically
prevents us from using the simple Gibbs sampler within the
MCMC, as the number of  solutions to the direct problem
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Figure 6. Histograms for selected decomposition parameters generated after 100k MCMC steps for 10 experimental impedances contamined with Gaussian
noise. Top row: Histograms of  the misfit, regional strike, twist and shear along with point estimates of  the decomposition parameters by Bahr's [1988]
formulas (black triangles) and the true parameter values (dashed vertical line). Middle row: Histograms of  the regional phases 1 and 2 (E and H) at two
arbitrary selected data points, 02 and 07 from the set of  10 experimental impedances. Bottom row: q-q plots of  normalized residuals of  the principal
impedance elements versus the standardized normal distribution for one arbitrary data point, here point 02 from the 10 experimental impedances.
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would be prohibitively large if  no coarsening strategy for the
approximation of  the parameters' conditionals could be
suggested.

Second, any componentwise sampling suffers from the
presence of  highly correlated parameters within the set of
variables. In the present syntetic example, the 2-D
manifestation of  the regional structure is relatively weak, and
is, moreover, obscured by excessively strong artificial
distortions. In such a case, correlations between the
parameters of  the composite model occur, with degraded
performance of  the sampling procedure as a consequence.
We applied the componentwise adaptive Metropolis
algorithm by Haario et al. [2003] to perform the MCMC
sampling for the above model. We have met serious
difficulties in sampling for the sites individually, especially
because of  strong correlations between the decomposition
parameters. For the whole set consisting of  all 10 sites and all
31 frequencies, the procedure behaved much more regularly
than for the sites considered individually, and produced
satisfactory results after about 100k iterations of  the adaptive
Metropolis algorithm. For comparison, we present our
results for the strike, twist and shear estimates together with
those published by McNiece and Jones [2001] in Table 1.

4.3. Practical example:
MT-DIW2 Papua-New Guinea MT data set
Here we present a few illustrative results of  the analysis

of  the Papua New Guinea data [PNG, Jones and Schultz
1997], which were a subject of  detailed investigations within
the MT-DIW2 project, and have been studied extensively by
McNeice and Jones [2001] from the point of  view of  the
directional and decomposition analysis. From the latter
analysis, this data set has been shown to indicate a consistent
regional structure for a series of  eight sites, called PNG101
through PNG108.

To compare the performance of  our algorithm with the
optimization procedure by McNeice and Jones [2001] for a
set of  field data, we have used the PNG data set within our
stochastic decomposition analysis. Here, we will only show
a fraction of  the results concerning the regional strike
estimates. The results were obtained by using the Gibbs
sampler within the MCMC procedure, typically with 10k
iterations and 2k steps of  a burn-in phase. The results are
summarized in Figure 4, and can be compared directly with
the estimates given in McNeice and Jones [2001], Figures 11
through 13.

The strike estimates were obtained by applying the
stochastic decomposition to various combinations of  the
PNG data items. First, the single strike, single frequency
decomposition was carried out. The partial strike histograms
at individual frequencies were then merged into a single
histogram to show the aggregate directional information for
the region at individual frequencies (top row of  histograms

in Figure 4). Obviously, for whole frequency ranges, this
directional information is rather poor and excessively diffuse.

By assuming the same regional strike for all the eight
sites considered at individual frequencies, a multiple site,
single frequency diretional analysis clearly improves the
resolution with respect to the regional strike (middle row of
histograms in Figure 4). Further sharpening of  the deep
directional image is achieved by aggregating the data over
frequency ranges, as demonstrated by histograms in the
bottom line in Figure 4.

4.4. Assessing MCMC model fit and stability
In addition to verifying the convergence of  the Markov

chain by comparing multiple chains started from different
points in the parameter space, as described in Section 3.2, the
final model has to be also assessed according to its fit to the
original data. As the Monte Carlo procedure provides a
sample from the posterior probability (8), the bayesian
goodness-of-fit is estimated with respect to this probability
sample rather than with respect to specific point estimates
of  the model parameters. A common way is to compare the
experimental data with their replicas produced by the model
via a predictive posterior probability.

Probability of  hypothetical data replications Zobs.rep

conditioned on the really observed experimental data Zobs.exp

is given by [Gelman and Meng, chap. 11 in Gilks et al. 1999]

(18)

where the integration goes over all the parameter space D,
and can be approximated by a summation over the states k of
the posterior density sample providing the Markov chain has
sampled the influential part of  the parameter space
sufficiently well. The first factor in the above integrand/sum
is a probability of  Zobs.rep if  the model parameters are d(k) and
the observation conditions (noise sources) are exactly the
same as in the true experiment. Then, this probability can be
approximated by sampling for Zobs.rep from the likelihood
function (10) with the fixed model parameters d(k), i. e., by
drawing samples from a Gaussian distribution centered at

and with the covariance matrix of  the experimental
data. The second factor in the integrand/sum (18) is the
probability of  the state d(k) from the posterior distribution (8),
and can be taken directly from the Markov chain.

We present an example of  the model fit in Figure 5. The
decomposition was run for one decade of  periods, 1 to 10 s
(6 periods), for a single site PNG101 from the MT-DIW2
Papua-New Guinea data set [Jones and Schultz 1997].
Distribution of  normalized residuals between the
experimental impedances and the data replicas given the

BAYESIAN APPROACH TO MAGNETOTELLURIC TENSOR DECOMPOSITION

Prob ( , )

Prob ( , ) Prob ( , )

Prob ( , ) Prob ( , ),

Z Z M

Z d M d Z M dD

Z d M d Z M

obs.rep obs.exp

obs.rep

D

obs.exp

obs.rep (k)

k

(k) obs.exp

=

= #

#

;

; ; .

. ; ;/

#

Z d(k)^ h



simulated decomposition parameters is compared with the
standardized normal distribution, Normal (x|0.1),
individually for each impedance data item in the top panel
of  Figure 5 by means of  the q-q plots (for one arbitrarily
chosen period, specifically 3.56 s here). The plots are
constructed from 8000 quasi-independent states of  the
Markov chain and show a good degree of  fit with respect to
the reference normal distribution.

In the bottom panel of  Figure 5, we also show, for the
sake of  completness, q-q plots for selected parameters of  the
decomposition model from the Markov chain with respect
to the respective best-fit Gaussian curves. As no distributional
assumptions were made about the parameters, except for the
uniform priors, the parameters are generally not normally
distributed. It is especially evident for the twist and shear
parameters which both show left-skewed distributions. The
anomalous q-q plot for the real part of  the first regional
impedance is a result of  our setting the lower limit for that
parameter too high. This deficiency was corrected in later
runs.

Stability of  the MCMC inference with respect to the
input data is another important factor of  the model
assessment, but its general analysis, involving the stability
with respect to both the prior and to the likelihood, is far

beyond the scope of  the present paper. The likelihood (10)
misspecification is one of  factors that may affect the bayesian
inference made from practical MT data, especially if  raw time
signals or estimates of  their spectral densities are not
available. Chave and Jones [1997] and McNiece and Jones
[2001] discuss serious inaccuracies in error bounds for the
impedance estimates when parametric estimators were used
in the data analysis codes. Incorrect variances of  the
experimental data in the misfit (8) and likelihood (10) result
in false uncertainty assessment of  the decomposition
parameters, and often hamper the convergence of  the MCMC
procedure considerably.

Here, we present an example of  incorrectly specified
noise model for the experimental data and its effect on the
MCMC inference outputs. The studied data are the simple
single-point noisy synthetic impedances adopted from
McNiece and Jones [2001] and analyzed as synthetic example
I in Section 4.1. Similarly as earlier, we first generated a
sample of  10 impedance tensors by contamining the exact
impedance (17) with Gaussian noise with the standard
deviation of  4.5% of  the largest impedance element. This
model serves as a reference for subsequent tests. Histograms
of  selected decomposition parameters after 100k MCMC
steps with the adaptive Metropolis sampler, which
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Figure 7. Histograms for selected decomposition parameters generated after 100k MCMC steps for 10 experimetal impedances contamined with Laplacian
noise with the same variance as in the Gaussian case in Figure 6. Top row: Histograms of  the misfit, regional strike, twist and shear generated by the MCMC
procedure with the Gaussian (gray histograms) and Laplacian (white histograms) likelihood used in the MCMC procedure. Point estimates of  the
decomposition parameters from Bahr's [1988] formulas are shown by black triangles and the true parameter values indicated by dashed vertical lines.
Middle row: Histograms of  the regional phases 1 and 2 (E and H) at two arbitrary selected data points, 02 and 07 from the set of  10 experimental
impedances. Point 02 shows the large outlier indicated in the top strike and shear histograms. Bottom row: q-q plots of  normalized residuals of  the
principal impedance elements versus the standardized normal distribution for the data point 02, with an large outlier in Im Zyx.
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approximate the marginal posterior probability densities of
those parameters, are shown in Figure 6, along with the q-q
plots of  the normalized residuals for one set of  principal
impedance elements, illustrating the fit of  the model data to
the (simulated) experiment. Considering the relatively small
size of  the experimental data sample, the histograms show
satisfactory resolution of  the decomposition parameters,
with the difference between the true values and the bayesian
means not exceeding two times the sample variance of  the
respective histograms even in extreme cases.

In the second experiment, we generated the noise for
the simulated data from a Laplacian distribution with the
same variance as used in the Gaussian case. This effectively
results in simulated experimental data showing more
frequently larger outliers than would correspond to the
normal noise model. For a sample of  10 noisy realizations of
the impedance tensor, we again ran the MCMC sampling, but
with the (misspecified) Gaussian likelihood (10). The gray
histograms in Figure 7 show distributions of  the
decomposition parameters after 100k MCMC steps for this
case. The resolution of  the aggregate parameters, common
to all the experimental data in the sample, is comparable to
the case of  the true Gaussian noise above. For regional
phases, the resolution is poorer for data items showing large
outliers, as is the case of  the data point 02 (Figure 7). For that
particular data point, we also display q-q plots of  the
normalized residuals with respect to the normal distribution
in Figure 7, which show the largest misfit in the Im Zyx

component, which is the most serious outlier in the
simulated data set. For comparison, white histograms in
Figure 7 show results of  the MCMC sampling with the
correct Laplacian likelihood applied in (8) and (10), but the
differences between the cases of  the (misspecified) Gaussian
likelihood and the (true) Laplacian likelihood are not
conclusive in this experiment.

A serious factor in applying MCMC sampling procedures
is the computer intensity given by the necessity of  sampling
relatively large domains of  the parameter space in often a
multi-dimensional setting. In most cases, the evaluation of
the direct model is the most time consuming part of  the
MCMC iterations, though for a rather simple MT composite
model (6) other steps of  the code may be of  comparable
complexity (random number generation, online evaluation
of  the variance-covariance matrix, etc.). In our experiments,
typical CPU times were about 100 s for a set of  experimental
data with 10 impedance tensors (43 variable model
parameters) and 100k MCMC iteration steps on a mini-
notebook with the Intel Atom N280 (1.66 GHz) CPU, 1 GB
RAM, and using the Compaq Visual Fortran, version 6.6c,
compiler upon the Win XP operation system. With the
number of  experimetal data items increased to 100 (i. e., with
403 variable parameters), the computation time increased to
about 71 minutes on the same machine.

5. Conclusion
The MT decomposition is a problem that targets not

only the parameters of  the underlying composite model, but
is interested in their uncertainties as well. Relatively weak
manifestation of  the deep symmetric regional structure and
its masking by static distortions, sometimes extreme, of
near-surface origin may result in excessively blurred images
of  the deep conductors. By aggregating the data over
frequency bands and groups of  sites presents a way of
effectively focusing on poorly resolvable features of  the
regional structure, as shown by McNeice and Jones [2001] in
their multi-site, multi-frequency decomposition study.

Technically, the decomposition is an optimization
procedure aiming at the minimization of  the objective
function (7). In the above study by McNiece and Jones [2001],
a direct minimization procedure is used to solve the
decomposition problem. If  converged, it provides point
estimates of  the decomposition parameters for the optimal
composite model. The error estimates for these parameters
can be then obtained by either a linearized projection of  the
data covariance matrix into the parameter space [e.g., Menke
1989], or, if  non-linearities are essential, by a stochastic search
in a neighbourhood of  the optimal model, or by studying
changes in the composite model due to stochastic variations
of  the data, e.g., by using a bootstrap procedure as in Groom
and Bailey [1991] and McNeice and Jones [2001].

We present an alternative multi-site, multi-frequency
decomposition procedure that is based on the bayesian
formulation of  the decomposition problem and its solution
via a stochastic sampling by a MCMC technique. The
procedure generates a chain that approximates samples from
the posterior probability distribution of  the MT composite
model conditioned on the observed data. Though
computationally demanding, the advantage of  the procedure
is that, by providing the results in the form of  a posteriori
probability distribution, the uncertainty information on the
decomposition parameters is an inseparable component of
the solution.

This paper is just a feasibility study that compares the
performance of  the stochastic decomposition with the
results presented by McNeice and Jones [2001]. The
comparisons carried out above show that the bayesian
averaging from the MCMC samples provides estimates to the
decomposition parameters statistically equivalent to those
obtained from the direct optimization procedure.
Confidence intervals for the individual parameters are
immediately available at the output of  the MCMC sampling.
The MCMC procedure could be used with success even in the
unfavourable case of  a 2-D box model, with a large number
of  variables and strong correlations between the parameters.
In this case, however, the computational demands cannot
compete with those of  the direct minimization. Nonetheless,
if  a bootstrap error testing should be supplemented for that
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model, the amount of  computations required would
undoubtedly rocket as well.

The presented bayesian analysis allows us to relatively
easily extend the scope of  problems that have to be addressed
in relation to the MT decomposition. E. g., the generalization
to the model that considers also static magnetic distortions
[Chave and Smith 1994, McNeice and Jones 2001] is
straightforward. Moreover, the bayesian model selection is a
suitable tool to answer the question of  whether
incorporating the magnetic distortions into the composite
model is really required by the data. Another problem not
addressed here is that of  poorly estimated data variances in
(7), which is not a rare case in practice, and affects even the
PNG data set used here [for details, see McNeice and Jones
2001]. Bayesian approach makes it possible to include the
data variances into the parameter set as nuisance variables
[e. g., Gelman et al. 2004], and thus allows us to cope with
defficiencies originating from the data processing.
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